xref: /linux/fs/afs/rxrpc.c (revision e58e871becec2d3b04ed91c0c16fe8deac9c9dfa)
1 /* Maintain an RxRPC server socket to do AFS communications through
2  *
3  * Copyright (C) 2007 Red Hat, Inc. All Rights Reserved.
4  * Written by David Howells (dhowells@redhat.com)
5  *
6  * This program is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU General Public License
8  * as published by the Free Software Foundation; either version
9  * 2 of the License, or (at your option) any later version.
10  */
11 
12 #include <linux/slab.h>
13 #include <linux/sched/signal.h>
14 
15 #include <net/sock.h>
16 #include <net/af_rxrpc.h>
17 #include <rxrpc/packet.h>
18 #include "internal.h"
19 #include "afs_cm.h"
20 
21 struct socket *afs_socket; /* my RxRPC socket */
22 static struct workqueue_struct *afs_async_calls;
23 static struct afs_call *afs_spare_incoming_call;
24 atomic_t afs_outstanding_calls;
25 
26 static void afs_wake_up_call_waiter(struct sock *, struct rxrpc_call *, unsigned long);
27 static int afs_wait_for_call_to_complete(struct afs_call *);
28 static void afs_wake_up_async_call(struct sock *, struct rxrpc_call *, unsigned long);
29 static void afs_process_async_call(struct work_struct *);
30 static void afs_rx_new_call(struct sock *, struct rxrpc_call *, unsigned long);
31 static void afs_rx_discard_new_call(struct rxrpc_call *, unsigned long);
32 static int afs_deliver_cm_op_id(struct afs_call *);
33 
34 /* asynchronous incoming call initial processing */
35 static const struct afs_call_type afs_RXCMxxxx = {
36 	.name		= "CB.xxxx",
37 	.deliver	= afs_deliver_cm_op_id,
38 	.abort_to_error	= afs_abort_to_error,
39 };
40 
41 static void afs_charge_preallocation(struct work_struct *);
42 
43 static DECLARE_WORK(afs_charge_preallocation_work, afs_charge_preallocation);
44 
45 static int afs_wait_atomic_t(atomic_t *p)
46 {
47 	schedule();
48 	return 0;
49 }
50 
51 /*
52  * open an RxRPC socket and bind it to be a server for callback notifications
53  * - the socket is left in blocking mode and non-blocking ops use MSG_DONTWAIT
54  */
55 int afs_open_socket(void)
56 {
57 	struct sockaddr_rxrpc srx;
58 	struct socket *socket;
59 	int ret;
60 
61 	_enter("");
62 
63 	ret = -ENOMEM;
64 	afs_async_calls = alloc_workqueue("kafsd", WQ_MEM_RECLAIM, 0);
65 	if (!afs_async_calls)
66 		goto error_0;
67 
68 	ret = sock_create_kern(&init_net, AF_RXRPC, SOCK_DGRAM, PF_INET, &socket);
69 	if (ret < 0)
70 		goto error_1;
71 
72 	socket->sk->sk_allocation = GFP_NOFS;
73 
74 	/* bind the callback manager's address to make this a server socket */
75 	srx.srx_family			= AF_RXRPC;
76 	srx.srx_service			= CM_SERVICE;
77 	srx.transport_type		= SOCK_DGRAM;
78 	srx.transport_len		= sizeof(srx.transport.sin);
79 	srx.transport.sin.sin_family	= AF_INET;
80 	srx.transport.sin.sin_port	= htons(AFS_CM_PORT);
81 	memset(&srx.transport.sin.sin_addr, 0,
82 	       sizeof(srx.transport.sin.sin_addr));
83 
84 	ret = kernel_bind(socket, (struct sockaddr *) &srx, sizeof(srx));
85 	if (ret < 0)
86 		goto error_2;
87 
88 	rxrpc_kernel_new_call_notification(socket, afs_rx_new_call,
89 					   afs_rx_discard_new_call);
90 
91 	ret = kernel_listen(socket, INT_MAX);
92 	if (ret < 0)
93 		goto error_2;
94 
95 	afs_socket = socket;
96 	afs_charge_preallocation(NULL);
97 	_leave(" = 0");
98 	return 0;
99 
100 error_2:
101 	sock_release(socket);
102 error_1:
103 	destroy_workqueue(afs_async_calls);
104 error_0:
105 	_leave(" = %d", ret);
106 	return ret;
107 }
108 
109 /*
110  * close the RxRPC socket AFS was using
111  */
112 void afs_close_socket(void)
113 {
114 	_enter("");
115 
116 	kernel_listen(afs_socket, 0);
117 	flush_workqueue(afs_async_calls);
118 
119 	if (afs_spare_incoming_call) {
120 		afs_put_call(afs_spare_incoming_call);
121 		afs_spare_incoming_call = NULL;
122 	}
123 
124 	_debug("outstanding %u", atomic_read(&afs_outstanding_calls));
125 	wait_on_atomic_t(&afs_outstanding_calls, afs_wait_atomic_t,
126 			 TASK_UNINTERRUPTIBLE);
127 	_debug("no outstanding calls");
128 
129 	kernel_sock_shutdown(afs_socket, SHUT_RDWR);
130 	flush_workqueue(afs_async_calls);
131 	sock_release(afs_socket);
132 
133 	_debug("dework");
134 	destroy_workqueue(afs_async_calls);
135 	_leave("");
136 }
137 
138 /*
139  * Allocate a call.
140  */
141 static struct afs_call *afs_alloc_call(const struct afs_call_type *type,
142 				       gfp_t gfp)
143 {
144 	struct afs_call *call;
145 	int o;
146 
147 	call = kzalloc(sizeof(*call), gfp);
148 	if (!call)
149 		return NULL;
150 
151 	call->type = type;
152 	atomic_set(&call->usage, 1);
153 	INIT_WORK(&call->async_work, afs_process_async_call);
154 	init_waitqueue_head(&call->waitq);
155 
156 	o = atomic_inc_return(&afs_outstanding_calls);
157 	trace_afs_call(call, afs_call_trace_alloc, 1, o,
158 		       __builtin_return_address(0));
159 	return call;
160 }
161 
162 /*
163  * Dispose of a reference on a call.
164  */
165 void afs_put_call(struct afs_call *call)
166 {
167 	int n = atomic_dec_return(&call->usage);
168 	int o = atomic_read(&afs_outstanding_calls);
169 
170 	trace_afs_call(call, afs_call_trace_put, n + 1, o,
171 		       __builtin_return_address(0));
172 
173 	ASSERTCMP(n, >=, 0);
174 	if (n == 0) {
175 		ASSERT(!work_pending(&call->async_work));
176 		ASSERT(call->type->name != NULL);
177 
178 		if (call->rxcall) {
179 			rxrpc_kernel_end_call(afs_socket, call->rxcall);
180 			call->rxcall = NULL;
181 		}
182 		if (call->type->destructor)
183 			call->type->destructor(call);
184 
185 		kfree(call->request);
186 		kfree(call);
187 
188 		o = atomic_dec_return(&afs_outstanding_calls);
189 		trace_afs_call(call, afs_call_trace_free, 0, o,
190 			       __builtin_return_address(0));
191 		if (o == 0)
192 			wake_up_atomic_t(&afs_outstanding_calls);
193 	}
194 }
195 
196 /*
197  * Queue the call for actual work.  Returns 0 unconditionally for convenience.
198  */
199 int afs_queue_call_work(struct afs_call *call)
200 {
201 	int u = atomic_inc_return(&call->usage);
202 
203 	trace_afs_call(call, afs_call_trace_work, u,
204 		       atomic_read(&afs_outstanding_calls),
205 		       __builtin_return_address(0));
206 
207 	INIT_WORK(&call->work, call->type->work);
208 
209 	if (!queue_work(afs_wq, &call->work))
210 		afs_put_call(call);
211 	return 0;
212 }
213 
214 /*
215  * allocate a call with flat request and reply buffers
216  */
217 struct afs_call *afs_alloc_flat_call(const struct afs_call_type *type,
218 				     size_t request_size, size_t reply_max)
219 {
220 	struct afs_call *call;
221 
222 	call = afs_alloc_call(type, GFP_NOFS);
223 	if (!call)
224 		goto nomem_call;
225 
226 	if (request_size) {
227 		call->request_size = request_size;
228 		call->request = kmalloc(request_size, GFP_NOFS);
229 		if (!call->request)
230 			goto nomem_free;
231 	}
232 
233 	if (reply_max) {
234 		call->reply_max = reply_max;
235 		call->buffer = kmalloc(reply_max, GFP_NOFS);
236 		if (!call->buffer)
237 			goto nomem_free;
238 	}
239 
240 	init_waitqueue_head(&call->waitq);
241 	return call;
242 
243 nomem_free:
244 	afs_put_call(call);
245 nomem_call:
246 	return NULL;
247 }
248 
249 /*
250  * clean up a call with flat buffer
251  */
252 void afs_flat_call_destructor(struct afs_call *call)
253 {
254 	_enter("");
255 
256 	kfree(call->request);
257 	call->request = NULL;
258 	kfree(call->buffer);
259 	call->buffer = NULL;
260 }
261 
262 #define AFS_BVEC_MAX 8
263 
264 /*
265  * Load the given bvec with the next few pages.
266  */
267 static void afs_load_bvec(struct afs_call *call, struct msghdr *msg,
268 			  struct bio_vec *bv, pgoff_t first, pgoff_t last,
269 			  unsigned offset)
270 {
271 	struct page *pages[AFS_BVEC_MAX];
272 	unsigned int nr, n, i, to, bytes = 0;
273 
274 	nr = min_t(pgoff_t, last - first + 1, AFS_BVEC_MAX);
275 	n = find_get_pages_contig(call->mapping, first, nr, pages);
276 	ASSERTCMP(n, ==, nr);
277 
278 	msg->msg_flags |= MSG_MORE;
279 	for (i = 0; i < nr; i++) {
280 		to = PAGE_SIZE;
281 		if (first + i >= last) {
282 			to = call->last_to;
283 			msg->msg_flags &= ~MSG_MORE;
284 		}
285 		bv[i].bv_page = pages[i];
286 		bv[i].bv_len = to - offset;
287 		bv[i].bv_offset = offset;
288 		bytes += to - offset;
289 		offset = 0;
290 	}
291 
292 	iov_iter_bvec(&msg->msg_iter, WRITE | ITER_BVEC, bv, nr, bytes);
293 }
294 
295 /*
296  * attach the data from a bunch of pages on an inode to a call
297  */
298 static int afs_send_pages(struct afs_call *call, struct msghdr *msg)
299 {
300 	struct bio_vec bv[AFS_BVEC_MAX];
301 	unsigned int bytes, nr, loop, offset;
302 	pgoff_t first = call->first, last = call->last;
303 	int ret;
304 
305 	offset = call->first_offset;
306 	call->first_offset = 0;
307 
308 	do {
309 		afs_load_bvec(call, msg, bv, first, last, offset);
310 		offset = 0;
311 		bytes = msg->msg_iter.count;
312 		nr = msg->msg_iter.nr_segs;
313 
314 		/* Have to change the state *before* sending the last
315 		 * packet as RxRPC might give us the reply before it
316 		 * returns from sending the request.
317 		 */
318 		if (first + nr - 1 >= last)
319 			call->state = AFS_CALL_AWAIT_REPLY;
320 		ret = rxrpc_kernel_send_data(afs_socket, call->rxcall,
321 					     msg, bytes);
322 		for (loop = 0; loop < nr; loop++)
323 			put_page(bv[loop].bv_page);
324 		if (ret < 0)
325 			break;
326 
327 		first += nr;
328 	} while (first <= last);
329 
330 	return ret;
331 }
332 
333 /*
334  * initiate a call
335  */
336 int afs_make_call(struct in_addr *addr, struct afs_call *call, gfp_t gfp,
337 		  bool async)
338 {
339 	struct sockaddr_rxrpc srx;
340 	struct rxrpc_call *rxcall;
341 	struct msghdr msg;
342 	struct kvec iov[1];
343 	size_t offset;
344 	u32 abort_code;
345 	int ret;
346 
347 	_enter("%x,{%d},", addr->s_addr, ntohs(call->port));
348 
349 	ASSERT(call->type != NULL);
350 	ASSERT(call->type->name != NULL);
351 
352 	_debug("____MAKE %p{%s,%x} [%d]____",
353 	       call, call->type->name, key_serial(call->key),
354 	       atomic_read(&afs_outstanding_calls));
355 
356 	call->async = async;
357 
358 	memset(&srx, 0, sizeof(srx));
359 	srx.srx_family = AF_RXRPC;
360 	srx.srx_service = call->service_id;
361 	srx.transport_type = SOCK_DGRAM;
362 	srx.transport_len = sizeof(srx.transport.sin);
363 	srx.transport.sin.sin_family = AF_INET;
364 	srx.transport.sin.sin_port = call->port;
365 	memcpy(&srx.transport.sin.sin_addr, addr, 4);
366 
367 	/* create a call */
368 	rxcall = rxrpc_kernel_begin_call(afs_socket, &srx, call->key,
369 					 (unsigned long) call, gfp,
370 					 (async ?
371 					  afs_wake_up_async_call :
372 					  afs_wake_up_call_waiter));
373 	call->key = NULL;
374 	if (IS_ERR(rxcall)) {
375 		ret = PTR_ERR(rxcall);
376 		goto error_kill_call;
377 	}
378 
379 	call->rxcall = rxcall;
380 
381 	/* send the request */
382 	iov[0].iov_base	= call->request;
383 	iov[0].iov_len	= call->request_size;
384 
385 	msg.msg_name		= NULL;
386 	msg.msg_namelen		= 0;
387 	iov_iter_kvec(&msg.msg_iter, WRITE | ITER_KVEC, iov, 1,
388 		      call->request_size);
389 	msg.msg_control		= NULL;
390 	msg.msg_controllen	= 0;
391 	msg.msg_flags		= (call->send_pages ? MSG_MORE : 0);
392 
393 	/* We have to change the state *before* sending the last packet as
394 	 * rxrpc might give us the reply before it returns from sending the
395 	 * request.  Further, if the send fails, we may already have been given
396 	 * a notification and may have collected it.
397 	 */
398 	if (!call->send_pages)
399 		call->state = AFS_CALL_AWAIT_REPLY;
400 	ret = rxrpc_kernel_send_data(afs_socket, rxcall,
401 				     &msg, call->request_size);
402 	if (ret < 0)
403 		goto error_do_abort;
404 
405 	if (call->send_pages) {
406 		ret = afs_send_pages(call, &msg);
407 		if (ret < 0)
408 			goto error_do_abort;
409 	}
410 
411 	/* at this point, an async call may no longer exist as it may have
412 	 * already completed */
413 	if (call->async)
414 		return -EINPROGRESS;
415 
416 	return afs_wait_for_call_to_complete(call);
417 
418 error_do_abort:
419 	call->state = AFS_CALL_COMPLETE;
420 	if (ret != -ECONNABORTED) {
421 		rxrpc_kernel_abort_call(afs_socket, rxcall, RX_USER_ABORT,
422 					ret, "KSD");
423 	} else {
424 		abort_code = 0;
425 		offset = 0;
426 		rxrpc_kernel_recv_data(afs_socket, rxcall, NULL, 0, &offset,
427 				       false, &abort_code);
428 		ret = call->type->abort_to_error(abort_code);
429 	}
430 error_kill_call:
431 	afs_put_call(call);
432 	_leave(" = %d", ret);
433 	return ret;
434 }
435 
436 /*
437  * deliver messages to a call
438  */
439 static void afs_deliver_to_call(struct afs_call *call)
440 {
441 	u32 abort_code;
442 	int ret;
443 
444 	_enter("%s", call->type->name);
445 
446 	while (call->state == AFS_CALL_AWAIT_REPLY ||
447 	       call->state == AFS_CALL_AWAIT_OP_ID ||
448 	       call->state == AFS_CALL_AWAIT_REQUEST ||
449 	       call->state == AFS_CALL_AWAIT_ACK
450 	       ) {
451 		if (call->state == AFS_CALL_AWAIT_ACK) {
452 			size_t offset = 0;
453 			ret = rxrpc_kernel_recv_data(afs_socket, call->rxcall,
454 						     NULL, 0, &offset, false,
455 						     &call->abort_code);
456 			trace_afs_recv_data(call, 0, offset, false, ret);
457 
458 			if (ret == -EINPROGRESS || ret == -EAGAIN)
459 				return;
460 			if (ret == 1 || ret < 0) {
461 				call->state = AFS_CALL_COMPLETE;
462 				goto done;
463 			}
464 			return;
465 		}
466 
467 		ret = call->type->deliver(call);
468 		switch (ret) {
469 		case 0:
470 			if (call->state == AFS_CALL_AWAIT_REPLY)
471 				call->state = AFS_CALL_COMPLETE;
472 			goto done;
473 		case -EINPROGRESS:
474 		case -EAGAIN:
475 			goto out;
476 		case -ECONNABORTED:
477 			goto call_complete;
478 		case -ENOTCONN:
479 			abort_code = RX_CALL_DEAD;
480 			rxrpc_kernel_abort_call(afs_socket, call->rxcall,
481 						abort_code, ret, "KNC");
482 			goto save_error;
483 		case -ENOTSUPP:
484 			abort_code = RXGEN_OPCODE;
485 			rxrpc_kernel_abort_call(afs_socket, call->rxcall,
486 						abort_code, ret, "KIV");
487 			goto save_error;
488 		case -ENODATA:
489 		case -EBADMSG:
490 		case -EMSGSIZE:
491 		default:
492 			abort_code = RXGEN_CC_UNMARSHAL;
493 			if (call->state != AFS_CALL_AWAIT_REPLY)
494 				abort_code = RXGEN_SS_UNMARSHAL;
495 			rxrpc_kernel_abort_call(afs_socket, call->rxcall,
496 						abort_code, -EBADMSG, "KUM");
497 			goto save_error;
498 		}
499 	}
500 
501 done:
502 	if (call->state == AFS_CALL_COMPLETE && call->incoming)
503 		afs_put_call(call);
504 out:
505 	_leave("");
506 	return;
507 
508 save_error:
509 	call->error = ret;
510 call_complete:
511 	call->state = AFS_CALL_COMPLETE;
512 	goto done;
513 }
514 
515 /*
516  * wait synchronously for a call to complete
517  */
518 static int afs_wait_for_call_to_complete(struct afs_call *call)
519 {
520 	int ret;
521 
522 	DECLARE_WAITQUEUE(myself, current);
523 
524 	_enter("");
525 
526 	add_wait_queue(&call->waitq, &myself);
527 	for (;;) {
528 		set_current_state(TASK_INTERRUPTIBLE);
529 
530 		/* deliver any messages that are in the queue */
531 		if (call->state < AFS_CALL_COMPLETE && call->need_attention) {
532 			call->need_attention = false;
533 			__set_current_state(TASK_RUNNING);
534 			afs_deliver_to_call(call);
535 			continue;
536 		}
537 
538 		if (call->state == AFS_CALL_COMPLETE ||
539 		    signal_pending(current))
540 			break;
541 		schedule();
542 	}
543 
544 	remove_wait_queue(&call->waitq, &myself);
545 	__set_current_state(TASK_RUNNING);
546 
547 	/* Kill off the call if it's still live. */
548 	if (call->state < AFS_CALL_COMPLETE) {
549 		_debug("call interrupted");
550 		rxrpc_kernel_abort_call(afs_socket, call->rxcall,
551 					RX_USER_ABORT, -EINTR, "KWI");
552 	}
553 
554 	ret = call->error;
555 	_debug("call complete");
556 	afs_put_call(call);
557 	_leave(" = %d", ret);
558 	return ret;
559 }
560 
561 /*
562  * wake up a waiting call
563  */
564 static void afs_wake_up_call_waiter(struct sock *sk, struct rxrpc_call *rxcall,
565 				    unsigned long call_user_ID)
566 {
567 	struct afs_call *call = (struct afs_call *)call_user_ID;
568 
569 	call->need_attention = true;
570 	wake_up(&call->waitq);
571 }
572 
573 /*
574  * wake up an asynchronous call
575  */
576 static void afs_wake_up_async_call(struct sock *sk, struct rxrpc_call *rxcall,
577 				   unsigned long call_user_ID)
578 {
579 	struct afs_call *call = (struct afs_call *)call_user_ID;
580 	int u;
581 
582 	trace_afs_notify_call(rxcall, call);
583 	call->need_attention = true;
584 
585 	u = __atomic_add_unless(&call->usage, 1, 0);
586 	if (u != 0) {
587 		trace_afs_call(call, afs_call_trace_wake, u,
588 			       atomic_read(&afs_outstanding_calls),
589 			       __builtin_return_address(0));
590 
591 		if (!queue_work(afs_async_calls, &call->async_work))
592 			afs_put_call(call);
593 	}
594 }
595 
596 /*
597  * Delete an asynchronous call.  The work item carries a ref to the call struct
598  * that we need to release.
599  */
600 static void afs_delete_async_call(struct work_struct *work)
601 {
602 	struct afs_call *call = container_of(work, struct afs_call, async_work);
603 
604 	_enter("");
605 
606 	afs_put_call(call);
607 
608 	_leave("");
609 }
610 
611 /*
612  * Perform I/O processing on an asynchronous call.  The work item carries a ref
613  * to the call struct that we either need to release or to pass on.
614  */
615 static void afs_process_async_call(struct work_struct *work)
616 {
617 	struct afs_call *call = container_of(work, struct afs_call, async_work);
618 
619 	_enter("");
620 
621 	if (call->state < AFS_CALL_COMPLETE && call->need_attention) {
622 		call->need_attention = false;
623 		afs_deliver_to_call(call);
624 	}
625 
626 	if (call->state == AFS_CALL_COMPLETE) {
627 		call->reply = NULL;
628 
629 		/* We have two refs to release - one from the alloc and one
630 		 * queued with the work item - and we can't just deallocate the
631 		 * call because the work item may be queued again.
632 		 */
633 		call->async_work.func = afs_delete_async_call;
634 		if (!queue_work(afs_async_calls, &call->async_work))
635 			afs_put_call(call);
636 	}
637 
638 	afs_put_call(call);
639 	_leave("");
640 }
641 
642 static void afs_rx_attach(struct rxrpc_call *rxcall, unsigned long user_call_ID)
643 {
644 	struct afs_call *call = (struct afs_call *)user_call_ID;
645 
646 	call->rxcall = rxcall;
647 }
648 
649 /*
650  * Charge the incoming call preallocation.
651  */
652 static void afs_charge_preallocation(struct work_struct *work)
653 {
654 	struct afs_call *call = afs_spare_incoming_call;
655 
656 	for (;;) {
657 		if (!call) {
658 			call = afs_alloc_call(&afs_RXCMxxxx, GFP_KERNEL);
659 			if (!call)
660 				break;
661 
662 			call->async = true;
663 			call->state = AFS_CALL_AWAIT_OP_ID;
664 			init_waitqueue_head(&call->waitq);
665 		}
666 
667 		if (rxrpc_kernel_charge_accept(afs_socket,
668 					       afs_wake_up_async_call,
669 					       afs_rx_attach,
670 					       (unsigned long)call,
671 					       GFP_KERNEL) < 0)
672 			break;
673 		call = NULL;
674 	}
675 	afs_spare_incoming_call = call;
676 }
677 
678 /*
679  * Discard a preallocated call when a socket is shut down.
680  */
681 static void afs_rx_discard_new_call(struct rxrpc_call *rxcall,
682 				    unsigned long user_call_ID)
683 {
684 	struct afs_call *call = (struct afs_call *)user_call_ID;
685 
686 	call->rxcall = NULL;
687 	afs_put_call(call);
688 }
689 
690 /*
691  * Notification of an incoming call.
692  */
693 static void afs_rx_new_call(struct sock *sk, struct rxrpc_call *rxcall,
694 			    unsigned long user_call_ID)
695 {
696 	queue_work(afs_wq, &afs_charge_preallocation_work);
697 }
698 
699 /*
700  * Grab the operation ID from an incoming cache manager call.  The socket
701  * buffer is discarded on error or if we don't yet have sufficient data.
702  */
703 static int afs_deliver_cm_op_id(struct afs_call *call)
704 {
705 	int ret;
706 
707 	_enter("{%zu}", call->offset);
708 
709 	ASSERTCMP(call->offset, <, 4);
710 
711 	/* the operation ID forms the first four bytes of the request data */
712 	ret = afs_extract_data(call, &call->tmp, 4, true);
713 	if (ret < 0)
714 		return ret;
715 
716 	call->operation_ID = ntohl(call->tmp);
717 	call->state = AFS_CALL_AWAIT_REQUEST;
718 	call->offset = 0;
719 
720 	/* ask the cache manager to route the call (it'll change the call type
721 	 * if successful) */
722 	if (!afs_cm_incoming_call(call))
723 		return -ENOTSUPP;
724 
725 	trace_afs_cb_call(call);
726 
727 	/* pass responsibility for the remainer of this message off to the
728 	 * cache manager op */
729 	return call->type->deliver(call);
730 }
731 
732 /*
733  * send an empty reply
734  */
735 void afs_send_empty_reply(struct afs_call *call)
736 {
737 	struct msghdr msg;
738 
739 	_enter("");
740 
741 	msg.msg_name		= NULL;
742 	msg.msg_namelen		= 0;
743 	iov_iter_kvec(&msg.msg_iter, WRITE | ITER_KVEC, NULL, 0, 0);
744 	msg.msg_control		= NULL;
745 	msg.msg_controllen	= 0;
746 	msg.msg_flags		= 0;
747 
748 	call->state = AFS_CALL_AWAIT_ACK;
749 	switch (rxrpc_kernel_send_data(afs_socket, call->rxcall, &msg, 0)) {
750 	case 0:
751 		_leave(" [replied]");
752 		return;
753 
754 	case -ENOMEM:
755 		_debug("oom");
756 		rxrpc_kernel_abort_call(afs_socket, call->rxcall,
757 					RX_USER_ABORT, -ENOMEM, "KOO");
758 	default:
759 		_leave(" [error]");
760 		return;
761 	}
762 }
763 
764 /*
765  * send a simple reply
766  */
767 void afs_send_simple_reply(struct afs_call *call, const void *buf, size_t len)
768 {
769 	struct msghdr msg;
770 	struct kvec iov[1];
771 	int n;
772 
773 	_enter("");
774 
775 	iov[0].iov_base		= (void *) buf;
776 	iov[0].iov_len		= len;
777 	msg.msg_name		= NULL;
778 	msg.msg_namelen		= 0;
779 	iov_iter_kvec(&msg.msg_iter, WRITE | ITER_KVEC, iov, 1, len);
780 	msg.msg_control		= NULL;
781 	msg.msg_controllen	= 0;
782 	msg.msg_flags		= 0;
783 
784 	call->state = AFS_CALL_AWAIT_ACK;
785 	n = rxrpc_kernel_send_data(afs_socket, call->rxcall, &msg, len);
786 	if (n >= 0) {
787 		/* Success */
788 		_leave(" [replied]");
789 		return;
790 	}
791 
792 	if (n == -ENOMEM) {
793 		_debug("oom");
794 		rxrpc_kernel_abort_call(afs_socket, call->rxcall,
795 					RX_USER_ABORT, -ENOMEM, "KOO");
796 	}
797 	_leave(" [error]");
798 }
799 
800 /*
801  * Extract a piece of data from the received data socket buffers.
802  */
803 int afs_extract_data(struct afs_call *call, void *buf, size_t count,
804 		     bool want_more)
805 {
806 	int ret;
807 
808 	_enter("{%s,%zu},,%zu,%d",
809 	       call->type->name, call->offset, count, want_more);
810 
811 	ASSERTCMP(call->offset, <=, count);
812 
813 	ret = rxrpc_kernel_recv_data(afs_socket, call->rxcall,
814 				     buf, count, &call->offset,
815 				     want_more, &call->abort_code);
816 	trace_afs_recv_data(call, count, call->offset, want_more, ret);
817 	if (ret == 0 || ret == -EAGAIN)
818 		return ret;
819 
820 	if (ret == 1) {
821 		switch (call->state) {
822 		case AFS_CALL_AWAIT_REPLY:
823 			call->state = AFS_CALL_COMPLETE;
824 			break;
825 		case AFS_CALL_AWAIT_REQUEST:
826 			call->state = AFS_CALL_REPLYING;
827 			break;
828 		default:
829 			break;
830 		}
831 		return 0;
832 	}
833 
834 	if (ret == -ECONNABORTED)
835 		call->error = call->type->abort_to_error(call->abort_code);
836 	else
837 		call->error = ret;
838 	call->state = AFS_CALL_COMPLETE;
839 	return ret;
840 }
841