xref: /linux/fs/afs/super.c (revision fd639726bf15fca8ee1a00dce8e0096d0ad9bd18)
1 /* AFS superblock handling
2  *
3  * Copyright (c) 2002, 2007 Red Hat, Inc. All rights reserved.
4  *
5  * This software may be freely redistributed under the terms of the
6  * GNU General Public License.
7  *
8  * You should have received a copy of the GNU General Public License
9  * along with this program; if not, write to the Free Software
10  * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
11  *
12  * Authors: David Howells <dhowells@redhat.com>
13  *          David Woodhouse <dwmw2@infradead.org>
14  *
15  */
16 
17 #include <linux/kernel.h>
18 #include <linux/module.h>
19 #include <linux/mount.h>
20 #include <linux/init.h>
21 #include <linux/slab.h>
22 #include <linux/fs.h>
23 #include <linux/pagemap.h>
24 #include <linux/parser.h>
25 #include <linux/statfs.h>
26 #include <linux/sched.h>
27 #include <linux/nsproxy.h>
28 #include <linux/magic.h>
29 #include <net/net_namespace.h>
30 #include "internal.h"
31 
32 static void afs_i_init_once(void *foo);
33 static struct dentry *afs_mount(struct file_system_type *fs_type,
34 		      int flags, const char *dev_name, void *data);
35 static void afs_kill_super(struct super_block *sb);
36 static struct inode *afs_alloc_inode(struct super_block *sb);
37 static void afs_destroy_inode(struct inode *inode);
38 static int afs_statfs(struct dentry *dentry, struct kstatfs *buf);
39 static int afs_show_devname(struct seq_file *m, struct dentry *root);
40 static int afs_show_options(struct seq_file *m, struct dentry *root);
41 
42 struct file_system_type afs_fs_type = {
43 	.owner		= THIS_MODULE,
44 	.name		= "afs",
45 	.mount		= afs_mount,
46 	.kill_sb	= afs_kill_super,
47 	.fs_flags	= 0,
48 };
49 MODULE_ALIAS_FS("afs");
50 
51 static const struct super_operations afs_super_ops = {
52 	.statfs		= afs_statfs,
53 	.alloc_inode	= afs_alloc_inode,
54 	.drop_inode	= afs_drop_inode,
55 	.destroy_inode	= afs_destroy_inode,
56 	.evict_inode	= afs_evict_inode,
57 	.show_devname	= afs_show_devname,
58 	.show_options	= afs_show_options,
59 };
60 
61 static struct kmem_cache *afs_inode_cachep;
62 static atomic_t afs_count_active_inodes;
63 
64 enum {
65 	afs_no_opt,
66 	afs_opt_cell,
67 	afs_opt_rwpath,
68 	afs_opt_vol,
69 	afs_opt_autocell,
70 };
71 
72 static const match_table_t afs_options_list = {
73 	{ afs_opt_cell,		"cell=%s"	},
74 	{ afs_opt_rwpath,	"rwpath"	},
75 	{ afs_opt_vol,		"vol=%s"	},
76 	{ afs_opt_autocell,	"autocell"	},
77 	{ afs_no_opt,		NULL		},
78 };
79 
80 /*
81  * initialise the filesystem
82  */
83 int __init afs_fs_init(void)
84 {
85 	int ret;
86 
87 	_enter("");
88 
89 	/* create ourselves an inode cache */
90 	atomic_set(&afs_count_active_inodes, 0);
91 
92 	ret = -ENOMEM;
93 	afs_inode_cachep = kmem_cache_create("afs_inode_cache",
94 					     sizeof(struct afs_vnode),
95 					     0,
96 					     SLAB_HWCACHE_ALIGN|SLAB_ACCOUNT,
97 					     afs_i_init_once);
98 	if (!afs_inode_cachep) {
99 		printk(KERN_NOTICE "kAFS: Failed to allocate inode cache\n");
100 		return ret;
101 	}
102 
103 	/* now export our filesystem to lesser mortals */
104 	ret = register_filesystem(&afs_fs_type);
105 	if (ret < 0) {
106 		kmem_cache_destroy(afs_inode_cachep);
107 		_leave(" = %d", ret);
108 		return ret;
109 	}
110 
111 	_leave(" = 0");
112 	return 0;
113 }
114 
115 /*
116  * clean up the filesystem
117  */
118 void __exit afs_fs_exit(void)
119 {
120 	_enter("");
121 
122 	afs_mntpt_kill_timer();
123 	unregister_filesystem(&afs_fs_type);
124 
125 	if (atomic_read(&afs_count_active_inodes) != 0) {
126 		printk("kAFS: %d active inode objects still present\n",
127 		       atomic_read(&afs_count_active_inodes));
128 		BUG();
129 	}
130 
131 	/*
132 	 * Make sure all delayed rcu free inodes are flushed before we
133 	 * destroy cache.
134 	 */
135 	rcu_barrier();
136 	kmem_cache_destroy(afs_inode_cachep);
137 	_leave("");
138 }
139 
140 /*
141  * Display the mount device name in /proc/mounts.
142  */
143 static int afs_show_devname(struct seq_file *m, struct dentry *root)
144 {
145 	struct afs_super_info *as = AFS_FS_S(root->d_sb);
146 	struct afs_volume *volume = as->volume;
147 	struct afs_cell *cell = as->cell;
148 	const char *suf = "";
149 	char pref = '%';
150 
151 	switch (volume->type) {
152 	case AFSVL_RWVOL:
153 		break;
154 	case AFSVL_ROVOL:
155 		pref = '#';
156 		if (volume->type_force)
157 			suf = ".readonly";
158 		break;
159 	case AFSVL_BACKVOL:
160 		pref = '#';
161 		suf = ".backup";
162 		break;
163 	}
164 
165 	seq_printf(m, "%c%s:%s%s", pref, cell->name, volume->name, suf);
166 	return 0;
167 }
168 
169 /*
170  * Display the mount options in /proc/mounts.
171  */
172 static int afs_show_options(struct seq_file *m, struct dentry *root)
173 {
174 	if (test_bit(AFS_VNODE_AUTOCELL, &AFS_FS_I(d_inode(root))->flags))
175 		seq_puts(m, "autocell");
176 	return 0;
177 }
178 
179 /*
180  * parse the mount options
181  * - this function has been shamelessly adapted from the ext3 fs which
182  *   shamelessly adapted it from the msdos fs
183  */
184 static int afs_parse_options(struct afs_mount_params *params,
185 			     char *options, const char **devname)
186 {
187 	struct afs_cell *cell;
188 	substring_t args[MAX_OPT_ARGS];
189 	char *p;
190 	int token;
191 
192 	_enter("%s", options);
193 
194 	options[PAGE_SIZE - 1] = 0;
195 
196 	while ((p = strsep(&options, ","))) {
197 		if (!*p)
198 			continue;
199 
200 		token = match_token(p, afs_options_list, args);
201 		switch (token) {
202 		case afs_opt_cell:
203 			rcu_read_lock();
204 			cell = afs_lookup_cell_rcu(params->net,
205 						   args[0].from,
206 						   args[0].to - args[0].from);
207 			rcu_read_unlock();
208 			if (IS_ERR(cell))
209 				return PTR_ERR(cell);
210 			afs_put_cell(params->net, params->cell);
211 			params->cell = cell;
212 			break;
213 
214 		case afs_opt_rwpath:
215 			params->rwpath = 1;
216 			break;
217 
218 		case afs_opt_vol:
219 			*devname = args[0].from;
220 			break;
221 
222 		case afs_opt_autocell:
223 			params->autocell = 1;
224 			break;
225 
226 		default:
227 			printk(KERN_ERR "kAFS:"
228 			       " Unknown or invalid mount option: '%s'\n", p);
229 			return -EINVAL;
230 		}
231 	}
232 
233 	_leave(" = 0");
234 	return 0;
235 }
236 
237 /*
238  * parse a device name to get cell name, volume name, volume type and R/W
239  * selector
240  * - this can be one of the following:
241  *	"%[cell:]volume[.]"		R/W volume
242  *	"#[cell:]volume[.]"		R/O or R/W volume (rwpath=0),
243  *					 or R/W (rwpath=1) volume
244  *	"%[cell:]volume.readonly"	R/O volume
245  *	"#[cell:]volume.readonly"	R/O volume
246  *	"%[cell:]volume.backup"		Backup volume
247  *	"#[cell:]volume.backup"		Backup volume
248  */
249 static int afs_parse_device_name(struct afs_mount_params *params,
250 				 const char *name)
251 {
252 	struct afs_cell *cell;
253 	const char *cellname, *suffix;
254 	int cellnamesz;
255 
256 	_enter(",%s", name);
257 
258 	if (!name) {
259 		printk(KERN_ERR "kAFS: no volume name specified\n");
260 		return -EINVAL;
261 	}
262 
263 	if ((name[0] != '%' && name[0] != '#') || !name[1]) {
264 		printk(KERN_ERR "kAFS: unparsable volume name\n");
265 		return -EINVAL;
266 	}
267 
268 	/* determine the type of volume we're looking for */
269 	params->type = AFSVL_ROVOL;
270 	params->force = false;
271 	if (params->rwpath || name[0] == '%') {
272 		params->type = AFSVL_RWVOL;
273 		params->force = true;
274 	}
275 	name++;
276 
277 	/* split the cell name out if there is one */
278 	params->volname = strchr(name, ':');
279 	if (params->volname) {
280 		cellname = name;
281 		cellnamesz = params->volname - name;
282 		params->volname++;
283 	} else {
284 		params->volname = name;
285 		cellname = NULL;
286 		cellnamesz = 0;
287 	}
288 
289 	/* the volume type is further affected by a possible suffix */
290 	suffix = strrchr(params->volname, '.');
291 	if (suffix) {
292 		if (strcmp(suffix, ".readonly") == 0) {
293 			params->type = AFSVL_ROVOL;
294 			params->force = true;
295 		} else if (strcmp(suffix, ".backup") == 0) {
296 			params->type = AFSVL_BACKVOL;
297 			params->force = true;
298 		} else if (suffix[1] == 0) {
299 		} else {
300 			suffix = NULL;
301 		}
302 	}
303 
304 	params->volnamesz = suffix ?
305 		suffix - params->volname : strlen(params->volname);
306 
307 	_debug("cell %*.*s [%p]",
308 	       cellnamesz, cellnamesz, cellname ?: "", params->cell);
309 
310 	/* lookup the cell record */
311 	if (cellname || !params->cell) {
312 		cell = afs_lookup_cell(params->net, cellname, cellnamesz,
313 				       NULL, false);
314 		if (IS_ERR(cell)) {
315 			printk(KERN_ERR "kAFS: unable to lookup cell '%*.*s'\n",
316 			       cellnamesz, cellnamesz, cellname ?: "");
317 			return PTR_ERR(cell);
318 		}
319 		afs_put_cell(params->net, params->cell);
320 		params->cell = cell;
321 	}
322 
323 	_debug("CELL:%s [%p] VOLUME:%*.*s SUFFIX:%s TYPE:%d%s",
324 	       params->cell->name, params->cell,
325 	       params->volnamesz, params->volnamesz, params->volname,
326 	       suffix ?: "-", params->type, params->force ? " FORCE" : "");
327 
328 	return 0;
329 }
330 
331 /*
332  * check a superblock to see if it's the one we're looking for
333  */
334 static int afs_test_super(struct super_block *sb, void *data)
335 {
336 	struct afs_super_info *as1 = data;
337 	struct afs_super_info *as = AFS_FS_S(sb);
338 
339 	return as->net == as1->net && as->volume->vid == as1->volume->vid;
340 }
341 
342 static int afs_set_super(struct super_block *sb, void *data)
343 {
344 	struct afs_super_info *as = data;
345 
346 	sb->s_fs_info = as;
347 	return set_anon_super(sb, NULL);
348 }
349 
350 /*
351  * fill in the superblock
352  */
353 static int afs_fill_super(struct super_block *sb,
354 			  struct afs_mount_params *params)
355 {
356 	struct afs_super_info *as = AFS_FS_S(sb);
357 	struct afs_fid fid;
358 	struct inode *inode = NULL;
359 	int ret;
360 
361 	_enter("");
362 
363 	/* fill in the superblock */
364 	sb->s_blocksize		= PAGE_SIZE;
365 	sb->s_blocksize_bits	= PAGE_SHIFT;
366 	sb->s_magic		= AFS_FS_MAGIC;
367 	sb->s_op		= &afs_super_ops;
368 	sb->s_xattr		= afs_xattr_handlers;
369 	ret = super_setup_bdi(sb);
370 	if (ret)
371 		return ret;
372 	sb->s_bdi->ra_pages	= VM_MAX_READAHEAD * 1024 / PAGE_SIZE;
373 	sprintf(sb->s_id, "%u", as->volume->vid);
374 
375 	afs_activate_volume(as->volume);
376 
377 	/* allocate the root inode and dentry */
378 	fid.vid		= as->volume->vid;
379 	fid.vnode	= 1;
380 	fid.unique	= 1;
381 	inode = afs_iget(sb, params->key, &fid, NULL, NULL, NULL);
382 	if (IS_ERR(inode))
383 		return PTR_ERR(inode);
384 
385 	if (params->autocell)
386 		set_bit(AFS_VNODE_AUTOCELL, &AFS_FS_I(inode)->flags);
387 
388 	ret = -ENOMEM;
389 	sb->s_root = d_make_root(inode);
390 	if (!sb->s_root)
391 		goto error;
392 
393 	sb->s_d_op = &afs_fs_dentry_operations;
394 
395 	_leave(" = 0");
396 	return 0;
397 
398 error:
399 	_leave(" = %d", ret);
400 	return ret;
401 }
402 
403 static struct afs_super_info *afs_alloc_sbi(struct afs_mount_params *params)
404 {
405 	struct afs_super_info *as;
406 
407 	as = kzalloc(sizeof(struct afs_super_info), GFP_KERNEL);
408 	if (as) {
409 		as->net = afs_get_net(params->net);
410 		as->cell = afs_get_cell(params->cell);
411 	}
412 	return as;
413 }
414 
415 static void afs_destroy_sbi(struct afs_super_info *as)
416 {
417 	if (as) {
418 		afs_put_volume(as->cell, as->volume);
419 		afs_put_cell(as->net, as->cell);
420 		afs_put_net(as->net);
421 		kfree(as);
422 	}
423 }
424 
425 /*
426  * get an AFS superblock
427  */
428 static struct dentry *afs_mount(struct file_system_type *fs_type,
429 				int flags, const char *dev_name, void *options)
430 {
431 	struct afs_mount_params params;
432 	struct super_block *sb;
433 	struct afs_volume *candidate;
434 	struct key *key;
435 	struct afs_super_info *as;
436 	int ret;
437 
438 	_enter(",,%s,%p", dev_name, options);
439 
440 	memset(&params, 0, sizeof(params));
441 	params.net = &__afs_net;
442 
443 	ret = -EINVAL;
444 	if (current->nsproxy->net_ns != &init_net)
445 		goto error;
446 
447 	/* parse the options and device name */
448 	if (options) {
449 		ret = afs_parse_options(&params, options, &dev_name);
450 		if (ret < 0)
451 			goto error;
452 	}
453 
454 	ret = afs_parse_device_name(&params, dev_name);
455 	if (ret < 0)
456 		goto error;
457 
458 	/* try and do the mount securely */
459 	key = afs_request_key(params.cell);
460 	if (IS_ERR(key)) {
461 		_leave(" = %ld [key]", PTR_ERR(key));
462 		ret = PTR_ERR(key);
463 		goto error;
464 	}
465 	params.key = key;
466 
467 	/* allocate a superblock info record */
468 	ret = -ENOMEM;
469 	as = afs_alloc_sbi(&params);
470 	if (!as)
471 		goto error_key;
472 
473 	/* Assume we're going to need a volume record; at the very least we can
474 	 * use it to update the volume record if we have one already.  This
475 	 * checks that the volume exists within the cell.
476 	 */
477 	candidate = afs_create_volume(&params);
478 	if (IS_ERR(candidate)) {
479 		ret = PTR_ERR(candidate);
480 		goto error_as;
481 	}
482 
483 	as->volume = candidate;
484 
485 	/* allocate a deviceless superblock */
486 	sb = sget(fs_type, afs_test_super, afs_set_super, flags, as);
487 	if (IS_ERR(sb)) {
488 		ret = PTR_ERR(sb);
489 		goto error_as;
490 	}
491 
492 	if (!sb->s_root) {
493 		/* initial superblock/root creation */
494 		_debug("create");
495 		ret = afs_fill_super(sb, &params);
496 		if (ret < 0)
497 			goto error_sb;
498 		as = NULL;
499 		sb->s_flags |= SB_ACTIVE;
500 	} else {
501 		_debug("reuse");
502 		ASSERTCMP(sb->s_flags, &, SB_ACTIVE);
503 		afs_destroy_sbi(as);
504 		as = NULL;
505 	}
506 
507 	afs_put_cell(params.net, params.cell);
508 	key_put(params.key);
509 	_leave(" = 0 [%p]", sb);
510 	return dget(sb->s_root);
511 
512 error_sb:
513 	deactivate_locked_super(sb);
514 	goto error_key;
515 error_as:
516 	afs_destroy_sbi(as);
517 error_key:
518 	key_put(params.key);
519 error:
520 	afs_put_cell(params.net, params.cell);
521 	_leave(" = %d", ret);
522 	return ERR_PTR(ret);
523 }
524 
525 static void afs_kill_super(struct super_block *sb)
526 {
527 	struct afs_super_info *as = AFS_FS_S(sb);
528 
529 	/* Clear the callback interests (which will do ilookup5) before
530 	 * deactivating the superblock.
531 	 */
532 	afs_clear_callback_interests(as->net, as->volume->servers);
533 	kill_anon_super(sb);
534 	afs_deactivate_volume(as->volume);
535 	afs_destroy_sbi(as);
536 }
537 
538 /*
539  * Initialise an inode cache slab element prior to any use.  Note that
540  * afs_alloc_inode() *must* reset anything that could incorrectly leak from one
541  * inode to another.
542  */
543 static void afs_i_init_once(void *_vnode)
544 {
545 	struct afs_vnode *vnode = _vnode;
546 
547 	memset(vnode, 0, sizeof(*vnode));
548 	inode_init_once(&vnode->vfs_inode);
549 	mutex_init(&vnode->io_lock);
550 	mutex_init(&vnode->validate_lock);
551 	spin_lock_init(&vnode->wb_lock);
552 	spin_lock_init(&vnode->lock);
553 	INIT_LIST_HEAD(&vnode->wb_keys);
554 	INIT_LIST_HEAD(&vnode->pending_locks);
555 	INIT_LIST_HEAD(&vnode->granted_locks);
556 	INIT_DELAYED_WORK(&vnode->lock_work, afs_lock_work);
557 	seqlock_init(&vnode->cb_lock);
558 }
559 
560 /*
561  * allocate an AFS inode struct from our slab cache
562  */
563 static struct inode *afs_alloc_inode(struct super_block *sb)
564 {
565 	struct afs_vnode *vnode;
566 
567 	vnode = kmem_cache_alloc(afs_inode_cachep, GFP_KERNEL);
568 	if (!vnode)
569 		return NULL;
570 
571 	atomic_inc(&afs_count_active_inodes);
572 
573 	/* Reset anything that shouldn't leak from one inode to the next. */
574 	memset(&vnode->fid, 0, sizeof(vnode->fid));
575 	memset(&vnode->status, 0, sizeof(vnode->status));
576 
577 	vnode->volume		= NULL;
578 	vnode->lock_key		= NULL;
579 	vnode->permit_cache	= NULL;
580 	vnode->cb_interest	= NULL;
581 #ifdef CONFIG_AFS_FSCACHE
582 	vnode->cache		= NULL;
583 #endif
584 
585 	vnode->flags		= 1 << AFS_VNODE_UNSET;
586 	vnode->cb_type		= 0;
587 	vnode->lock_state	= AFS_VNODE_LOCK_NONE;
588 
589 	_leave(" = %p", &vnode->vfs_inode);
590 	return &vnode->vfs_inode;
591 }
592 
593 static void afs_i_callback(struct rcu_head *head)
594 {
595 	struct inode *inode = container_of(head, struct inode, i_rcu);
596 	struct afs_vnode *vnode = AFS_FS_I(inode);
597 	kmem_cache_free(afs_inode_cachep, vnode);
598 }
599 
600 /*
601  * destroy an AFS inode struct
602  */
603 static void afs_destroy_inode(struct inode *inode)
604 {
605 	struct afs_vnode *vnode = AFS_FS_I(inode);
606 
607 	_enter("%p{%x:%u}", inode, vnode->fid.vid, vnode->fid.vnode);
608 
609 	_debug("DESTROY INODE %p", inode);
610 
611 	ASSERTCMP(vnode->cb_interest, ==, NULL);
612 
613 	call_rcu(&inode->i_rcu, afs_i_callback);
614 	atomic_dec(&afs_count_active_inodes);
615 }
616 
617 /*
618  * return information about an AFS volume
619  */
620 static int afs_statfs(struct dentry *dentry, struct kstatfs *buf)
621 {
622 	struct afs_fs_cursor fc;
623 	struct afs_volume_status vs;
624 	struct afs_vnode *vnode = AFS_FS_I(d_inode(dentry));
625 	struct key *key;
626 	int ret;
627 
628 	key = afs_request_key(vnode->volume->cell);
629 	if (IS_ERR(key))
630 		return PTR_ERR(key);
631 
632 	ret = -ERESTARTSYS;
633 	if (afs_begin_vnode_operation(&fc, vnode, key)) {
634 		fc.flags |= AFS_FS_CURSOR_NO_VSLEEP;
635 		while (afs_select_fileserver(&fc)) {
636 			fc.cb_break = vnode->cb_break + vnode->cb_s_break;
637 			afs_fs_get_volume_status(&fc, &vs);
638 		}
639 
640 		afs_check_for_remote_deletion(&fc, fc.vnode);
641 		afs_vnode_commit_status(&fc, vnode, fc.cb_break);
642 		ret = afs_end_vnode_operation(&fc);
643 	}
644 
645 	key_put(key);
646 
647 	if (ret == 0) {
648 		buf->f_type	= dentry->d_sb->s_magic;
649 		buf->f_bsize	= AFS_BLOCK_SIZE;
650 		buf->f_namelen	= AFSNAMEMAX - 1;
651 
652 		if (vs.max_quota == 0)
653 			buf->f_blocks = vs.part_max_blocks;
654 		else
655 			buf->f_blocks = vs.max_quota;
656 		buf->f_bavail = buf->f_bfree = buf->f_blocks - vs.blocks_in_use;
657 	}
658 
659 	return ret;
660 }
661