xref: /linux/fs/afs/super.c (revision 9f7861c56b51b84d30114e7fea9d744a9d5ba9b7)
1 /* AFS superblock handling
2  *
3  * Copyright (c) 2002, 2007, 2018 Red Hat, Inc. All rights reserved.
4  *
5  * This software may be freely redistributed under the terms of the
6  * GNU General Public License.
7  *
8  * You should have received a copy of the GNU General Public License
9  * along with this program; if not, write to the Free Software
10  * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
11  *
12  * Authors: David Howells <dhowells@redhat.com>
13  *          David Woodhouse <dwmw2@infradead.org>
14  *
15  */
16 
17 #include <linux/kernel.h>
18 #include <linux/module.h>
19 #include <linux/mount.h>
20 #include <linux/init.h>
21 #include <linux/slab.h>
22 #include <linux/fs.h>
23 #include <linux/pagemap.h>
24 #include <linux/fs_parser.h>
25 #include <linux/statfs.h>
26 #include <linux/sched.h>
27 #include <linux/nsproxy.h>
28 #include <linux/magic.h>
29 #include <net/net_namespace.h>
30 #include "internal.h"
31 
32 static void afs_i_init_once(void *foo);
33 static void afs_kill_super(struct super_block *sb);
34 static struct inode *afs_alloc_inode(struct super_block *sb);
35 static void afs_destroy_inode(struct inode *inode);
36 static void afs_free_inode(struct inode *inode);
37 static int afs_statfs(struct dentry *dentry, struct kstatfs *buf);
38 static int afs_show_devname(struct seq_file *m, struct dentry *root);
39 static int afs_show_options(struct seq_file *m, struct dentry *root);
40 static int afs_init_fs_context(struct fs_context *fc);
41 static const struct fs_parameter_spec afs_fs_parameters[];
42 
43 struct file_system_type afs_fs_type = {
44 	.owner			= THIS_MODULE,
45 	.name			= "afs",
46 	.init_fs_context	= afs_init_fs_context,
47 	.parameters		= afs_fs_parameters,
48 	.kill_sb		= afs_kill_super,
49 	.fs_flags		= FS_RENAME_DOES_D_MOVE,
50 };
51 MODULE_ALIAS_FS("afs");
52 
53 int afs_net_id;
54 
55 static const struct super_operations afs_super_ops = {
56 	.statfs		= afs_statfs,
57 	.alloc_inode	= afs_alloc_inode,
58 	.write_inode	= afs_write_inode,
59 	.drop_inode	= afs_drop_inode,
60 	.destroy_inode	= afs_destroy_inode,
61 	.free_inode	= afs_free_inode,
62 	.evict_inode	= afs_evict_inode,
63 	.show_devname	= afs_show_devname,
64 	.show_options	= afs_show_options,
65 };
66 
67 static struct kmem_cache *afs_inode_cachep;
68 static atomic_t afs_count_active_inodes;
69 
70 enum afs_param {
71 	Opt_autocell,
72 	Opt_dyn,
73 	Opt_flock,
74 	Opt_source,
75 };
76 
77 static const struct constant_table afs_param_flock[] = {
78 	{"local",	afs_flock_mode_local },
79 	{"openafs",	afs_flock_mode_openafs },
80 	{"strict",	afs_flock_mode_strict },
81 	{"write",	afs_flock_mode_write },
82 	{}
83 };
84 
85 static const struct fs_parameter_spec afs_fs_parameters[] = {
86 	fsparam_flag  ("autocell",	Opt_autocell),
87 	fsparam_flag  ("dyn",		Opt_dyn),
88 	fsparam_enum  ("flock",		Opt_flock, afs_param_flock),
89 	fsparam_string("source",	Opt_source),
90 	{}
91 };
92 
93 /*
94  * initialise the filesystem
95  */
96 int __init afs_fs_init(void)
97 {
98 	int ret;
99 
100 	_enter("");
101 
102 	/* create ourselves an inode cache */
103 	atomic_set(&afs_count_active_inodes, 0);
104 
105 	ret = -ENOMEM;
106 	afs_inode_cachep = kmem_cache_create("afs_inode_cache",
107 					     sizeof(struct afs_vnode),
108 					     0,
109 					     SLAB_HWCACHE_ALIGN|SLAB_ACCOUNT,
110 					     afs_i_init_once);
111 	if (!afs_inode_cachep) {
112 		printk(KERN_NOTICE "kAFS: Failed to allocate inode cache\n");
113 		return ret;
114 	}
115 
116 	/* now export our filesystem to lesser mortals */
117 	ret = register_filesystem(&afs_fs_type);
118 	if (ret < 0) {
119 		kmem_cache_destroy(afs_inode_cachep);
120 		_leave(" = %d", ret);
121 		return ret;
122 	}
123 
124 	_leave(" = 0");
125 	return 0;
126 }
127 
128 /*
129  * clean up the filesystem
130  */
131 void afs_fs_exit(void)
132 {
133 	_enter("");
134 
135 	afs_mntpt_kill_timer();
136 	unregister_filesystem(&afs_fs_type);
137 
138 	if (atomic_read(&afs_count_active_inodes) != 0) {
139 		printk("kAFS: %d active inode objects still present\n",
140 		       atomic_read(&afs_count_active_inodes));
141 		BUG();
142 	}
143 
144 	/*
145 	 * Make sure all delayed rcu free inodes are flushed before we
146 	 * destroy cache.
147 	 */
148 	rcu_barrier();
149 	kmem_cache_destroy(afs_inode_cachep);
150 	_leave("");
151 }
152 
153 /*
154  * Display the mount device name in /proc/mounts.
155  */
156 static int afs_show_devname(struct seq_file *m, struct dentry *root)
157 {
158 	struct afs_super_info *as = AFS_FS_S(root->d_sb);
159 	struct afs_volume *volume = as->volume;
160 	struct afs_cell *cell = as->cell;
161 	const char *suf = "";
162 	char pref = '%';
163 
164 	if (as->dyn_root) {
165 		seq_puts(m, "none");
166 		return 0;
167 	}
168 
169 	switch (volume->type) {
170 	case AFSVL_RWVOL:
171 		break;
172 	case AFSVL_ROVOL:
173 		pref = '#';
174 		if (volume->type_force)
175 			suf = ".readonly";
176 		break;
177 	case AFSVL_BACKVOL:
178 		pref = '#';
179 		suf = ".backup";
180 		break;
181 	}
182 
183 	seq_printf(m, "%c%s:%s%s", pref, cell->name, volume->name, suf);
184 	return 0;
185 }
186 
187 /*
188  * Display the mount options in /proc/mounts.
189  */
190 static int afs_show_options(struct seq_file *m, struct dentry *root)
191 {
192 	struct afs_super_info *as = AFS_FS_S(root->d_sb);
193 	const char *p = NULL;
194 
195 	if (as->dyn_root)
196 		seq_puts(m, ",dyn");
197 	if (test_bit(AFS_VNODE_AUTOCELL, &AFS_FS_I(d_inode(root))->flags))
198 		seq_puts(m, ",autocell");
199 	switch (as->flock_mode) {
200 	case afs_flock_mode_unset:	break;
201 	case afs_flock_mode_local:	p = "local";	break;
202 	case afs_flock_mode_openafs:	p = "openafs";	break;
203 	case afs_flock_mode_strict:	p = "strict";	break;
204 	case afs_flock_mode_write:	p = "write";	break;
205 	}
206 	if (p)
207 		seq_printf(m, ",flock=%s", p);
208 
209 	return 0;
210 }
211 
212 /*
213  * Parse the source name to get cell name, volume name, volume type and R/W
214  * selector.
215  *
216  * This can be one of the following:
217  *	"%[cell:]volume[.]"		R/W volume
218  *	"#[cell:]volume[.]"		R/O or R/W volume (R/O parent),
219  *					 or R/W (R/W parent) volume
220  *	"%[cell:]volume.readonly"	R/O volume
221  *	"#[cell:]volume.readonly"	R/O volume
222  *	"%[cell:]volume.backup"		Backup volume
223  *	"#[cell:]volume.backup"		Backup volume
224  */
225 static int afs_parse_source(struct fs_context *fc, struct fs_parameter *param)
226 {
227 	struct afs_fs_context *ctx = fc->fs_private;
228 	struct afs_cell *cell;
229 	const char *cellname, *suffix, *name = param->string;
230 	int cellnamesz;
231 
232 	_enter(",%s", name);
233 
234 	if (fc->source)
235 		return invalf(fc, "kAFS: Multiple sources not supported");
236 
237 	if (!name) {
238 		printk(KERN_ERR "kAFS: no volume name specified\n");
239 		return -EINVAL;
240 	}
241 
242 	if ((name[0] != '%' && name[0] != '#') || !name[1]) {
243 		/* To use dynroot, we don't want to have to provide a source */
244 		if (strcmp(name, "none") == 0) {
245 			ctx->no_cell = true;
246 			return 0;
247 		}
248 		printk(KERN_ERR "kAFS: unparsable volume name\n");
249 		return -EINVAL;
250 	}
251 
252 	/* determine the type of volume we're looking for */
253 	if (name[0] == '%') {
254 		ctx->type = AFSVL_RWVOL;
255 		ctx->force = true;
256 	}
257 	name++;
258 
259 	/* split the cell name out if there is one */
260 	ctx->volname = strchr(name, ':');
261 	if (ctx->volname) {
262 		cellname = name;
263 		cellnamesz = ctx->volname - name;
264 		ctx->volname++;
265 	} else {
266 		ctx->volname = name;
267 		cellname = NULL;
268 		cellnamesz = 0;
269 	}
270 
271 	/* the volume type is further affected by a possible suffix */
272 	suffix = strrchr(ctx->volname, '.');
273 	if (suffix) {
274 		if (strcmp(suffix, ".readonly") == 0) {
275 			ctx->type = AFSVL_ROVOL;
276 			ctx->force = true;
277 		} else if (strcmp(suffix, ".backup") == 0) {
278 			ctx->type = AFSVL_BACKVOL;
279 			ctx->force = true;
280 		} else if (suffix[1] == 0) {
281 		} else {
282 			suffix = NULL;
283 		}
284 	}
285 
286 	ctx->volnamesz = suffix ?
287 		suffix - ctx->volname : strlen(ctx->volname);
288 
289 	_debug("cell %*.*s [%p]",
290 	       cellnamesz, cellnamesz, cellname ?: "", ctx->cell);
291 
292 	/* lookup the cell record */
293 	if (cellname) {
294 		cell = afs_lookup_cell(ctx->net, cellname, cellnamesz,
295 				       NULL, false);
296 		if (IS_ERR(cell)) {
297 			pr_err("kAFS: unable to lookup cell '%*.*s'\n",
298 			       cellnamesz, cellnamesz, cellname ?: "");
299 			return PTR_ERR(cell);
300 		}
301 		afs_unuse_cell(ctx->net, ctx->cell, afs_cell_trace_unuse_parse);
302 		afs_see_cell(cell, afs_cell_trace_see_source);
303 		ctx->cell = cell;
304 	}
305 
306 	_debug("CELL:%s [%p] VOLUME:%*.*s SUFFIX:%s TYPE:%d%s",
307 	       ctx->cell->name, ctx->cell,
308 	       ctx->volnamesz, ctx->volnamesz, ctx->volname,
309 	       suffix ?: "-", ctx->type, ctx->force ? " FORCE" : "");
310 
311 	fc->source = param->string;
312 	param->string = NULL;
313 	return 0;
314 }
315 
316 /*
317  * Parse a single mount parameter.
318  */
319 static int afs_parse_param(struct fs_context *fc, struct fs_parameter *param)
320 {
321 	struct fs_parse_result result;
322 	struct afs_fs_context *ctx = fc->fs_private;
323 	int opt;
324 
325 	opt = fs_parse(fc, afs_fs_parameters, param, &result);
326 	if (opt < 0)
327 		return opt;
328 
329 	switch (opt) {
330 	case Opt_source:
331 		return afs_parse_source(fc, param);
332 
333 	case Opt_autocell:
334 		ctx->autocell = true;
335 		break;
336 
337 	case Opt_dyn:
338 		ctx->dyn_root = true;
339 		break;
340 
341 	case Opt_flock:
342 		ctx->flock_mode = result.uint_32;
343 		break;
344 
345 	default:
346 		return -EINVAL;
347 	}
348 
349 	_leave(" = 0");
350 	return 0;
351 }
352 
353 /*
354  * Validate the options, get the cell key and look up the volume.
355  */
356 static int afs_validate_fc(struct fs_context *fc)
357 {
358 	struct afs_fs_context *ctx = fc->fs_private;
359 	struct afs_volume *volume;
360 	struct afs_cell *cell;
361 	struct key *key;
362 	int ret;
363 
364 	if (!ctx->dyn_root) {
365 		if (ctx->no_cell) {
366 			pr_warn("kAFS: Can only specify source 'none' with -o dyn\n");
367 			return -EINVAL;
368 		}
369 
370 		if (!ctx->cell) {
371 			pr_warn("kAFS: No cell specified\n");
372 			return -EDESTADDRREQ;
373 		}
374 
375 	reget_key:
376 		/* We try to do the mount securely. */
377 		key = afs_request_key(ctx->cell);
378 		if (IS_ERR(key))
379 			return PTR_ERR(key);
380 
381 		ctx->key = key;
382 
383 		if (ctx->volume) {
384 			afs_put_volume(ctx->net, ctx->volume,
385 				       afs_volume_trace_put_validate_fc);
386 			ctx->volume = NULL;
387 		}
388 
389 		if (test_bit(AFS_CELL_FL_CHECK_ALIAS, &ctx->cell->flags)) {
390 			ret = afs_cell_detect_alias(ctx->cell, key);
391 			if (ret < 0)
392 				return ret;
393 			if (ret == 1) {
394 				_debug("switch to alias");
395 				key_put(ctx->key);
396 				ctx->key = NULL;
397 				cell = afs_use_cell(ctx->cell->alias_of,
398 						    afs_cell_trace_use_fc_alias);
399 				afs_unuse_cell(ctx->net, ctx->cell, afs_cell_trace_unuse_fc);
400 				ctx->cell = cell;
401 				goto reget_key;
402 			}
403 		}
404 
405 		volume = afs_create_volume(ctx);
406 		if (IS_ERR(volume))
407 			return PTR_ERR(volume);
408 
409 		ctx->volume = volume;
410 		if (volume->type != AFSVL_RWVOL) {
411 			ctx->flock_mode = afs_flock_mode_local;
412 			fc->sb_flags |= SB_RDONLY;
413 		}
414 	}
415 
416 	return 0;
417 }
418 
419 /*
420  * check a superblock to see if it's the one we're looking for
421  */
422 static int afs_test_super(struct super_block *sb, struct fs_context *fc)
423 {
424 	struct afs_fs_context *ctx = fc->fs_private;
425 	struct afs_super_info *as = AFS_FS_S(sb);
426 
427 	return (as->net_ns == fc->net_ns &&
428 		as->volume &&
429 		as->volume->vid == ctx->volume->vid &&
430 		as->cell == ctx->cell &&
431 		!as->dyn_root);
432 }
433 
434 static int afs_dynroot_test_super(struct super_block *sb, struct fs_context *fc)
435 {
436 	struct afs_super_info *as = AFS_FS_S(sb);
437 
438 	return (as->net_ns == fc->net_ns &&
439 		as->dyn_root);
440 }
441 
442 static int afs_set_super(struct super_block *sb, struct fs_context *fc)
443 {
444 	return set_anon_super(sb, NULL);
445 }
446 
447 /*
448  * fill in the superblock
449  */
450 static int afs_fill_super(struct super_block *sb, struct afs_fs_context *ctx)
451 {
452 	struct afs_super_info *as = AFS_FS_S(sb);
453 	struct inode *inode = NULL;
454 	int ret;
455 
456 	_enter("");
457 
458 	/* fill in the superblock */
459 	sb->s_blocksize		= PAGE_SIZE;
460 	sb->s_blocksize_bits	= PAGE_SHIFT;
461 	sb->s_maxbytes		= MAX_LFS_FILESIZE;
462 	sb->s_magic		= AFS_FS_MAGIC;
463 	sb->s_op		= &afs_super_ops;
464 	if (!as->dyn_root)
465 		sb->s_xattr	= afs_xattr_handlers;
466 	ret = super_setup_bdi(sb);
467 	if (ret)
468 		return ret;
469 
470 	/* allocate the root inode and dentry */
471 	if (as->dyn_root) {
472 		inode = afs_iget_pseudo_dir(sb, true);
473 	} else {
474 		sprintf(sb->s_id, "%llu", as->volume->vid);
475 		afs_activate_volume(as->volume);
476 		inode = afs_root_iget(sb, ctx->key);
477 	}
478 
479 	if (IS_ERR(inode))
480 		return PTR_ERR(inode);
481 
482 	if (ctx->autocell || as->dyn_root)
483 		set_bit(AFS_VNODE_AUTOCELL, &AFS_FS_I(inode)->flags);
484 
485 	ret = -ENOMEM;
486 	sb->s_root = d_make_root(inode);
487 	if (!sb->s_root)
488 		goto error;
489 
490 	if (as->dyn_root) {
491 		sb->s_d_op = &afs_dynroot_dentry_operations;
492 		ret = afs_dynroot_populate(sb);
493 		if (ret < 0)
494 			goto error;
495 	} else {
496 		sb->s_d_op = &afs_fs_dentry_operations;
497 		rcu_assign_pointer(as->volume->sb, sb);
498 	}
499 
500 	_leave(" = 0");
501 	return 0;
502 
503 error:
504 	_leave(" = %d", ret);
505 	return ret;
506 }
507 
508 static struct afs_super_info *afs_alloc_sbi(struct fs_context *fc)
509 {
510 	struct afs_fs_context *ctx = fc->fs_private;
511 	struct afs_super_info *as;
512 
513 	as = kzalloc(sizeof(struct afs_super_info), GFP_KERNEL);
514 	if (as) {
515 		as->net_ns = get_net(fc->net_ns);
516 		as->flock_mode = ctx->flock_mode;
517 		if (ctx->dyn_root) {
518 			as->dyn_root = true;
519 		} else {
520 			as->cell = afs_use_cell(ctx->cell, afs_cell_trace_use_sbi);
521 			as->volume = afs_get_volume(ctx->volume,
522 						    afs_volume_trace_get_alloc_sbi);
523 		}
524 	}
525 	return as;
526 }
527 
528 static void afs_destroy_sbi(struct afs_super_info *as)
529 {
530 	if (as) {
531 		struct afs_net *net = afs_net(as->net_ns);
532 		afs_put_volume(net, as->volume, afs_volume_trace_put_destroy_sbi);
533 		afs_unuse_cell(net, as->cell, afs_cell_trace_unuse_sbi);
534 		put_net(as->net_ns);
535 		kfree(as);
536 	}
537 }
538 
539 static void afs_kill_super(struct super_block *sb)
540 {
541 	struct afs_super_info *as = AFS_FS_S(sb);
542 
543 	if (as->dyn_root)
544 		afs_dynroot_depopulate(sb);
545 
546 	/* Clear the callback interests (which will do ilookup5) before
547 	 * deactivating the superblock.
548 	 */
549 	if (as->volume)
550 		rcu_assign_pointer(as->volume->sb, NULL);
551 	kill_anon_super(sb);
552 	if (as->volume)
553 		afs_deactivate_volume(as->volume);
554 	afs_destroy_sbi(as);
555 }
556 
557 /*
558  * Get an AFS superblock and root directory.
559  */
560 static int afs_get_tree(struct fs_context *fc)
561 {
562 	struct afs_fs_context *ctx = fc->fs_private;
563 	struct super_block *sb;
564 	struct afs_super_info *as;
565 	int ret;
566 
567 	ret = afs_validate_fc(fc);
568 	if (ret)
569 		goto error;
570 
571 	_enter("");
572 
573 	/* allocate a superblock info record */
574 	ret = -ENOMEM;
575 	as = afs_alloc_sbi(fc);
576 	if (!as)
577 		goto error;
578 	fc->s_fs_info = as;
579 
580 	/* allocate a deviceless superblock */
581 	sb = sget_fc(fc,
582 		     as->dyn_root ? afs_dynroot_test_super : afs_test_super,
583 		     afs_set_super);
584 	if (IS_ERR(sb)) {
585 		ret = PTR_ERR(sb);
586 		goto error;
587 	}
588 
589 	if (!sb->s_root) {
590 		/* initial superblock/root creation */
591 		_debug("create");
592 		ret = afs_fill_super(sb, ctx);
593 		if (ret < 0)
594 			goto error_sb;
595 		sb->s_flags |= SB_ACTIVE;
596 	} else {
597 		_debug("reuse");
598 		ASSERTCMP(sb->s_flags, &, SB_ACTIVE);
599 	}
600 
601 	fc->root = dget(sb->s_root);
602 	trace_afs_get_tree(as->cell, as->volume);
603 	_leave(" = 0 [%p]", sb);
604 	return 0;
605 
606 error_sb:
607 	deactivate_locked_super(sb);
608 error:
609 	_leave(" = %d", ret);
610 	return ret;
611 }
612 
613 static void afs_free_fc(struct fs_context *fc)
614 {
615 	struct afs_fs_context *ctx = fc->fs_private;
616 
617 	afs_destroy_sbi(fc->s_fs_info);
618 	afs_put_volume(ctx->net, ctx->volume, afs_volume_trace_put_free_fc);
619 	afs_unuse_cell(ctx->net, ctx->cell, afs_cell_trace_unuse_fc);
620 	key_put(ctx->key);
621 	kfree(ctx);
622 }
623 
624 static const struct fs_context_operations afs_context_ops = {
625 	.free		= afs_free_fc,
626 	.parse_param	= afs_parse_param,
627 	.get_tree	= afs_get_tree,
628 };
629 
630 /*
631  * Set up the filesystem mount context.
632  */
633 static int afs_init_fs_context(struct fs_context *fc)
634 {
635 	struct afs_fs_context *ctx;
636 	struct afs_cell *cell;
637 
638 	ctx = kzalloc(sizeof(struct afs_fs_context), GFP_KERNEL);
639 	if (!ctx)
640 		return -ENOMEM;
641 
642 	ctx->type = AFSVL_ROVOL;
643 	ctx->net = afs_net(fc->net_ns);
644 
645 	/* Default to the workstation cell. */
646 	cell = afs_find_cell(ctx->net, NULL, 0, afs_cell_trace_use_fc);
647 	if (IS_ERR(cell))
648 		cell = NULL;
649 	ctx->cell = cell;
650 
651 	fc->fs_private = ctx;
652 	fc->ops = &afs_context_ops;
653 	return 0;
654 }
655 
656 /*
657  * Initialise an inode cache slab element prior to any use.  Note that
658  * afs_alloc_inode() *must* reset anything that could incorrectly leak from one
659  * inode to another.
660  */
661 static void afs_i_init_once(void *_vnode)
662 {
663 	struct afs_vnode *vnode = _vnode;
664 
665 	memset(vnode, 0, sizeof(*vnode));
666 	inode_init_once(&vnode->netfs.inode);
667 	mutex_init(&vnode->io_lock);
668 	init_rwsem(&vnode->validate_lock);
669 	spin_lock_init(&vnode->wb_lock);
670 	spin_lock_init(&vnode->lock);
671 	INIT_LIST_HEAD(&vnode->wb_keys);
672 	INIT_LIST_HEAD(&vnode->pending_locks);
673 	INIT_LIST_HEAD(&vnode->granted_locks);
674 	INIT_DELAYED_WORK(&vnode->lock_work, afs_lock_work);
675 	INIT_LIST_HEAD(&vnode->cb_mmap_link);
676 	seqlock_init(&vnode->cb_lock);
677 }
678 
679 /*
680  * allocate an AFS inode struct from our slab cache
681  */
682 static struct inode *afs_alloc_inode(struct super_block *sb)
683 {
684 	struct afs_vnode *vnode;
685 
686 	vnode = alloc_inode_sb(sb, afs_inode_cachep, GFP_KERNEL);
687 	if (!vnode)
688 		return NULL;
689 
690 	atomic_inc(&afs_count_active_inodes);
691 
692 	/* Reset anything that shouldn't leak from one inode to the next. */
693 	memset(&vnode->fid, 0, sizeof(vnode->fid));
694 	memset(&vnode->status, 0, sizeof(vnode->status));
695 	afs_vnode_set_cache(vnode, NULL);
696 
697 	vnode->volume		= NULL;
698 	vnode->lock_key		= NULL;
699 	vnode->permit_cache	= NULL;
700 
701 	vnode->flags		= 1 << AFS_VNODE_UNSET;
702 	vnode->lock_state	= AFS_VNODE_LOCK_NONE;
703 
704 	init_rwsem(&vnode->rmdir_lock);
705 	INIT_WORK(&vnode->cb_work, afs_invalidate_mmap_work);
706 
707 	_leave(" = %p", &vnode->netfs.inode);
708 	return &vnode->netfs.inode;
709 }
710 
711 static void afs_free_inode(struct inode *inode)
712 {
713 	kmem_cache_free(afs_inode_cachep, AFS_FS_I(inode));
714 }
715 
716 /*
717  * destroy an AFS inode struct
718  */
719 static void afs_destroy_inode(struct inode *inode)
720 {
721 	struct afs_vnode *vnode = AFS_FS_I(inode);
722 
723 	_enter("%p{%llx:%llu}", inode, vnode->fid.vid, vnode->fid.vnode);
724 
725 	_debug("DESTROY INODE %p", inode);
726 
727 	atomic_dec(&afs_count_active_inodes);
728 }
729 
730 static void afs_get_volume_status_success(struct afs_operation *op)
731 {
732 	struct afs_volume_status *vs = &op->volstatus.vs;
733 	struct kstatfs *buf = op->volstatus.buf;
734 
735 	if (vs->max_quota == 0)
736 		buf->f_blocks = vs->part_max_blocks;
737 	else
738 		buf->f_blocks = vs->max_quota;
739 
740 	if (buf->f_blocks > vs->blocks_in_use)
741 		buf->f_bavail = buf->f_bfree =
742 			buf->f_blocks - vs->blocks_in_use;
743 }
744 
745 static const struct afs_operation_ops afs_get_volume_status_operation = {
746 	.issue_afs_rpc	= afs_fs_get_volume_status,
747 	.issue_yfs_rpc	= yfs_fs_get_volume_status,
748 	.success	= afs_get_volume_status_success,
749 };
750 
751 /*
752  * return information about an AFS volume
753  */
754 static int afs_statfs(struct dentry *dentry, struct kstatfs *buf)
755 {
756 	struct afs_super_info *as = AFS_FS_S(dentry->d_sb);
757 	struct afs_operation *op;
758 	struct afs_vnode *vnode = AFS_FS_I(d_inode(dentry));
759 
760 	buf->f_type	= dentry->d_sb->s_magic;
761 	buf->f_bsize	= AFS_BLOCK_SIZE;
762 	buf->f_namelen	= AFSNAMEMAX - 1;
763 
764 	if (as->dyn_root) {
765 		buf->f_blocks	= 1;
766 		buf->f_bavail	= 0;
767 		buf->f_bfree	= 0;
768 		return 0;
769 	}
770 
771 	op = afs_alloc_operation(NULL, as->volume);
772 	if (IS_ERR(op))
773 		return PTR_ERR(op);
774 
775 	afs_op_set_vnode(op, 0, vnode);
776 	op->nr_files		= 1;
777 	op->volstatus.buf	= buf;
778 	op->ops			= &afs_get_volume_status_operation;
779 	return afs_do_sync_operation(op);
780 }
781