1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* Maintain an RxRPC server socket to do AFS communications through 3 * 4 * Copyright (C) 2007 Red Hat, Inc. All Rights Reserved. 5 * Written by David Howells (dhowells@redhat.com) 6 */ 7 8 #include <linux/slab.h> 9 #include <linux/sched/signal.h> 10 11 #include <net/sock.h> 12 #include <net/af_rxrpc.h> 13 #include "internal.h" 14 #include "afs_cm.h" 15 #include "protocol_yfs.h" 16 17 struct workqueue_struct *afs_async_calls; 18 19 static void afs_wake_up_call_waiter(struct sock *, struct rxrpc_call *, unsigned long); 20 static void afs_wake_up_async_call(struct sock *, struct rxrpc_call *, unsigned long); 21 static void afs_process_async_call(struct work_struct *); 22 static void afs_rx_new_call(struct sock *, struct rxrpc_call *, unsigned long); 23 static void afs_rx_discard_new_call(struct rxrpc_call *, unsigned long); 24 static int afs_deliver_cm_op_id(struct afs_call *); 25 26 /* asynchronous incoming call initial processing */ 27 static const struct afs_call_type afs_RXCMxxxx = { 28 .name = "CB.xxxx", 29 .deliver = afs_deliver_cm_op_id, 30 }; 31 32 /* 33 * open an RxRPC socket and bind it to be a server for callback notifications 34 * - the socket is left in blocking mode and non-blocking ops use MSG_DONTWAIT 35 */ 36 int afs_open_socket(struct afs_net *net) 37 { 38 struct sockaddr_rxrpc srx; 39 struct socket *socket; 40 unsigned int min_level; 41 int ret; 42 43 _enter(""); 44 45 ret = sock_create_kern(net->net, AF_RXRPC, SOCK_DGRAM, PF_INET6, &socket); 46 if (ret < 0) 47 goto error_1; 48 49 socket->sk->sk_allocation = GFP_NOFS; 50 51 /* bind the callback manager's address to make this a server socket */ 52 memset(&srx, 0, sizeof(srx)); 53 srx.srx_family = AF_RXRPC; 54 srx.srx_service = CM_SERVICE; 55 srx.transport_type = SOCK_DGRAM; 56 srx.transport_len = sizeof(srx.transport.sin6); 57 srx.transport.sin6.sin6_family = AF_INET6; 58 srx.transport.sin6.sin6_port = htons(AFS_CM_PORT); 59 60 min_level = RXRPC_SECURITY_ENCRYPT; 61 ret = kernel_setsockopt(socket, SOL_RXRPC, RXRPC_MIN_SECURITY_LEVEL, 62 (void *)&min_level, sizeof(min_level)); 63 if (ret < 0) 64 goto error_2; 65 66 ret = kernel_bind(socket, (struct sockaddr *) &srx, sizeof(srx)); 67 if (ret == -EADDRINUSE) { 68 srx.transport.sin6.sin6_port = 0; 69 ret = kernel_bind(socket, (struct sockaddr *) &srx, sizeof(srx)); 70 } 71 if (ret < 0) 72 goto error_2; 73 74 srx.srx_service = YFS_CM_SERVICE; 75 ret = kernel_bind(socket, (struct sockaddr *) &srx, sizeof(srx)); 76 if (ret < 0) 77 goto error_2; 78 79 /* Ideally, we'd turn on service upgrade here, but we can't because 80 * OpenAFS is buggy and leaks the userStatus field from packet to 81 * packet and between FS packets and CB packets - so if we try to do an 82 * upgrade on an FS packet, OpenAFS will leak that into the CB packet 83 * it sends back to us. 84 */ 85 86 rxrpc_kernel_new_call_notification(socket, afs_rx_new_call, 87 afs_rx_discard_new_call); 88 89 ret = kernel_listen(socket, INT_MAX); 90 if (ret < 0) 91 goto error_2; 92 93 net->socket = socket; 94 afs_charge_preallocation(&net->charge_preallocation_work); 95 _leave(" = 0"); 96 return 0; 97 98 error_2: 99 sock_release(socket); 100 error_1: 101 _leave(" = %d", ret); 102 return ret; 103 } 104 105 /* 106 * close the RxRPC socket AFS was using 107 */ 108 void afs_close_socket(struct afs_net *net) 109 { 110 _enter(""); 111 112 kernel_listen(net->socket, 0); 113 flush_workqueue(afs_async_calls); 114 115 if (net->spare_incoming_call) { 116 afs_put_call(net->spare_incoming_call); 117 net->spare_incoming_call = NULL; 118 } 119 120 _debug("outstanding %u", atomic_read(&net->nr_outstanding_calls)); 121 wait_var_event(&net->nr_outstanding_calls, 122 !atomic_read(&net->nr_outstanding_calls)); 123 _debug("no outstanding calls"); 124 125 kernel_sock_shutdown(net->socket, SHUT_RDWR); 126 flush_workqueue(afs_async_calls); 127 sock_release(net->socket); 128 129 _debug("dework"); 130 _leave(""); 131 } 132 133 /* 134 * Allocate a call. 135 */ 136 static struct afs_call *afs_alloc_call(struct afs_net *net, 137 const struct afs_call_type *type, 138 gfp_t gfp) 139 { 140 struct afs_call *call; 141 int o; 142 143 call = kzalloc(sizeof(*call), gfp); 144 if (!call) 145 return NULL; 146 147 call->type = type; 148 call->net = net; 149 call->debug_id = atomic_inc_return(&rxrpc_debug_id); 150 atomic_set(&call->usage, 1); 151 INIT_WORK(&call->async_work, afs_process_async_call); 152 init_waitqueue_head(&call->waitq); 153 spin_lock_init(&call->state_lock); 154 call->iter = &call->def_iter; 155 156 o = atomic_inc_return(&net->nr_outstanding_calls); 157 trace_afs_call(call, afs_call_trace_alloc, 1, o, 158 __builtin_return_address(0)); 159 return call; 160 } 161 162 /* 163 * Dispose of a reference on a call. 164 */ 165 void afs_put_call(struct afs_call *call) 166 { 167 struct afs_net *net = call->net; 168 int n = atomic_dec_return(&call->usage); 169 int o = atomic_read(&net->nr_outstanding_calls); 170 171 trace_afs_call(call, afs_call_trace_put, n, o, 172 __builtin_return_address(0)); 173 174 ASSERTCMP(n, >=, 0); 175 if (n == 0) { 176 ASSERT(!work_pending(&call->async_work)); 177 ASSERT(call->type->name != NULL); 178 179 if (call->rxcall) { 180 rxrpc_kernel_end_call(net->socket, call->rxcall); 181 call->rxcall = NULL; 182 } 183 if (call->type->destructor) 184 call->type->destructor(call); 185 186 afs_put_server(call->net, call->server, afs_server_trace_put_call); 187 afs_put_cb_interest(call->net, call->cbi); 188 afs_put_addrlist(call->alist); 189 kfree(call->request); 190 191 trace_afs_call(call, afs_call_trace_free, 0, o, 192 __builtin_return_address(0)); 193 kfree(call); 194 195 o = atomic_dec_return(&net->nr_outstanding_calls); 196 if (o == 0) 197 wake_up_var(&net->nr_outstanding_calls); 198 } 199 } 200 201 static struct afs_call *afs_get_call(struct afs_call *call, 202 enum afs_call_trace why) 203 { 204 int u = atomic_inc_return(&call->usage); 205 206 trace_afs_call(call, why, u, 207 atomic_read(&call->net->nr_outstanding_calls), 208 __builtin_return_address(0)); 209 return call; 210 } 211 212 /* 213 * Queue the call for actual work. 214 */ 215 static void afs_queue_call_work(struct afs_call *call) 216 { 217 if (call->type->work) { 218 INIT_WORK(&call->work, call->type->work); 219 220 afs_get_call(call, afs_call_trace_work); 221 if (!queue_work(afs_wq, &call->work)) 222 afs_put_call(call); 223 } 224 } 225 226 /* 227 * allocate a call with flat request and reply buffers 228 */ 229 struct afs_call *afs_alloc_flat_call(struct afs_net *net, 230 const struct afs_call_type *type, 231 size_t request_size, size_t reply_max) 232 { 233 struct afs_call *call; 234 235 call = afs_alloc_call(net, type, GFP_NOFS); 236 if (!call) 237 goto nomem_call; 238 239 if (request_size) { 240 call->request_size = request_size; 241 call->request = kmalloc(request_size, GFP_NOFS); 242 if (!call->request) 243 goto nomem_free; 244 } 245 246 if (reply_max) { 247 call->reply_max = reply_max; 248 call->buffer = kmalloc(reply_max, GFP_NOFS); 249 if (!call->buffer) 250 goto nomem_free; 251 } 252 253 afs_extract_to_buf(call, call->reply_max); 254 call->operation_ID = type->op; 255 init_waitqueue_head(&call->waitq); 256 return call; 257 258 nomem_free: 259 afs_put_call(call); 260 nomem_call: 261 return NULL; 262 } 263 264 /* 265 * clean up a call with flat buffer 266 */ 267 void afs_flat_call_destructor(struct afs_call *call) 268 { 269 _enter(""); 270 271 kfree(call->request); 272 call->request = NULL; 273 kfree(call->buffer); 274 call->buffer = NULL; 275 } 276 277 #define AFS_BVEC_MAX 8 278 279 /* 280 * Load the given bvec with the next few pages. 281 */ 282 static void afs_load_bvec(struct afs_call *call, struct msghdr *msg, 283 struct bio_vec *bv, pgoff_t first, pgoff_t last, 284 unsigned offset) 285 { 286 struct page *pages[AFS_BVEC_MAX]; 287 unsigned int nr, n, i, to, bytes = 0; 288 289 nr = min_t(pgoff_t, last - first + 1, AFS_BVEC_MAX); 290 n = find_get_pages_contig(call->mapping, first, nr, pages); 291 ASSERTCMP(n, ==, nr); 292 293 msg->msg_flags |= MSG_MORE; 294 for (i = 0; i < nr; i++) { 295 to = PAGE_SIZE; 296 if (first + i >= last) { 297 to = call->last_to; 298 msg->msg_flags &= ~MSG_MORE; 299 } 300 bv[i].bv_page = pages[i]; 301 bv[i].bv_len = to - offset; 302 bv[i].bv_offset = offset; 303 bytes += to - offset; 304 offset = 0; 305 } 306 307 iov_iter_bvec(&msg->msg_iter, WRITE, bv, nr, bytes); 308 } 309 310 /* 311 * Advance the AFS call state when the RxRPC call ends the transmit phase. 312 */ 313 static void afs_notify_end_request_tx(struct sock *sock, 314 struct rxrpc_call *rxcall, 315 unsigned long call_user_ID) 316 { 317 struct afs_call *call = (struct afs_call *)call_user_ID; 318 319 afs_set_call_state(call, AFS_CALL_CL_REQUESTING, AFS_CALL_CL_AWAIT_REPLY); 320 } 321 322 /* 323 * attach the data from a bunch of pages on an inode to a call 324 */ 325 static int afs_send_pages(struct afs_call *call, struct msghdr *msg) 326 { 327 struct bio_vec bv[AFS_BVEC_MAX]; 328 unsigned int bytes, nr, loop, offset; 329 pgoff_t first = call->first, last = call->last; 330 int ret; 331 332 offset = call->first_offset; 333 call->first_offset = 0; 334 335 do { 336 afs_load_bvec(call, msg, bv, first, last, offset); 337 trace_afs_send_pages(call, msg, first, last, offset); 338 339 offset = 0; 340 bytes = msg->msg_iter.count; 341 nr = msg->msg_iter.nr_segs; 342 343 ret = rxrpc_kernel_send_data(call->net->socket, call->rxcall, msg, 344 bytes, afs_notify_end_request_tx); 345 for (loop = 0; loop < nr; loop++) 346 put_page(bv[loop].bv_page); 347 if (ret < 0) 348 break; 349 350 first += nr; 351 } while (first <= last); 352 353 trace_afs_sent_pages(call, call->first, last, first, ret); 354 return ret; 355 } 356 357 /* 358 * Initiate a call and synchronously queue up the parameters for dispatch. Any 359 * error is stored into the call struct, which the caller must check for. 360 */ 361 void afs_make_call(struct afs_addr_cursor *ac, struct afs_call *call, gfp_t gfp) 362 { 363 struct sockaddr_rxrpc *srx = &ac->alist->addrs[ac->index]; 364 struct rxrpc_call *rxcall; 365 struct msghdr msg; 366 struct kvec iov[1]; 367 s64 tx_total_len; 368 int ret; 369 370 _enter(",{%pISp},", &srx->transport); 371 372 ASSERT(call->type != NULL); 373 ASSERT(call->type->name != NULL); 374 375 _debug("____MAKE %p{%s,%x} [%d]____", 376 call, call->type->name, key_serial(call->key), 377 atomic_read(&call->net->nr_outstanding_calls)); 378 379 call->addr_ix = ac->index; 380 call->alist = afs_get_addrlist(ac->alist); 381 382 /* Work out the length we're going to transmit. This is awkward for 383 * calls such as FS.StoreData where there's an extra injection of data 384 * after the initial fixed part. 385 */ 386 tx_total_len = call->request_size; 387 if (call->send_pages) { 388 if (call->last == call->first) { 389 tx_total_len += call->last_to - call->first_offset; 390 } else { 391 /* It looks mathematically like you should be able to 392 * combine the following lines with the ones above, but 393 * unsigned arithmetic is fun when it wraps... 394 */ 395 tx_total_len += PAGE_SIZE - call->first_offset; 396 tx_total_len += call->last_to; 397 tx_total_len += (call->last - call->first - 1) * PAGE_SIZE; 398 } 399 } 400 401 /* If the call is going to be asynchronous, we need an extra ref for 402 * the call to hold itself so the caller need not hang on to its ref. 403 */ 404 if (call->async) { 405 afs_get_call(call, afs_call_trace_get); 406 call->drop_ref = true; 407 } 408 409 /* create a call */ 410 rxcall = rxrpc_kernel_begin_call(call->net->socket, srx, call->key, 411 (unsigned long)call, 412 tx_total_len, gfp, 413 (call->async ? 414 afs_wake_up_async_call : 415 afs_wake_up_call_waiter), 416 call->upgrade, 417 (call->intr ? RXRPC_PREINTERRUPTIBLE : 418 RXRPC_UNINTERRUPTIBLE), 419 call->debug_id); 420 if (IS_ERR(rxcall)) { 421 ret = PTR_ERR(rxcall); 422 call->error = ret; 423 goto error_kill_call; 424 } 425 426 call->rxcall = rxcall; 427 428 if (call->max_lifespan) 429 rxrpc_kernel_set_max_life(call->net->socket, rxcall, 430 call->max_lifespan); 431 432 /* send the request */ 433 iov[0].iov_base = call->request; 434 iov[0].iov_len = call->request_size; 435 436 msg.msg_name = NULL; 437 msg.msg_namelen = 0; 438 iov_iter_kvec(&msg.msg_iter, WRITE, iov, 1, call->request_size); 439 msg.msg_control = NULL; 440 msg.msg_controllen = 0; 441 msg.msg_flags = MSG_WAITALL | (call->send_pages ? MSG_MORE : 0); 442 443 ret = rxrpc_kernel_send_data(call->net->socket, rxcall, 444 &msg, call->request_size, 445 afs_notify_end_request_tx); 446 if (ret < 0) 447 goto error_do_abort; 448 449 if (call->send_pages) { 450 ret = afs_send_pages(call, &msg); 451 if (ret < 0) 452 goto error_do_abort; 453 } 454 455 /* Note that at this point, we may have received the reply or an abort 456 * - and an asynchronous call may already have completed. 457 * 458 * afs_wait_for_call_to_complete(call, ac) 459 * must be called to synchronously clean up. 460 */ 461 return; 462 463 error_do_abort: 464 if (ret != -ECONNABORTED) { 465 rxrpc_kernel_abort_call(call->net->socket, rxcall, 466 RX_USER_ABORT, ret, "KSD"); 467 } else { 468 iov_iter_kvec(&msg.msg_iter, READ, NULL, 0, 0); 469 rxrpc_kernel_recv_data(call->net->socket, rxcall, 470 &msg.msg_iter, false, 471 &call->abort_code, &call->service_id); 472 ac->abort_code = call->abort_code; 473 ac->responded = true; 474 } 475 call->error = ret; 476 trace_afs_call_done(call); 477 error_kill_call: 478 if (call->type->done) 479 call->type->done(call); 480 481 /* We need to dispose of the extra ref we grabbed for an async call. 482 * The call, however, might be queued on afs_async_calls and we need to 483 * make sure we don't get any more notifications that might requeue it. 484 */ 485 if (call->rxcall) { 486 rxrpc_kernel_end_call(call->net->socket, call->rxcall); 487 call->rxcall = NULL; 488 } 489 if (call->async) { 490 if (cancel_work_sync(&call->async_work)) 491 afs_put_call(call); 492 afs_put_call(call); 493 } 494 495 ac->error = ret; 496 call->state = AFS_CALL_COMPLETE; 497 _leave(" = %d", ret); 498 } 499 500 /* 501 * deliver messages to a call 502 */ 503 static void afs_deliver_to_call(struct afs_call *call) 504 { 505 enum afs_call_state state; 506 u32 abort_code, remote_abort = 0; 507 int ret; 508 509 _enter("%s", call->type->name); 510 511 while (state = READ_ONCE(call->state), 512 state == AFS_CALL_CL_AWAIT_REPLY || 513 state == AFS_CALL_SV_AWAIT_OP_ID || 514 state == AFS_CALL_SV_AWAIT_REQUEST || 515 state == AFS_CALL_SV_AWAIT_ACK 516 ) { 517 if (state == AFS_CALL_SV_AWAIT_ACK) { 518 iov_iter_kvec(&call->def_iter, READ, NULL, 0, 0); 519 ret = rxrpc_kernel_recv_data(call->net->socket, 520 call->rxcall, &call->def_iter, 521 false, &remote_abort, 522 &call->service_id); 523 trace_afs_receive_data(call, &call->def_iter, false, ret); 524 525 if (ret == -EINPROGRESS || ret == -EAGAIN) 526 return; 527 if (ret < 0 || ret == 1) { 528 if (ret == 1) 529 ret = 0; 530 goto call_complete; 531 } 532 return; 533 } 534 535 if (!call->have_reply_time && 536 rxrpc_kernel_get_reply_time(call->net->socket, 537 call->rxcall, 538 &call->reply_time)) 539 call->have_reply_time = true; 540 541 ret = call->type->deliver(call); 542 state = READ_ONCE(call->state); 543 switch (ret) { 544 case 0: 545 afs_queue_call_work(call); 546 if (state == AFS_CALL_CL_PROC_REPLY) { 547 if (call->cbi) 548 set_bit(AFS_SERVER_FL_MAY_HAVE_CB, 549 &call->cbi->server->flags); 550 goto call_complete; 551 } 552 ASSERTCMP(state, >, AFS_CALL_CL_PROC_REPLY); 553 goto done; 554 case -EINPROGRESS: 555 case -EAGAIN: 556 goto out; 557 case -ECONNABORTED: 558 ASSERTCMP(state, ==, AFS_CALL_COMPLETE); 559 goto done; 560 case -ENOTSUPP: 561 abort_code = RXGEN_OPCODE; 562 rxrpc_kernel_abort_call(call->net->socket, call->rxcall, 563 abort_code, ret, "KIV"); 564 goto local_abort; 565 case -EIO: 566 pr_err("kAFS: Call %u in bad state %u\n", 567 call->debug_id, state); 568 /* Fall through */ 569 case -ENODATA: 570 case -EBADMSG: 571 case -EMSGSIZE: 572 abort_code = RXGEN_CC_UNMARSHAL; 573 if (state != AFS_CALL_CL_AWAIT_REPLY) 574 abort_code = RXGEN_SS_UNMARSHAL; 575 rxrpc_kernel_abort_call(call->net->socket, call->rxcall, 576 abort_code, ret, "KUM"); 577 goto local_abort; 578 default: 579 abort_code = RX_USER_ABORT; 580 rxrpc_kernel_abort_call(call->net->socket, call->rxcall, 581 abort_code, ret, "KER"); 582 goto local_abort; 583 } 584 } 585 586 done: 587 if (call->type->done) 588 call->type->done(call); 589 out: 590 _leave(""); 591 return; 592 593 local_abort: 594 abort_code = 0; 595 call_complete: 596 afs_set_call_complete(call, ret, remote_abort); 597 state = AFS_CALL_COMPLETE; 598 goto done; 599 } 600 601 /* 602 * Wait synchronously for a call to complete and clean up the call struct. 603 */ 604 long afs_wait_for_call_to_complete(struct afs_call *call, 605 struct afs_addr_cursor *ac) 606 { 607 long ret; 608 bool rxrpc_complete = false; 609 610 DECLARE_WAITQUEUE(myself, current); 611 612 _enter(""); 613 614 ret = call->error; 615 if (ret < 0) 616 goto out; 617 618 add_wait_queue(&call->waitq, &myself); 619 for (;;) { 620 set_current_state(TASK_UNINTERRUPTIBLE); 621 622 /* deliver any messages that are in the queue */ 623 if (!afs_check_call_state(call, AFS_CALL_COMPLETE) && 624 call->need_attention) { 625 call->need_attention = false; 626 __set_current_state(TASK_RUNNING); 627 afs_deliver_to_call(call); 628 continue; 629 } 630 631 if (afs_check_call_state(call, AFS_CALL_COMPLETE)) 632 break; 633 634 if (!rxrpc_kernel_check_life(call->net->socket, call->rxcall)) { 635 /* rxrpc terminated the call. */ 636 rxrpc_complete = true; 637 break; 638 } 639 640 schedule(); 641 } 642 643 remove_wait_queue(&call->waitq, &myself); 644 __set_current_state(TASK_RUNNING); 645 646 if (!afs_check_call_state(call, AFS_CALL_COMPLETE)) { 647 if (rxrpc_complete) { 648 afs_set_call_complete(call, call->error, call->abort_code); 649 } else { 650 /* Kill off the call if it's still live. */ 651 _debug("call interrupted"); 652 if (rxrpc_kernel_abort_call(call->net->socket, call->rxcall, 653 RX_USER_ABORT, -EINTR, "KWI")) 654 afs_set_call_complete(call, -EINTR, 0); 655 } 656 } 657 658 spin_lock_bh(&call->state_lock); 659 ac->abort_code = call->abort_code; 660 ac->error = call->error; 661 spin_unlock_bh(&call->state_lock); 662 663 ret = ac->error; 664 switch (ret) { 665 case 0: 666 ret = call->ret0; 667 call->ret0 = 0; 668 669 /* Fall through */ 670 case -ECONNABORTED: 671 ac->responded = true; 672 break; 673 } 674 675 out: 676 _debug("call complete"); 677 afs_put_call(call); 678 _leave(" = %p", (void *)ret); 679 return ret; 680 } 681 682 /* 683 * wake up a waiting call 684 */ 685 static void afs_wake_up_call_waiter(struct sock *sk, struct rxrpc_call *rxcall, 686 unsigned long call_user_ID) 687 { 688 struct afs_call *call = (struct afs_call *)call_user_ID; 689 690 call->need_attention = true; 691 wake_up(&call->waitq); 692 } 693 694 /* 695 * wake up an asynchronous call 696 */ 697 static void afs_wake_up_async_call(struct sock *sk, struct rxrpc_call *rxcall, 698 unsigned long call_user_ID) 699 { 700 struct afs_call *call = (struct afs_call *)call_user_ID; 701 int u; 702 703 trace_afs_notify_call(rxcall, call); 704 call->need_attention = true; 705 706 u = atomic_fetch_add_unless(&call->usage, 1, 0); 707 if (u != 0) { 708 trace_afs_call(call, afs_call_trace_wake, u + 1, 709 atomic_read(&call->net->nr_outstanding_calls), 710 __builtin_return_address(0)); 711 712 if (!queue_work(afs_async_calls, &call->async_work)) 713 afs_put_call(call); 714 } 715 } 716 717 /* 718 * Perform I/O processing on an asynchronous call. The work item carries a ref 719 * to the call struct that we either need to release or to pass on. 720 */ 721 static void afs_process_async_call(struct work_struct *work) 722 { 723 struct afs_call *call = container_of(work, struct afs_call, async_work); 724 725 _enter(""); 726 727 if (call->state < AFS_CALL_COMPLETE && call->need_attention) { 728 call->need_attention = false; 729 afs_deliver_to_call(call); 730 } 731 732 afs_put_call(call); 733 _leave(""); 734 } 735 736 static void afs_rx_attach(struct rxrpc_call *rxcall, unsigned long user_call_ID) 737 { 738 struct afs_call *call = (struct afs_call *)user_call_ID; 739 740 call->rxcall = rxcall; 741 } 742 743 /* 744 * Charge the incoming call preallocation. 745 */ 746 void afs_charge_preallocation(struct work_struct *work) 747 { 748 struct afs_net *net = 749 container_of(work, struct afs_net, charge_preallocation_work); 750 struct afs_call *call = net->spare_incoming_call; 751 752 for (;;) { 753 if (!call) { 754 call = afs_alloc_call(net, &afs_RXCMxxxx, GFP_KERNEL); 755 if (!call) 756 break; 757 758 call->drop_ref = true; 759 call->async = true; 760 call->state = AFS_CALL_SV_AWAIT_OP_ID; 761 init_waitqueue_head(&call->waitq); 762 afs_extract_to_tmp(call); 763 } 764 765 if (rxrpc_kernel_charge_accept(net->socket, 766 afs_wake_up_async_call, 767 afs_rx_attach, 768 (unsigned long)call, 769 GFP_KERNEL, 770 call->debug_id) < 0) 771 break; 772 call = NULL; 773 } 774 net->spare_incoming_call = call; 775 } 776 777 /* 778 * Discard a preallocated call when a socket is shut down. 779 */ 780 static void afs_rx_discard_new_call(struct rxrpc_call *rxcall, 781 unsigned long user_call_ID) 782 { 783 struct afs_call *call = (struct afs_call *)user_call_ID; 784 785 call->rxcall = NULL; 786 afs_put_call(call); 787 } 788 789 /* 790 * Notification of an incoming call. 791 */ 792 static void afs_rx_new_call(struct sock *sk, struct rxrpc_call *rxcall, 793 unsigned long user_call_ID) 794 { 795 struct afs_net *net = afs_sock2net(sk); 796 797 queue_work(afs_wq, &net->charge_preallocation_work); 798 } 799 800 /* 801 * Grab the operation ID from an incoming cache manager call. The socket 802 * buffer is discarded on error or if we don't yet have sufficient data. 803 */ 804 static int afs_deliver_cm_op_id(struct afs_call *call) 805 { 806 int ret; 807 808 _enter("{%zu}", iov_iter_count(call->iter)); 809 810 /* the operation ID forms the first four bytes of the request data */ 811 ret = afs_extract_data(call, true); 812 if (ret < 0) 813 return ret; 814 815 call->operation_ID = ntohl(call->tmp); 816 afs_set_call_state(call, AFS_CALL_SV_AWAIT_OP_ID, AFS_CALL_SV_AWAIT_REQUEST); 817 818 /* ask the cache manager to route the call (it'll change the call type 819 * if successful) */ 820 if (!afs_cm_incoming_call(call)) 821 return -ENOTSUPP; 822 823 trace_afs_cb_call(call); 824 825 /* pass responsibility for the remainer of this message off to the 826 * cache manager op */ 827 return call->type->deliver(call); 828 } 829 830 /* 831 * Advance the AFS call state when an RxRPC service call ends the transmit 832 * phase. 833 */ 834 static void afs_notify_end_reply_tx(struct sock *sock, 835 struct rxrpc_call *rxcall, 836 unsigned long call_user_ID) 837 { 838 struct afs_call *call = (struct afs_call *)call_user_ID; 839 840 afs_set_call_state(call, AFS_CALL_SV_REPLYING, AFS_CALL_SV_AWAIT_ACK); 841 } 842 843 /* 844 * send an empty reply 845 */ 846 void afs_send_empty_reply(struct afs_call *call) 847 { 848 struct afs_net *net = call->net; 849 struct msghdr msg; 850 851 _enter(""); 852 853 rxrpc_kernel_set_tx_length(net->socket, call->rxcall, 0); 854 855 msg.msg_name = NULL; 856 msg.msg_namelen = 0; 857 iov_iter_kvec(&msg.msg_iter, WRITE, NULL, 0, 0); 858 msg.msg_control = NULL; 859 msg.msg_controllen = 0; 860 msg.msg_flags = 0; 861 862 switch (rxrpc_kernel_send_data(net->socket, call->rxcall, &msg, 0, 863 afs_notify_end_reply_tx)) { 864 case 0: 865 _leave(" [replied]"); 866 return; 867 868 case -ENOMEM: 869 _debug("oom"); 870 rxrpc_kernel_abort_call(net->socket, call->rxcall, 871 RX_USER_ABORT, -ENOMEM, "KOO"); 872 /* Fall through */ 873 default: 874 _leave(" [error]"); 875 return; 876 } 877 } 878 879 /* 880 * send a simple reply 881 */ 882 void afs_send_simple_reply(struct afs_call *call, const void *buf, size_t len) 883 { 884 struct afs_net *net = call->net; 885 struct msghdr msg; 886 struct kvec iov[1]; 887 int n; 888 889 _enter(""); 890 891 rxrpc_kernel_set_tx_length(net->socket, call->rxcall, len); 892 893 iov[0].iov_base = (void *) buf; 894 iov[0].iov_len = len; 895 msg.msg_name = NULL; 896 msg.msg_namelen = 0; 897 iov_iter_kvec(&msg.msg_iter, WRITE, iov, 1, len); 898 msg.msg_control = NULL; 899 msg.msg_controllen = 0; 900 msg.msg_flags = 0; 901 902 n = rxrpc_kernel_send_data(net->socket, call->rxcall, &msg, len, 903 afs_notify_end_reply_tx); 904 if (n >= 0) { 905 /* Success */ 906 _leave(" [replied]"); 907 return; 908 } 909 910 if (n == -ENOMEM) { 911 _debug("oom"); 912 rxrpc_kernel_abort_call(net->socket, call->rxcall, 913 RX_USER_ABORT, -ENOMEM, "KOO"); 914 } 915 _leave(" [error]"); 916 } 917 918 /* 919 * Extract a piece of data from the received data socket buffers. 920 */ 921 int afs_extract_data(struct afs_call *call, bool want_more) 922 { 923 struct afs_net *net = call->net; 924 struct iov_iter *iter = call->iter; 925 enum afs_call_state state; 926 u32 remote_abort = 0; 927 int ret; 928 929 _enter("{%s,%zu},%d", call->type->name, iov_iter_count(iter), want_more); 930 931 ret = rxrpc_kernel_recv_data(net->socket, call->rxcall, iter, 932 want_more, &remote_abort, 933 &call->service_id); 934 if (ret == 0 || ret == -EAGAIN) 935 return ret; 936 937 state = READ_ONCE(call->state); 938 if (ret == 1) { 939 switch (state) { 940 case AFS_CALL_CL_AWAIT_REPLY: 941 afs_set_call_state(call, state, AFS_CALL_CL_PROC_REPLY); 942 break; 943 case AFS_CALL_SV_AWAIT_REQUEST: 944 afs_set_call_state(call, state, AFS_CALL_SV_REPLYING); 945 break; 946 case AFS_CALL_COMPLETE: 947 kdebug("prem complete %d", call->error); 948 return afs_io_error(call, afs_io_error_extract); 949 default: 950 break; 951 } 952 return 0; 953 } 954 955 afs_set_call_complete(call, ret, remote_abort); 956 return ret; 957 } 958 959 /* 960 * Log protocol error production. 961 */ 962 noinline int afs_protocol_error(struct afs_call *call, int error, 963 enum afs_eproto_cause cause) 964 { 965 trace_afs_protocol_error(call, error, cause); 966 return error; 967 } 968