1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* Maintain an RxRPC server socket to do AFS communications through 3 * 4 * Copyright (C) 2007 Red Hat, Inc. All Rights Reserved. 5 * Written by David Howells (dhowells@redhat.com) 6 */ 7 8 #include <linux/slab.h> 9 #include <linux/sched/signal.h> 10 11 #include <net/sock.h> 12 #include <net/af_rxrpc.h> 13 #include "internal.h" 14 #include "afs_cm.h" 15 #include "protocol_yfs.h" 16 17 struct workqueue_struct *afs_async_calls; 18 19 static void afs_wake_up_call_waiter(struct sock *, struct rxrpc_call *, unsigned long); 20 static void afs_wake_up_async_call(struct sock *, struct rxrpc_call *, unsigned long); 21 static void afs_process_async_call(struct work_struct *); 22 static void afs_rx_new_call(struct sock *, struct rxrpc_call *, unsigned long); 23 static void afs_rx_discard_new_call(struct rxrpc_call *, unsigned long); 24 static int afs_deliver_cm_op_id(struct afs_call *); 25 26 /* asynchronous incoming call initial processing */ 27 static const struct afs_call_type afs_RXCMxxxx = { 28 .name = "CB.xxxx", 29 .deliver = afs_deliver_cm_op_id, 30 }; 31 32 /* 33 * open an RxRPC socket and bind it to be a server for callback notifications 34 * - the socket is left in blocking mode and non-blocking ops use MSG_DONTWAIT 35 */ 36 int afs_open_socket(struct afs_net *net) 37 { 38 struct sockaddr_rxrpc srx; 39 struct socket *socket; 40 int ret; 41 42 _enter(""); 43 44 ret = sock_create_kern(net->net, AF_RXRPC, SOCK_DGRAM, PF_INET6, &socket); 45 if (ret < 0) 46 goto error_1; 47 48 socket->sk->sk_allocation = GFP_NOFS; 49 50 /* bind the callback manager's address to make this a server socket */ 51 memset(&srx, 0, sizeof(srx)); 52 srx.srx_family = AF_RXRPC; 53 srx.srx_service = CM_SERVICE; 54 srx.transport_type = SOCK_DGRAM; 55 srx.transport_len = sizeof(srx.transport.sin6); 56 srx.transport.sin6.sin6_family = AF_INET6; 57 srx.transport.sin6.sin6_port = htons(AFS_CM_PORT); 58 59 ret = rxrpc_sock_set_min_security_level(socket->sk, 60 RXRPC_SECURITY_ENCRYPT); 61 if (ret < 0) 62 goto error_2; 63 64 ret = kernel_bind(socket, (struct sockaddr *) &srx, sizeof(srx)); 65 if (ret == -EADDRINUSE) { 66 srx.transport.sin6.sin6_port = 0; 67 ret = kernel_bind(socket, (struct sockaddr *) &srx, sizeof(srx)); 68 } 69 if (ret < 0) 70 goto error_2; 71 72 srx.srx_service = YFS_CM_SERVICE; 73 ret = kernel_bind(socket, (struct sockaddr *) &srx, sizeof(srx)); 74 if (ret < 0) 75 goto error_2; 76 77 /* Ideally, we'd turn on service upgrade here, but we can't because 78 * OpenAFS is buggy and leaks the userStatus field from packet to 79 * packet and between FS packets and CB packets - so if we try to do an 80 * upgrade on an FS packet, OpenAFS will leak that into the CB packet 81 * it sends back to us. 82 */ 83 84 rxrpc_kernel_new_call_notification(socket, afs_rx_new_call, 85 afs_rx_discard_new_call); 86 87 ret = kernel_listen(socket, INT_MAX); 88 if (ret < 0) 89 goto error_2; 90 91 net->socket = socket; 92 afs_charge_preallocation(&net->charge_preallocation_work); 93 _leave(" = 0"); 94 return 0; 95 96 error_2: 97 sock_release(socket); 98 error_1: 99 _leave(" = %d", ret); 100 return ret; 101 } 102 103 /* 104 * close the RxRPC socket AFS was using 105 */ 106 void afs_close_socket(struct afs_net *net) 107 { 108 _enter(""); 109 110 kernel_listen(net->socket, 0); 111 flush_workqueue(afs_async_calls); 112 113 if (net->spare_incoming_call) { 114 afs_put_call(net->spare_incoming_call); 115 net->spare_incoming_call = NULL; 116 } 117 118 _debug("outstanding %u", atomic_read(&net->nr_outstanding_calls)); 119 wait_var_event(&net->nr_outstanding_calls, 120 !atomic_read(&net->nr_outstanding_calls)); 121 _debug("no outstanding calls"); 122 123 kernel_sock_shutdown(net->socket, SHUT_RDWR); 124 flush_workqueue(afs_async_calls); 125 sock_release(net->socket); 126 127 _debug("dework"); 128 _leave(""); 129 } 130 131 /* 132 * Allocate a call. 133 */ 134 static struct afs_call *afs_alloc_call(struct afs_net *net, 135 const struct afs_call_type *type, 136 gfp_t gfp) 137 { 138 struct afs_call *call; 139 int o; 140 141 call = kzalloc(sizeof(*call), gfp); 142 if (!call) 143 return NULL; 144 145 call->type = type; 146 call->net = net; 147 call->debug_id = atomic_inc_return(&rxrpc_debug_id); 148 atomic_set(&call->usage, 1); 149 INIT_WORK(&call->async_work, afs_process_async_call); 150 init_waitqueue_head(&call->waitq); 151 spin_lock_init(&call->state_lock); 152 call->iter = &call->def_iter; 153 154 o = atomic_inc_return(&net->nr_outstanding_calls); 155 trace_afs_call(call, afs_call_trace_alloc, 1, o, 156 __builtin_return_address(0)); 157 return call; 158 } 159 160 /* 161 * Dispose of a reference on a call. 162 */ 163 void afs_put_call(struct afs_call *call) 164 { 165 struct afs_net *net = call->net; 166 int n = atomic_dec_return(&call->usage); 167 int o = atomic_read(&net->nr_outstanding_calls); 168 169 trace_afs_call(call, afs_call_trace_put, n, o, 170 __builtin_return_address(0)); 171 172 ASSERTCMP(n, >=, 0); 173 if (n == 0) { 174 ASSERT(!work_pending(&call->async_work)); 175 ASSERT(call->type->name != NULL); 176 177 if (call->rxcall) { 178 rxrpc_kernel_end_call(net->socket, call->rxcall); 179 call->rxcall = NULL; 180 } 181 if (call->type->destructor) 182 call->type->destructor(call); 183 184 afs_unuse_server_notime(call->net, call->server, afs_server_trace_put_call); 185 afs_put_addrlist(call->alist); 186 kfree(call->request); 187 188 trace_afs_call(call, afs_call_trace_free, 0, o, 189 __builtin_return_address(0)); 190 kfree(call); 191 192 o = atomic_dec_return(&net->nr_outstanding_calls); 193 if (o == 0) 194 wake_up_var(&net->nr_outstanding_calls); 195 } 196 } 197 198 static struct afs_call *afs_get_call(struct afs_call *call, 199 enum afs_call_trace why) 200 { 201 int u = atomic_inc_return(&call->usage); 202 203 trace_afs_call(call, why, u, 204 atomic_read(&call->net->nr_outstanding_calls), 205 __builtin_return_address(0)); 206 return call; 207 } 208 209 /* 210 * Queue the call for actual work. 211 */ 212 static void afs_queue_call_work(struct afs_call *call) 213 { 214 if (call->type->work) { 215 INIT_WORK(&call->work, call->type->work); 216 217 afs_get_call(call, afs_call_trace_work); 218 if (!queue_work(afs_wq, &call->work)) 219 afs_put_call(call); 220 } 221 } 222 223 /* 224 * allocate a call with flat request and reply buffers 225 */ 226 struct afs_call *afs_alloc_flat_call(struct afs_net *net, 227 const struct afs_call_type *type, 228 size_t request_size, size_t reply_max) 229 { 230 struct afs_call *call; 231 232 call = afs_alloc_call(net, type, GFP_NOFS); 233 if (!call) 234 goto nomem_call; 235 236 if (request_size) { 237 call->request_size = request_size; 238 call->request = kmalloc(request_size, GFP_NOFS); 239 if (!call->request) 240 goto nomem_free; 241 } 242 243 if (reply_max) { 244 call->reply_max = reply_max; 245 call->buffer = kmalloc(reply_max, GFP_NOFS); 246 if (!call->buffer) 247 goto nomem_free; 248 } 249 250 afs_extract_to_buf(call, call->reply_max); 251 call->operation_ID = type->op; 252 init_waitqueue_head(&call->waitq); 253 return call; 254 255 nomem_free: 256 afs_put_call(call); 257 nomem_call: 258 return NULL; 259 } 260 261 /* 262 * clean up a call with flat buffer 263 */ 264 void afs_flat_call_destructor(struct afs_call *call) 265 { 266 _enter(""); 267 268 kfree(call->request); 269 call->request = NULL; 270 kfree(call->buffer); 271 call->buffer = NULL; 272 } 273 274 #define AFS_BVEC_MAX 8 275 276 /* 277 * Load the given bvec with the next few pages. 278 */ 279 static void afs_load_bvec(struct afs_call *call, struct msghdr *msg, 280 struct bio_vec *bv, pgoff_t first, pgoff_t last, 281 unsigned offset) 282 { 283 struct afs_operation *op = call->op; 284 struct page *pages[AFS_BVEC_MAX]; 285 unsigned int nr, n, i, to, bytes = 0; 286 287 nr = min_t(pgoff_t, last - first + 1, AFS_BVEC_MAX); 288 n = find_get_pages_contig(op->store.mapping, first, nr, pages); 289 ASSERTCMP(n, ==, nr); 290 291 msg->msg_flags |= MSG_MORE; 292 for (i = 0; i < nr; i++) { 293 to = PAGE_SIZE; 294 if (first + i >= last) { 295 to = op->store.last_to; 296 msg->msg_flags &= ~MSG_MORE; 297 } 298 bv[i].bv_page = pages[i]; 299 bv[i].bv_len = to - offset; 300 bv[i].bv_offset = offset; 301 bytes += to - offset; 302 offset = 0; 303 } 304 305 iov_iter_bvec(&msg->msg_iter, WRITE, bv, nr, bytes); 306 } 307 308 /* 309 * Advance the AFS call state when the RxRPC call ends the transmit phase. 310 */ 311 static void afs_notify_end_request_tx(struct sock *sock, 312 struct rxrpc_call *rxcall, 313 unsigned long call_user_ID) 314 { 315 struct afs_call *call = (struct afs_call *)call_user_ID; 316 317 afs_set_call_state(call, AFS_CALL_CL_REQUESTING, AFS_CALL_CL_AWAIT_REPLY); 318 } 319 320 /* 321 * attach the data from a bunch of pages on an inode to a call 322 */ 323 static int afs_send_pages(struct afs_call *call, struct msghdr *msg) 324 { 325 struct afs_operation *op = call->op; 326 struct bio_vec bv[AFS_BVEC_MAX]; 327 unsigned int bytes, nr, loop, offset; 328 pgoff_t first = op->store.first, last = op->store.last; 329 int ret; 330 331 offset = op->store.first_offset; 332 op->store.first_offset = 0; 333 334 do { 335 afs_load_bvec(call, msg, bv, first, last, offset); 336 trace_afs_send_pages(call, msg, first, last, offset); 337 338 offset = 0; 339 bytes = msg->msg_iter.count; 340 nr = msg->msg_iter.nr_segs; 341 342 ret = rxrpc_kernel_send_data(op->net->socket, call->rxcall, msg, 343 bytes, afs_notify_end_request_tx); 344 for (loop = 0; loop < nr; loop++) 345 put_page(bv[loop].bv_page); 346 if (ret < 0) 347 break; 348 349 first += nr; 350 } while (first <= last); 351 352 trace_afs_sent_pages(call, op->store.first, last, first, ret); 353 return ret; 354 } 355 356 /* 357 * Initiate a call and synchronously queue up the parameters for dispatch. Any 358 * error is stored into the call struct, which the caller must check for. 359 */ 360 void afs_make_call(struct afs_addr_cursor *ac, struct afs_call *call, gfp_t gfp) 361 { 362 struct sockaddr_rxrpc *srx = &ac->alist->addrs[ac->index]; 363 struct rxrpc_call *rxcall; 364 struct msghdr msg; 365 struct kvec iov[1]; 366 s64 tx_total_len; 367 int ret; 368 369 _enter(",{%pISp},", &srx->transport); 370 371 ASSERT(call->type != NULL); 372 ASSERT(call->type->name != NULL); 373 374 _debug("____MAKE %p{%s,%x} [%d]____", 375 call, call->type->name, key_serial(call->key), 376 atomic_read(&call->net->nr_outstanding_calls)); 377 378 call->addr_ix = ac->index; 379 call->alist = afs_get_addrlist(ac->alist); 380 381 /* Work out the length we're going to transmit. This is awkward for 382 * calls such as FS.StoreData where there's an extra injection of data 383 * after the initial fixed part. 384 */ 385 tx_total_len = call->request_size; 386 if (call->send_pages) { 387 struct afs_operation *op = call->op; 388 389 if (op->store.last == op->store.first) { 390 tx_total_len += op->store.last_to - op->store.first_offset; 391 } else { 392 /* It looks mathematically like you should be able to 393 * combine the following lines with the ones above, but 394 * unsigned arithmetic is fun when it wraps... 395 */ 396 tx_total_len += PAGE_SIZE - op->store.first_offset; 397 tx_total_len += op->store.last_to; 398 tx_total_len += (op->store.last - op->store.first - 1) * PAGE_SIZE; 399 } 400 } 401 402 /* If the call is going to be asynchronous, we need an extra ref for 403 * the call to hold itself so the caller need not hang on to its ref. 404 */ 405 if (call->async) { 406 afs_get_call(call, afs_call_trace_get); 407 call->drop_ref = true; 408 } 409 410 /* create a call */ 411 rxcall = rxrpc_kernel_begin_call(call->net->socket, srx, call->key, 412 (unsigned long)call, 413 tx_total_len, gfp, 414 (call->async ? 415 afs_wake_up_async_call : 416 afs_wake_up_call_waiter), 417 call->upgrade, 418 (call->intr ? RXRPC_PREINTERRUPTIBLE : 419 RXRPC_UNINTERRUPTIBLE), 420 call->debug_id); 421 if (IS_ERR(rxcall)) { 422 ret = PTR_ERR(rxcall); 423 call->error = ret; 424 goto error_kill_call; 425 } 426 427 call->rxcall = rxcall; 428 429 if (call->max_lifespan) 430 rxrpc_kernel_set_max_life(call->net->socket, rxcall, 431 call->max_lifespan); 432 433 /* send the request */ 434 iov[0].iov_base = call->request; 435 iov[0].iov_len = call->request_size; 436 437 msg.msg_name = NULL; 438 msg.msg_namelen = 0; 439 iov_iter_kvec(&msg.msg_iter, WRITE, iov, 1, call->request_size); 440 msg.msg_control = NULL; 441 msg.msg_controllen = 0; 442 msg.msg_flags = MSG_WAITALL | (call->send_pages ? MSG_MORE : 0); 443 444 ret = rxrpc_kernel_send_data(call->net->socket, rxcall, 445 &msg, call->request_size, 446 afs_notify_end_request_tx); 447 if (ret < 0) 448 goto error_do_abort; 449 450 if (call->send_pages) { 451 ret = afs_send_pages(call, &msg); 452 if (ret < 0) 453 goto error_do_abort; 454 } 455 456 /* Note that at this point, we may have received the reply or an abort 457 * - and an asynchronous call may already have completed. 458 * 459 * afs_wait_for_call_to_complete(call, ac) 460 * must be called to synchronously clean up. 461 */ 462 return; 463 464 error_do_abort: 465 if (ret != -ECONNABORTED) { 466 rxrpc_kernel_abort_call(call->net->socket, rxcall, 467 RX_USER_ABORT, ret, "KSD"); 468 } else { 469 iov_iter_kvec(&msg.msg_iter, READ, NULL, 0, 0); 470 rxrpc_kernel_recv_data(call->net->socket, rxcall, 471 &msg.msg_iter, false, 472 &call->abort_code, &call->service_id); 473 ac->abort_code = call->abort_code; 474 ac->responded = true; 475 } 476 call->error = ret; 477 trace_afs_call_done(call); 478 error_kill_call: 479 if (call->type->done) 480 call->type->done(call); 481 482 /* We need to dispose of the extra ref we grabbed for an async call. 483 * The call, however, might be queued on afs_async_calls and we need to 484 * make sure we don't get any more notifications that might requeue it. 485 */ 486 if (call->rxcall) { 487 rxrpc_kernel_end_call(call->net->socket, call->rxcall); 488 call->rxcall = NULL; 489 } 490 if (call->async) { 491 if (cancel_work_sync(&call->async_work)) 492 afs_put_call(call); 493 afs_put_call(call); 494 } 495 496 ac->error = ret; 497 call->state = AFS_CALL_COMPLETE; 498 _leave(" = %d", ret); 499 } 500 501 /* 502 * deliver messages to a call 503 */ 504 static void afs_deliver_to_call(struct afs_call *call) 505 { 506 enum afs_call_state state; 507 u32 abort_code, remote_abort = 0; 508 int ret; 509 510 _enter("%s", call->type->name); 511 512 while (state = READ_ONCE(call->state), 513 state == AFS_CALL_CL_AWAIT_REPLY || 514 state == AFS_CALL_SV_AWAIT_OP_ID || 515 state == AFS_CALL_SV_AWAIT_REQUEST || 516 state == AFS_CALL_SV_AWAIT_ACK 517 ) { 518 if (state == AFS_CALL_SV_AWAIT_ACK) { 519 iov_iter_kvec(&call->def_iter, READ, NULL, 0, 0); 520 ret = rxrpc_kernel_recv_data(call->net->socket, 521 call->rxcall, &call->def_iter, 522 false, &remote_abort, 523 &call->service_id); 524 trace_afs_receive_data(call, &call->def_iter, false, ret); 525 526 if (ret == -EINPROGRESS || ret == -EAGAIN) 527 return; 528 if (ret < 0 || ret == 1) { 529 if (ret == 1) 530 ret = 0; 531 goto call_complete; 532 } 533 return; 534 } 535 536 if (!call->have_reply_time && 537 rxrpc_kernel_get_reply_time(call->net->socket, 538 call->rxcall, 539 &call->reply_time)) 540 call->have_reply_time = true; 541 542 ret = call->type->deliver(call); 543 state = READ_ONCE(call->state); 544 if (ret == 0 && call->unmarshalling_error) 545 ret = -EBADMSG; 546 switch (ret) { 547 case 0: 548 afs_queue_call_work(call); 549 if (state == AFS_CALL_CL_PROC_REPLY) { 550 if (call->op) 551 set_bit(AFS_SERVER_FL_MAY_HAVE_CB, 552 &call->op->server->flags); 553 goto call_complete; 554 } 555 ASSERTCMP(state, >, AFS_CALL_CL_PROC_REPLY); 556 goto done; 557 case -EINPROGRESS: 558 case -EAGAIN: 559 goto out; 560 case -ECONNABORTED: 561 ASSERTCMP(state, ==, AFS_CALL_COMPLETE); 562 goto done; 563 case -ENOTSUPP: 564 abort_code = RXGEN_OPCODE; 565 rxrpc_kernel_abort_call(call->net->socket, call->rxcall, 566 abort_code, ret, "KIV"); 567 goto local_abort; 568 case -EIO: 569 pr_err("kAFS: Call %u in bad state %u\n", 570 call->debug_id, state); 571 fallthrough; 572 case -ENODATA: 573 case -EBADMSG: 574 case -EMSGSIZE: 575 abort_code = RXGEN_CC_UNMARSHAL; 576 if (state != AFS_CALL_CL_AWAIT_REPLY) 577 abort_code = RXGEN_SS_UNMARSHAL; 578 rxrpc_kernel_abort_call(call->net->socket, call->rxcall, 579 abort_code, ret, "KUM"); 580 goto local_abort; 581 default: 582 abort_code = RX_USER_ABORT; 583 rxrpc_kernel_abort_call(call->net->socket, call->rxcall, 584 abort_code, ret, "KER"); 585 goto local_abort; 586 } 587 } 588 589 done: 590 if (call->type->done) 591 call->type->done(call); 592 out: 593 _leave(""); 594 return; 595 596 local_abort: 597 abort_code = 0; 598 call_complete: 599 afs_set_call_complete(call, ret, remote_abort); 600 state = AFS_CALL_COMPLETE; 601 goto done; 602 } 603 604 /* 605 * Wait synchronously for a call to complete and clean up the call struct. 606 */ 607 long afs_wait_for_call_to_complete(struct afs_call *call, 608 struct afs_addr_cursor *ac) 609 { 610 long ret; 611 bool rxrpc_complete = false; 612 613 DECLARE_WAITQUEUE(myself, current); 614 615 _enter(""); 616 617 ret = call->error; 618 if (ret < 0) 619 goto out; 620 621 add_wait_queue(&call->waitq, &myself); 622 for (;;) { 623 set_current_state(TASK_UNINTERRUPTIBLE); 624 625 /* deliver any messages that are in the queue */ 626 if (!afs_check_call_state(call, AFS_CALL_COMPLETE) && 627 call->need_attention) { 628 call->need_attention = false; 629 __set_current_state(TASK_RUNNING); 630 afs_deliver_to_call(call); 631 continue; 632 } 633 634 if (afs_check_call_state(call, AFS_CALL_COMPLETE)) 635 break; 636 637 if (!rxrpc_kernel_check_life(call->net->socket, call->rxcall)) { 638 /* rxrpc terminated the call. */ 639 rxrpc_complete = true; 640 break; 641 } 642 643 schedule(); 644 } 645 646 remove_wait_queue(&call->waitq, &myself); 647 __set_current_state(TASK_RUNNING); 648 649 if (!afs_check_call_state(call, AFS_CALL_COMPLETE)) { 650 if (rxrpc_complete) { 651 afs_set_call_complete(call, call->error, call->abort_code); 652 } else { 653 /* Kill off the call if it's still live. */ 654 _debug("call interrupted"); 655 if (rxrpc_kernel_abort_call(call->net->socket, call->rxcall, 656 RX_USER_ABORT, -EINTR, "KWI")) 657 afs_set_call_complete(call, -EINTR, 0); 658 } 659 } 660 661 spin_lock_bh(&call->state_lock); 662 ac->abort_code = call->abort_code; 663 ac->error = call->error; 664 spin_unlock_bh(&call->state_lock); 665 666 ret = ac->error; 667 switch (ret) { 668 case 0: 669 ret = call->ret0; 670 call->ret0 = 0; 671 672 fallthrough; 673 case -ECONNABORTED: 674 ac->responded = true; 675 break; 676 } 677 678 out: 679 _debug("call complete"); 680 afs_put_call(call); 681 _leave(" = %p", (void *)ret); 682 return ret; 683 } 684 685 /* 686 * wake up a waiting call 687 */ 688 static void afs_wake_up_call_waiter(struct sock *sk, struct rxrpc_call *rxcall, 689 unsigned long call_user_ID) 690 { 691 struct afs_call *call = (struct afs_call *)call_user_ID; 692 693 call->need_attention = true; 694 wake_up(&call->waitq); 695 } 696 697 /* 698 * wake up an asynchronous call 699 */ 700 static void afs_wake_up_async_call(struct sock *sk, struct rxrpc_call *rxcall, 701 unsigned long call_user_ID) 702 { 703 struct afs_call *call = (struct afs_call *)call_user_ID; 704 int u; 705 706 trace_afs_notify_call(rxcall, call); 707 call->need_attention = true; 708 709 u = atomic_fetch_add_unless(&call->usage, 1, 0); 710 if (u != 0) { 711 trace_afs_call(call, afs_call_trace_wake, u + 1, 712 atomic_read(&call->net->nr_outstanding_calls), 713 __builtin_return_address(0)); 714 715 if (!queue_work(afs_async_calls, &call->async_work)) 716 afs_put_call(call); 717 } 718 } 719 720 /* 721 * Perform I/O processing on an asynchronous call. The work item carries a ref 722 * to the call struct that we either need to release or to pass on. 723 */ 724 static void afs_process_async_call(struct work_struct *work) 725 { 726 struct afs_call *call = container_of(work, struct afs_call, async_work); 727 728 _enter(""); 729 730 if (call->state < AFS_CALL_COMPLETE && call->need_attention) { 731 call->need_attention = false; 732 afs_deliver_to_call(call); 733 } 734 735 afs_put_call(call); 736 _leave(""); 737 } 738 739 static void afs_rx_attach(struct rxrpc_call *rxcall, unsigned long user_call_ID) 740 { 741 struct afs_call *call = (struct afs_call *)user_call_ID; 742 743 call->rxcall = rxcall; 744 } 745 746 /* 747 * Charge the incoming call preallocation. 748 */ 749 void afs_charge_preallocation(struct work_struct *work) 750 { 751 struct afs_net *net = 752 container_of(work, struct afs_net, charge_preallocation_work); 753 struct afs_call *call = net->spare_incoming_call; 754 755 for (;;) { 756 if (!call) { 757 call = afs_alloc_call(net, &afs_RXCMxxxx, GFP_KERNEL); 758 if (!call) 759 break; 760 761 call->drop_ref = true; 762 call->async = true; 763 call->state = AFS_CALL_SV_AWAIT_OP_ID; 764 init_waitqueue_head(&call->waitq); 765 afs_extract_to_tmp(call); 766 } 767 768 if (rxrpc_kernel_charge_accept(net->socket, 769 afs_wake_up_async_call, 770 afs_rx_attach, 771 (unsigned long)call, 772 GFP_KERNEL, 773 call->debug_id) < 0) 774 break; 775 call = NULL; 776 } 777 net->spare_incoming_call = call; 778 } 779 780 /* 781 * Discard a preallocated call when a socket is shut down. 782 */ 783 static void afs_rx_discard_new_call(struct rxrpc_call *rxcall, 784 unsigned long user_call_ID) 785 { 786 struct afs_call *call = (struct afs_call *)user_call_ID; 787 788 call->rxcall = NULL; 789 afs_put_call(call); 790 } 791 792 /* 793 * Notification of an incoming call. 794 */ 795 static void afs_rx_new_call(struct sock *sk, struct rxrpc_call *rxcall, 796 unsigned long user_call_ID) 797 { 798 struct afs_net *net = afs_sock2net(sk); 799 800 queue_work(afs_wq, &net->charge_preallocation_work); 801 } 802 803 /* 804 * Grab the operation ID from an incoming cache manager call. The socket 805 * buffer is discarded on error or if we don't yet have sufficient data. 806 */ 807 static int afs_deliver_cm_op_id(struct afs_call *call) 808 { 809 int ret; 810 811 _enter("{%zu}", iov_iter_count(call->iter)); 812 813 /* the operation ID forms the first four bytes of the request data */ 814 ret = afs_extract_data(call, true); 815 if (ret < 0) 816 return ret; 817 818 call->operation_ID = ntohl(call->tmp); 819 afs_set_call_state(call, AFS_CALL_SV_AWAIT_OP_ID, AFS_CALL_SV_AWAIT_REQUEST); 820 821 /* ask the cache manager to route the call (it'll change the call type 822 * if successful) */ 823 if (!afs_cm_incoming_call(call)) 824 return -ENOTSUPP; 825 826 trace_afs_cb_call(call); 827 828 /* pass responsibility for the remainer of this message off to the 829 * cache manager op */ 830 return call->type->deliver(call); 831 } 832 833 /* 834 * Advance the AFS call state when an RxRPC service call ends the transmit 835 * phase. 836 */ 837 static void afs_notify_end_reply_tx(struct sock *sock, 838 struct rxrpc_call *rxcall, 839 unsigned long call_user_ID) 840 { 841 struct afs_call *call = (struct afs_call *)call_user_ID; 842 843 afs_set_call_state(call, AFS_CALL_SV_REPLYING, AFS_CALL_SV_AWAIT_ACK); 844 } 845 846 /* 847 * send an empty reply 848 */ 849 void afs_send_empty_reply(struct afs_call *call) 850 { 851 struct afs_net *net = call->net; 852 struct msghdr msg; 853 854 _enter(""); 855 856 rxrpc_kernel_set_tx_length(net->socket, call->rxcall, 0); 857 858 msg.msg_name = NULL; 859 msg.msg_namelen = 0; 860 iov_iter_kvec(&msg.msg_iter, WRITE, NULL, 0, 0); 861 msg.msg_control = NULL; 862 msg.msg_controllen = 0; 863 msg.msg_flags = 0; 864 865 switch (rxrpc_kernel_send_data(net->socket, call->rxcall, &msg, 0, 866 afs_notify_end_reply_tx)) { 867 case 0: 868 _leave(" [replied]"); 869 return; 870 871 case -ENOMEM: 872 _debug("oom"); 873 rxrpc_kernel_abort_call(net->socket, call->rxcall, 874 RX_USER_ABORT, -ENOMEM, "KOO"); 875 fallthrough; 876 default: 877 _leave(" [error]"); 878 return; 879 } 880 } 881 882 /* 883 * send a simple reply 884 */ 885 void afs_send_simple_reply(struct afs_call *call, const void *buf, size_t len) 886 { 887 struct afs_net *net = call->net; 888 struct msghdr msg; 889 struct kvec iov[1]; 890 int n; 891 892 _enter(""); 893 894 rxrpc_kernel_set_tx_length(net->socket, call->rxcall, len); 895 896 iov[0].iov_base = (void *) buf; 897 iov[0].iov_len = len; 898 msg.msg_name = NULL; 899 msg.msg_namelen = 0; 900 iov_iter_kvec(&msg.msg_iter, WRITE, iov, 1, len); 901 msg.msg_control = NULL; 902 msg.msg_controllen = 0; 903 msg.msg_flags = 0; 904 905 n = rxrpc_kernel_send_data(net->socket, call->rxcall, &msg, len, 906 afs_notify_end_reply_tx); 907 if (n >= 0) { 908 /* Success */ 909 _leave(" [replied]"); 910 return; 911 } 912 913 if (n == -ENOMEM) { 914 _debug("oom"); 915 rxrpc_kernel_abort_call(net->socket, call->rxcall, 916 RX_USER_ABORT, -ENOMEM, "KOO"); 917 } 918 _leave(" [error]"); 919 } 920 921 /* 922 * Extract a piece of data from the received data socket buffers. 923 */ 924 int afs_extract_data(struct afs_call *call, bool want_more) 925 { 926 struct afs_net *net = call->net; 927 struct iov_iter *iter = call->iter; 928 enum afs_call_state state; 929 u32 remote_abort = 0; 930 int ret; 931 932 _enter("{%s,%zu},%d", call->type->name, iov_iter_count(iter), want_more); 933 934 ret = rxrpc_kernel_recv_data(net->socket, call->rxcall, iter, 935 want_more, &remote_abort, 936 &call->service_id); 937 if (ret == 0 || ret == -EAGAIN) 938 return ret; 939 940 state = READ_ONCE(call->state); 941 if (ret == 1) { 942 switch (state) { 943 case AFS_CALL_CL_AWAIT_REPLY: 944 afs_set_call_state(call, state, AFS_CALL_CL_PROC_REPLY); 945 break; 946 case AFS_CALL_SV_AWAIT_REQUEST: 947 afs_set_call_state(call, state, AFS_CALL_SV_REPLYING); 948 break; 949 case AFS_CALL_COMPLETE: 950 kdebug("prem complete %d", call->error); 951 return afs_io_error(call, afs_io_error_extract); 952 default: 953 break; 954 } 955 return 0; 956 } 957 958 afs_set_call_complete(call, ret, remote_abort); 959 return ret; 960 } 961 962 /* 963 * Log protocol error production. 964 */ 965 noinline int afs_protocol_error(struct afs_call *call, 966 enum afs_eproto_cause cause) 967 { 968 trace_afs_protocol_error(call, cause); 969 if (call) 970 call->unmarshalling_error = true; 971 return -EBADMSG; 972 } 973