1 /* AFS superblock handling 2 * 3 * Copyright (c) 2002, 2007, 2018 Red Hat, Inc. All rights reserved. 4 * 5 * This software may be freely redistributed under the terms of the 6 * GNU General Public License. 7 * 8 * You should have received a copy of the GNU General Public License 9 * along with this program; if not, write to the Free Software 10 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. 11 * 12 * Authors: David Howells <dhowells@redhat.com> 13 * David Woodhouse <dwmw2@infradead.org> 14 * 15 */ 16 17 #include <linux/kernel.h> 18 #include <linux/module.h> 19 #include <linux/mount.h> 20 #include <linux/init.h> 21 #include <linux/slab.h> 22 #include <linux/fs.h> 23 #include <linux/pagemap.h> 24 #include <linux/fs_parser.h> 25 #include <linux/statfs.h> 26 #include <linux/sched.h> 27 #include <linux/nsproxy.h> 28 #include <linux/magic.h> 29 #include <net/net_namespace.h> 30 #include "internal.h" 31 32 static void afs_i_init_once(void *foo); 33 static void afs_kill_super(struct super_block *sb); 34 static struct inode *afs_alloc_inode(struct super_block *sb); 35 static void afs_destroy_inode(struct inode *inode); 36 static void afs_free_inode(struct inode *inode); 37 static int afs_statfs(struct dentry *dentry, struct kstatfs *buf); 38 static int afs_show_devname(struct seq_file *m, struct dentry *root); 39 static int afs_show_options(struct seq_file *m, struct dentry *root); 40 static int afs_init_fs_context(struct fs_context *fc); 41 static const struct fs_parameter_spec afs_fs_parameters[]; 42 43 struct file_system_type afs_fs_type = { 44 .owner = THIS_MODULE, 45 .name = "afs", 46 .init_fs_context = afs_init_fs_context, 47 .parameters = afs_fs_parameters, 48 .kill_sb = afs_kill_super, 49 .fs_flags = FS_RENAME_DOES_D_MOVE, 50 }; 51 MODULE_ALIAS_FS("afs"); 52 53 int afs_net_id; 54 55 static const struct super_operations afs_super_ops = { 56 .statfs = afs_statfs, 57 .alloc_inode = afs_alloc_inode, 58 .write_inode = netfs_unpin_writeback, 59 .drop_inode = afs_drop_inode, 60 .destroy_inode = afs_destroy_inode, 61 .free_inode = afs_free_inode, 62 .evict_inode = afs_evict_inode, 63 .show_devname = afs_show_devname, 64 .show_options = afs_show_options, 65 }; 66 67 static struct kmem_cache *afs_inode_cachep; 68 static atomic_t afs_count_active_inodes; 69 70 enum afs_param { 71 Opt_autocell, 72 Opt_dyn, 73 Opt_flock, 74 Opt_source, 75 }; 76 77 static const struct constant_table afs_param_flock[] = { 78 {"local", afs_flock_mode_local }, 79 {"openafs", afs_flock_mode_openafs }, 80 {"strict", afs_flock_mode_strict }, 81 {"write", afs_flock_mode_write }, 82 {} 83 }; 84 85 static const struct fs_parameter_spec afs_fs_parameters[] = { 86 fsparam_flag ("autocell", Opt_autocell), 87 fsparam_flag ("dyn", Opt_dyn), 88 fsparam_enum ("flock", Opt_flock, afs_param_flock), 89 fsparam_string("source", Opt_source), 90 {} 91 }; 92 93 /* 94 * initialise the filesystem 95 */ 96 int __init afs_fs_init(void) 97 { 98 int ret; 99 100 _enter(""); 101 102 /* create ourselves an inode cache */ 103 atomic_set(&afs_count_active_inodes, 0); 104 105 ret = -ENOMEM; 106 afs_inode_cachep = kmem_cache_create("afs_inode_cache", 107 sizeof(struct afs_vnode), 108 0, 109 SLAB_HWCACHE_ALIGN|SLAB_ACCOUNT, 110 afs_i_init_once); 111 if (!afs_inode_cachep) { 112 printk(KERN_NOTICE "kAFS: Failed to allocate inode cache\n"); 113 return ret; 114 } 115 116 /* now export our filesystem to lesser mortals */ 117 ret = register_filesystem(&afs_fs_type); 118 if (ret < 0) { 119 kmem_cache_destroy(afs_inode_cachep); 120 _leave(" = %d", ret); 121 return ret; 122 } 123 124 _leave(" = 0"); 125 return 0; 126 } 127 128 /* 129 * clean up the filesystem 130 */ 131 void afs_fs_exit(void) 132 { 133 _enter(""); 134 135 afs_mntpt_kill_timer(); 136 unregister_filesystem(&afs_fs_type); 137 138 if (atomic_read(&afs_count_active_inodes) != 0) { 139 printk("kAFS: %d active inode objects still present\n", 140 atomic_read(&afs_count_active_inodes)); 141 BUG(); 142 } 143 144 /* 145 * Make sure all delayed rcu free inodes are flushed before we 146 * destroy cache. 147 */ 148 rcu_barrier(); 149 kmem_cache_destroy(afs_inode_cachep); 150 _leave(""); 151 } 152 153 /* 154 * Display the mount device name in /proc/mounts. 155 */ 156 static int afs_show_devname(struct seq_file *m, struct dentry *root) 157 { 158 struct afs_super_info *as = AFS_FS_S(root->d_sb); 159 struct afs_volume *volume = as->volume; 160 struct afs_cell *cell = as->cell; 161 const char *suf = ""; 162 char pref = '%'; 163 164 if (as->dyn_root) { 165 seq_puts(m, "none"); 166 return 0; 167 } 168 169 switch (volume->type) { 170 case AFSVL_RWVOL: 171 break; 172 case AFSVL_ROVOL: 173 pref = '#'; 174 if (volume->type_force) 175 suf = ".readonly"; 176 break; 177 case AFSVL_BACKVOL: 178 pref = '#'; 179 suf = ".backup"; 180 break; 181 } 182 183 seq_printf(m, "%c%s:%s%s", pref, cell->name, volume->name, suf); 184 return 0; 185 } 186 187 /* 188 * Display the mount options in /proc/mounts. 189 */ 190 static int afs_show_options(struct seq_file *m, struct dentry *root) 191 { 192 struct afs_super_info *as = AFS_FS_S(root->d_sb); 193 const char *p = NULL; 194 195 if (as->dyn_root) 196 seq_puts(m, ",dyn"); 197 switch (as->flock_mode) { 198 case afs_flock_mode_unset: break; 199 case afs_flock_mode_local: p = "local"; break; 200 case afs_flock_mode_openafs: p = "openafs"; break; 201 case afs_flock_mode_strict: p = "strict"; break; 202 case afs_flock_mode_write: p = "write"; break; 203 } 204 if (p) 205 seq_printf(m, ",flock=%s", p); 206 207 return 0; 208 } 209 210 /* 211 * Parse the source name to get cell name, volume name, volume type and R/W 212 * selector. 213 * 214 * This can be one of the following: 215 * "%[cell:]volume[.]" R/W volume 216 * "#[cell:]volume[.]" R/O or R/W volume (R/O parent), 217 * or R/W (R/W parent) volume 218 * "%[cell:]volume.readonly" R/O volume 219 * "#[cell:]volume.readonly" R/O volume 220 * "%[cell:]volume.backup" Backup volume 221 * "#[cell:]volume.backup" Backup volume 222 */ 223 static int afs_parse_source(struct fs_context *fc, struct fs_parameter *param) 224 { 225 struct afs_fs_context *ctx = fc->fs_private; 226 struct afs_cell *cell; 227 const char *cellname, *suffix, *name = param->string; 228 int cellnamesz; 229 230 _enter(",%s", name); 231 232 if (fc->source) 233 return invalf(fc, "kAFS: Multiple sources not supported"); 234 235 if (!name) { 236 printk(KERN_ERR "kAFS: no volume name specified\n"); 237 return -EINVAL; 238 } 239 240 if ((name[0] != '%' && name[0] != '#') || !name[1]) { 241 /* To use dynroot, we don't want to have to provide a source */ 242 if (strcmp(name, "none") == 0) { 243 ctx->no_cell = true; 244 return 0; 245 } 246 printk(KERN_ERR "kAFS: unparsable volume name\n"); 247 return -EINVAL; 248 } 249 250 /* determine the type of volume we're looking for */ 251 if (name[0] == '%') { 252 ctx->type = AFSVL_RWVOL; 253 ctx->force = true; 254 } 255 name++; 256 257 /* split the cell name out if there is one */ 258 ctx->volname = strchr(name, ':'); 259 if (ctx->volname) { 260 cellname = name; 261 cellnamesz = ctx->volname - name; 262 ctx->volname++; 263 } else { 264 ctx->volname = name; 265 cellname = NULL; 266 cellnamesz = 0; 267 } 268 269 /* the volume type is further affected by a possible suffix */ 270 suffix = strrchr(ctx->volname, '.'); 271 if (suffix) { 272 if (strcmp(suffix, ".readonly") == 0) { 273 ctx->type = AFSVL_ROVOL; 274 ctx->force = true; 275 } else if (strcmp(suffix, ".backup") == 0) { 276 ctx->type = AFSVL_BACKVOL; 277 ctx->force = true; 278 } else if (suffix[1] == 0) { 279 } else { 280 suffix = NULL; 281 } 282 } 283 284 ctx->volnamesz = suffix ? 285 suffix - ctx->volname : strlen(ctx->volname); 286 287 _debug("cell %*.*s [%p]", 288 cellnamesz, cellnamesz, cellname ?: "", ctx->cell); 289 290 /* lookup the cell record */ 291 if (cellname) { 292 cell = afs_lookup_cell(ctx->net, cellname, cellnamesz, 293 NULL, false, 294 afs_cell_trace_use_lookup_mount); 295 if (IS_ERR(cell)) { 296 pr_err("kAFS: unable to lookup cell '%*.*s'\n", 297 cellnamesz, cellnamesz, cellname ?: ""); 298 return PTR_ERR(cell); 299 } 300 afs_unuse_cell(ctx->cell, afs_cell_trace_unuse_parse); 301 afs_see_cell(cell, afs_cell_trace_see_source); 302 ctx->cell = cell; 303 } 304 305 _debug("CELL:%s [%p] VOLUME:%*.*s SUFFIX:%s TYPE:%d%s", 306 ctx->cell->name, ctx->cell, 307 ctx->volnamesz, ctx->volnamesz, ctx->volname, 308 suffix ?: "-", ctx->type, ctx->force ? " FORCE" : ""); 309 310 fc->source = param->string; 311 param->string = NULL; 312 return 0; 313 } 314 315 /* 316 * Parse a single mount parameter. 317 */ 318 static int afs_parse_param(struct fs_context *fc, struct fs_parameter *param) 319 { 320 struct fs_parse_result result; 321 struct afs_fs_context *ctx = fc->fs_private; 322 int opt; 323 324 opt = fs_parse(fc, afs_fs_parameters, param, &result); 325 if (opt < 0) 326 return opt; 327 328 switch (opt) { 329 case Opt_source: 330 return afs_parse_source(fc, param); 331 332 case Opt_autocell: 333 ctx->autocell = true; 334 break; 335 336 case Opt_dyn: 337 ctx->dyn_root = true; 338 break; 339 340 case Opt_flock: 341 ctx->flock_mode = result.uint_32; 342 break; 343 344 default: 345 return -EINVAL; 346 } 347 348 _leave(" = 0"); 349 return 0; 350 } 351 352 /* 353 * Validate the options, get the cell key and look up the volume. 354 */ 355 static int afs_validate_fc(struct fs_context *fc) 356 { 357 struct afs_fs_context *ctx = fc->fs_private; 358 struct afs_volume *volume; 359 struct afs_cell *cell; 360 struct key *key; 361 int ret; 362 363 if (!ctx->dyn_root) { 364 if (ctx->no_cell) { 365 pr_warn("kAFS: Can only specify source 'none' with -o dyn\n"); 366 return -EINVAL; 367 } 368 369 if (!ctx->cell) { 370 pr_warn("kAFS: No cell specified\n"); 371 return -EDESTADDRREQ; 372 } 373 374 reget_key: 375 /* We try to do the mount securely. */ 376 key = afs_request_key(ctx->cell); 377 if (IS_ERR(key)) 378 return PTR_ERR(key); 379 380 ctx->key = key; 381 382 if (ctx->volume) { 383 afs_put_volume(ctx->volume, afs_volume_trace_put_validate_fc); 384 ctx->volume = NULL; 385 } 386 387 if (test_bit(AFS_CELL_FL_CHECK_ALIAS, &ctx->cell->flags)) { 388 ret = afs_cell_detect_alias(ctx->cell, key); 389 if (ret < 0) 390 return ret; 391 if (ret == 1) { 392 _debug("switch to alias"); 393 key_put(ctx->key); 394 ctx->key = NULL; 395 cell = afs_use_cell(ctx->cell->alias_of, 396 afs_cell_trace_use_fc_alias); 397 afs_unuse_cell(ctx->cell, afs_cell_trace_unuse_fc); 398 ctx->cell = cell; 399 goto reget_key; 400 } 401 } 402 403 volume = afs_create_volume(ctx); 404 if (IS_ERR(volume)) 405 return PTR_ERR(volume); 406 407 ctx->volume = volume; 408 if (volume->type != AFSVL_RWVOL) { 409 ctx->flock_mode = afs_flock_mode_local; 410 fc->sb_flags |= SB_RDONLY; 411 } 412 } 413 414 return 0; 415 } 416 417 /* 418 * check a superblock to see if it's the one we're looking for 419 */ 420 static int afs_test_super(struct super_block *sb, struct fs_context *fc) 421 { 422 struct afs_fs_context *ctx = fc->fs_private; 423 struct afs_super_info *as = AFS_FS_S(sb); 424 425 return (as->net_ns == fc->net_ns && 426 as->volume && 427 as->volume->vid == ctx->volume->vid && 428 as->cell == ctx->cell && 429 !as->dyn_root); 430 } 431 432 static int afs_dynroot_test_super(struct super_block *sb, struct fs_context *fc) 433 { 434 struct afs_super_info *as = AFS_FS_S(sb); 435 436 return (as->net_ns == fc->net_ns && 437 as->dyn_root); 438 } 439 440 static int afs_set_super(struct super_block *sb, struct fs_context *fc) 441 { 442 return set_anon_super(sb, NULL); 443 } 444 445 /* 446 * fill in the superblock 447 */ 448 static int afs_fill_super(struct super_block *sb, struct afs_fs_context *ctx) 449 { 450 struct afs_super_info *as = AFS_FS_S(sb); 451 struct inode *inode = NULL; 452 int ret; 453 454 _enter(""); 455 456 /* fill in the superblock */ 457 sb->s_blocksize = PAGE_SIZE; 458 sb->s_blocksize_bits = PAGE_SHIFT; 459 sb->s_maxbytes = MAX_LFS_FILESIZE; 460 sb->s_magic = AFS_FS_MAGIC; 461 sb->s_op = &afs_super_ops; 462 if (!as->dyn_root) 463 sb->s_xattr = afs_xattr_handlers; 464 ret = super_setup_bdi(sb); 465 if (ret) 466 return ret; 467 468 /* allocate the root inode and dentry */ 469 if (as->dyn_root) { 470 inode = afs_dynroot_iget_root(sb); 471 } else { 472 sprintf(sb->s_id, "%llu", as->volume->vid); 473 afs_activate_volume(as->volume); 474 inode = afs_root_iget(sb, ctx->key); 475 } 476 477 if (IS_ERR(inode)) 478 return PTR_ERR(inode); 479 480 ret = -ENOMEM; 481 sb->s_root = d_make_root(inode); 482 if (!sb->s_root) 483 goto error; 484 485 if (as->dyn_root) { 486 set_default_d_op(sb, &afs_dynroot_dentry_operations); 487 } else { 488 set_default_d_op(sb, &afs_fs_dentry_operations); 489 rcu_assign_pointer(as->volume->sb, sb); 490 } 491 492 _leave(" = 0"); 493 return 0; 494 495 error: 496 _leave(" = %d", ret); 497 return ret; 498 } 499 500 static struct afs_super_info *afs_alloc_sbi(struct fs_context *fc) 501 { 502 struct afs_fs_context *ctx = fc->fs_private; 503 struct afs_super_info *as; 504 505 as = kzalloc(sizeof(struct afs_super_info), GFP_KERNEL); 506 if (as) { 507 as->net_ns = get_net(fc->net_ns); 508 as->flock_mode = ctx->flock_mode; 509 if (ctx->dyn_root) { 510 as->dyn_root = true; 511 } else { 512 as->cell = afs_use_cell(ctx->cell, afs_cell_trace_use_sbi); 513 as->volume = afs_get_volume(ctx->volume, 514 afs_volume_trace_get_alloc_sbi); 515 } 516 } 517 return as; 518 } 519 520 static void afs_destroy_sbi(struct afs_super_info *as) 521 { 522 if (as) { 523 afs_put_volume(as->volume, afs_volume_trace_put_destroy_sbi); 524 afs_unuse_cell(as->cell, afs_cell_trace_unuse_sbi); 525 put_net(as->net_ns); 526 kfree(as); 527 } 528 } 529 530 static void afs_kill_super(struct super_block *sb) 531 { 532 struct afs_super_info *as = AFS_FS_S(sb); 533 534 /* Clear the callback interests (which will do ilookup5) before 535 * deactivating the superblock. 536 */ 537 if (as->volume) 538 rcu_assign_pointer(as->volume->sb, NULL); 539 kill_anon_super(sb); 540 if (as->volume) 541 afs_deactivate_volume(as->volume); 542 afs_destroy_sbi(as); 543 } 544 545 /* 546 * Get an AFS superblock and root directory. 547 */ 548 static int afs_get_tree(struct fs_context *fc) 549 { 550 struct afs_fs_context *ctx = fc->fs_private; 551 struct super_block *sb; 552 struct afs_super_info *as; 553 int ret; 554 555 ret = afs_validate_fc(fc); 556 if (ret) 557 goto error; 558 559 _enter(""); 560 561 /* allocate a superblock info record */ 562 ret = -ENOMEM; 563 as = afs_alloc_sbi(fc); 564 if (!as) 565 goto error; 566 fc->s_fs_info = as; 567 568 /* allocate a deviceless superblock */ 569 sb = sget_fc(fc, 570 as->dyn_root ? afs_dynroot_test_super : afs_test_super, 571 afs_set_super); 572 if (IS_ERR(sb)) { 573 ret = PTR_ERR(sb); 574 goto error; 575 } 576 577 if (!sb->s_root) { 578 /* initial superblock/root creation */ 579 _debug("create"); 580 ret = afs_fill_super(sb, ctx); 581 if (ret < 0) 582 goto error_sb; 583 sb->s_flags |= SB_ACTIVE; 584 } else { 585 _debug("reuse"); 586 ASSERTCMP(sb->s_flags, &, SB_ACTIVE); 587 } 588 589 fc->root = dget(sb->s_root); 590 trace_afs_get_tree(as->cell, as->volume); 591 _leave(" = 0 [%p]", sb); 592 return 0; 593 594 error_sb: 595 deactivate_locked_super(sb); 596 error: 597 _leave(" = %d", ret); 598 return ret; 599 } 600 601 static void afs_free_fc(struct fs_context *fc) 602 { 603 struct afs_fs_context *ctx = fc->fs_private; 604 605 afs_destroy_sbi(fc->s_fs_info); 606 afs_put_volume(ctx->volume, afs_volume_trace_put_free_fc); 607 afs_unuse_cell(ctx->cell, afs_cell_trace_unuse_fc); 608 key_put(ctx->key); 609 kfree(ctx); 610 } 611 612 static const struct fs_context_operations afs_context_ops = { 613 .free = afs_free_fc, 614 .parse_param = afs_parse_param, 615 .get_tree = afs_get_tree, 616 }; 617 618 /* 619 * Set up the filesystem mount context. 620 */ 621 static int afs_init_fs_context(struct fs_context *fc) 622 { 623 struct afs_fs_context *ctx; 624 struct afs_cell *cell; 625 626 ctx = kzalloc(sizeof(struct afs_fs_context), GFP_KERNEL); 627 if (!ctx) 628 return -ENOMEM; 629 630 ctx->type = AFSVL_ROVOL; 631 ctx->net = afs_net(fc->net_ns); 632 633 /* Default to the workstation cell. */ 634 cell = afs_find_cell(ctx->net, NULL, 0, afs_cell_trace_use_fc); 635 if (IS_ERR(cell)) 636 cell = NULL; 637 ctx->cell = cell; 638 639 fc->fs_private = ctx; 640 fc->ops = &afs_context_ops; 641 return 0; 642 } 643 644 /* 645 * Initialise an inode cache slab element prior to any use. Note that 646 * afs_alloc_inode() *must* reset anything that could incorrectly leak from one 647 * inode to another. 648 */ 649 static void afs_i_init_once(void *_vnode) 650 { 651 struct afs_vnode *vnode = _vnode; 652 653 memset(vnode, 0, sizeof(*vnode)); 654 inode_init_once(&vnode->netfs.inode); 655 INIT_LIST_HEAD(&vnode->io_lock_waiters); 656 init_rwsem(&vnode->validate_lock); 657 spin_lock_init(&vnode->wb_lock); 658 spin_lock_init(&vnode->lock); 659 INIT_LIST_HEAD(&vnode->wb_keys); 660 INIT_LIST_HEAD(&vnode->pending_locks); 661 INIT_LIST_HEAD(&vnode->granted_locks); 662 INIT_DELAYED_WORK(&vnode->lock_work, afs_lock_work); 663 INIT_LIST_HEAD(&vnode->cb_mmap_link); 664 seqlock_init(&vnode->cb_lock); 665 } 666 667 /* 668 * allocate an AFS inode struct from our slab cache 669 */ 670 static struct inode *afs_alloc_inode(struct super_block *sb) 671 { 672 struct afs_vnode *vnode; 673 674 vnode = alloc_inode_sb(sb, afs_inode_cachep, GFP_KERNEL); 675 if (!vnode) 676 return NULL; 677 678 atomic_inc(&afs_count_active_inodes); 679 680 /* Reset anything that shouldn't leak from one inode to the next. */ 681 memset(&vnode->fid, 0, sizeof(vnode->fid)); 682 memset(&vnode->status, 0, sizeof(vnode->status)); 683 afs_vnode_set_cache(vnode, NULL); 684 685 vnode->volume = NULL; 686 vnode->lock_key = NULL; 687 vnode->permit_cache = NULL; 688 vnode->directory = NULL; 689 vnode->directory_size = 0; 690 691 vnode->flags = 1 << AFS_VNODE_UNSET; 692 vnode->lock_state = AFS_VNODE_LOCK_NONE; 693 694 init_rwsem(&vnode->rmdir_lock); 695 INIT_WORK(&vnode->cb_work, afs_invalidate_mmap_work); 696 697 _leave(" = %p", &vnode->netfs.inode); 698 return &vnode->netfs.inode; 699 } 700 701 static void afs_free_inode(struct inode *inode) 702 { 703 kmem_cache_free(afs_inode_cachep, AFS_FS_I(inode)); 704 } 705 706 /* 707 * destroy an AFS inode struct 708 */ 709 static void afs_destroy_inode(struct inode *inode) 710 { 711 struct afs_vnode *vnode = AFS_FS_I(inode); 712 713 _enter("%p{%llx:%llu}", inode, vnode->fid.vid, vnode->fid.vnode); 714 715 _debug("DESTROY INODE %p", inode); 716 717 atomic_dec(&afs_count_active_inodes); 718 } 719 720 static void afs_get_volume_status_success(struct afs_operation *op) 721 { 722 struct afs_volume_status *vs = &op->volstatus.vs; 723 struct kstatfs *buf = op->volstatus.buf; 724 725 if (vs->max_quota == 0) 726 buf->f_blocks = vs->part_max_blocks; 727 else 728 buf->f_blocks = vs->max_quota; 729 730 if (buf->f_blocks > vs->blocks_in_use) 731 buf->f_bavail = buf->f_bfree = 732 buf->f_blocks - vs->blocks_in_use; 733 } 734 735 static const struct afs_operation_ops afs_get_volume_status_operation = { 736 .issue_afs_rpc = afs_fs_get_volume_status, 737 .issue_yfs_rpc = yfs_fs_get_volume_status, 738 .success = afs_get_volume_status_success, 739 }; 740 741 /* 742 * return information about an AFS volume 743 */ 744 static int afs_statfs(struct dentry *dentry, struct kstatfs *buf) 745 { 746 struct afs_super_info *as = AFS_FS_S(dentry->d_sb); 747 struct afs_operation *op; 748 struct afs_vnode *vnode = AFS_FS_I(d_inode(dentry)); 749 750 buf->f_type = dentry->d_sb->s_magic; 751 buf->f_bsize = AFS_BLOCK_SIZE; 752 buf->f_namelen = AFSNAMEMAX - 1; 753 754 if (as->dyn_root) { 755 buf->f_blocks = 1; 756 buf->f_bavail = 0; 757 buf->f_bfree = 0; 758 return 0; 759 } 760 761 op = afs_alloc_operation(NULL, as->volume); 762 if (IS_ERR(op)) 763 return PTR_ERR(op); 764 765 afs_op_set_vnode(op, 0, vnode); 766 op->nr_files = 1; 767 op->volstatus.buf = buf; 768 op->ops = &afs_get_volume_status_operation; 769 return afs_do_sync_operation(op); 770 } 771