xref: /linux/fs/afs/rxrpc.c (revision bd4af432cc71b5fbfe4833510359a6ad3ada250d)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /* Maintain an RxRPC server socket to do AFS communications through
3  *
4  * Copyright (C) 2007 Red Hat, Inc. All Rights Reserved.
5  * Written by David Howells (dhowells@redhat.com)
6  */
7 
8 #include <linux/slab.h>
9 #include <linux/sched/signal.h>
10 
11 #include <net/sock.h>
12 #include <net/af_rxrpc.h>
13 #include "internal.h"
14 #include "afs_cm.h"
15 #include "protocol_yfs.h"
16 
17 struct workqueue_struct *afs_async_calls;
18 
19 static void afs_wake_up_call_waiter(struct sock *, struct rxrpc_call *, unsigned long);
20 static void afs_wake_up_async_call(struct sock *, struct rxrpc_call *, unsigned long);
21 static void afs_process_async_call(struct work_struct *);
22 static void afs_rx_new_call(struct sock *, struct rxrpc_call *, unsigned long);
23 static void afs_rx_discard_new_call(struct rxrpc_call *, unsigned long);
24 static int afs_deliver_cm_op_id(struct afs_call *);
25 
26 /* asynchronous incoming call initial processing */
27 static const struct afs_call_type afs_RXCMxxxx = {
28 	.name		= "CB.xxxx",
29 	.deliver	= afs_deliver_cm_op_id,
30 };
31 
32 /*
33  * open an RxRPC socket and bind it to be a server for callback notifications
34  * - the socket is left in blocking mode and non-blocking ops use MSG_DONTWAIT
35  */
36 int afs_open_socket(struct afs_net *net)
37 {
38 	struct sockaddr_rxrpc srx;
39 	struct socket *socket;
40 	unsigned int min_level;
41 	int ret;
42 
43 	_enter("");
44 
45 	ret = sock_create_kern(net->net, AF_RXRPC, SOCK_DGRAM, PF_INET6, &socket);
46 	if (ret < 0)
47 		goto error_1;
48 
49 	socket->sk->sk_allocation = GFP_NOFS;
50 
51 	/* bind the callback manager's address to make this a server socket */
52 	memset(&srx, 0, sizeof(srx));
53 	srx.srx_family			= AF_RXRPC;
54 	srx.srx_service			= CM_SERVICE;
55 	srx.transport_type		= SOCK_DGRAM;
56 	srx.transport_len		= sizeof(srx.transport.sin6);
57 	srx.transport.sin6.sin6_family	= AF_INET6;
58 	srx.transport.sin6.sin6_port	= htons(AFS_CM_PORT);
59 
60 	min_level = RXRPC_SECURITY_ENCRYPT;
61 	ret = kernel_setsockopt(socket, SOL_RXRPC, RXRPC_MIN_SECURITY_LEVEL,
62 				(void *)&min_level, sizeof(min_level));
63 	if (ret < 0)
64 		goto error_2;
65 
66 	ret = kernel_bind(socket, (struct sockaddr *) &srx, sizeof(srx));
67 	if (ret == -EADDRINUSE) {
68 		srx.transport.sin6.sin6_port = 0;
69 		ret = kernel_bind(socket, (struct sockaddr *) &srx, sizeof(srx));
70 	}
71 	if (ret < 0)
72 		goto error_2;
73 
74 	srx.srx_service = YFS_CM_SERVICE;
75 	ret = kernel_bind(socket, (struct sockaddr *) &srx, sizeof(srx));
76 	if (ret < 0)
77 		goto error_2;
78 
79 	/* Ideally, we'd turn on service upgrade here, but we can't because
80 	 * OpenAFS is buggy and leaks the userStatus field from packet to
81 	 * packet and between FS packets and CB packets - so if we try to do an
82 	 * upgrade on an FS packet, OpenAFS will leak that into the CB packet
83 	 * it sends back to us.
84 	 */
85 
86 	rxrpc_kernel_new_call_notification(socket, afs_rx_new_call,
87 					   afs_rx_discard_new_call);
88 
89 	ret = kernel_listen(socket, INT_MAX);
90 	if (ret < 0)
91 		goto error_2;
92 
93 	net->socket = socket;
94 	afs_charge_preallocation(&net->charge_preallocation_work);
95 	_leave(" = 0");
96 	return 0;
97 
98 error_2:
99 	sock_release(socket);
100 error_1:
101 	_leave(" = %d", ret);
102 	return ret;
103 }
104 
105 /*
106  * close the RxRPC socket AFS was using
107  */
108 void afs_close_socket(struct afs_net *net)
109 {
110 	_enter("");
111 
112 	kernel_listen(net->socket, 0);
113 	flush_workqueue(afs_async_calls);
114 
115 	if (net->spare_incoming_call) {
116 		afs_put_call(net->spare_incoming_call);
117 		net->spare_incoming_call = NULL;
118 	}
119 
120 	_debug("outstanding %u", atomic_read(&net->nr_outstanding_calls));
121 	wait_var_event(&net->nr_outstanding_calls,
122 		       !atomic_read(&net->nr_outstanding_calls));
123 	_debug("no outstanding calls");
124 
125 	kernel_sock_shutdown(net->socket, SHUT_RDWR);
126 	flush_workqueue(afs_async_calls);
127 	sock_release(net->socket);
128 
129 	_debug("dework");
130 	_leave("");
131 }
132 
133 /*
134  * Allocate a call.
135  */
136 static struct afs_call *afs_alloc_call(struct afs_net *net,
137 				       const struct afs_call_type *type,
138 				       gfp_t gfp)
139 {
140 	struct afs_call *call;
141 	int o;
142 
143 	call = kzalloc(sizeof(*call), gfp);
144 	if (!call)
145 		return NULL;
146 
147 	call->type = type;
148 	call->net = net;
149 	call->debug_id = atomic_inc_return(&rxrpc_debug_id);
150 	atomic_set(&call->usage, 1);
151 	INIT_WORK(&call->async_work, afs_process_async_call);
152 	init_waitqueue_head(&call->waitq);
153 	spin_lock_init(&call->state_lock);
154 	call->iter = &call->def_iter;
155 
156 	o = atomic_inc_return(&net->nr_outstanding_calls);
157 	trace_afs_call(call, afs_call_trace_alloc, 1, o,
158 		       __builtin_return_address(0));
159 	return call;
160 }
161 
162 /*
163  * Dispose of a reference on a call.
164  */
165 void afs_put_call(struct afs_call *call)
166 {
167 	struct afs_net *net = call->net;
168 	int n = atomic_dec_return(&call->usage);
169 	int o = atomic_read(&net->nr_outstanding_calls);
170 
171 	trace_afs_call(call, afs_call_trace_put, n, o,
172 		       __builtin_return_address(0));
173 
174 	ASSERTCMP(n, >=, 0);
175 	if (n == 0) {
176 		ASSERT(!work_pending(&call->async_work));
177 		ASSERT(call->type->name != NULL);
178 
179 		if (call->rxcall) {
180 			rxrpc_kernel_end_call(net->socket, call->rxcall);
181 			call->rxcall = NULL;
182 		}
183 		if (call->type->destructor)
184 			call->type->destructor(call);
185 
186 		afs_put_server(call->net, call->server, afs_server_trace_put_call);
187 		afs_put_cb_interest(call->net, call->cbi);
188 		afs_put_addrlist(call->alist);
189 		kfree(call->request);
190 
191 		trace_afs_call(call, afs_call_trace_free, 0, o,
192 			       __builtin_return_address(0));
193 		kfree(call);
194 
195 		o = atomic_dec_return(&net->nr_outstanding_calls);
196 		if (o == 0)
197 			wake_up_var(&net->nr_outstanding_calls);
198 	}
199 }
200 
201 static struct afs_call *afs_get_call(struct afs_call *call,
202 				     enum afs_call_trace why)
203 {
204 	int u = atomic_inc_return(&call->usage);
205 
206 	trace_afs_call(call, why, u,
207 		       atomic_read(&call->net->nr_outstanding_calls),
208 		       __builtin_return_address(0));
209 	return call;
210 }
211 
212 /*
213  * Queue the call for actual work.
214  */
215 static void afs_queue_call_work(struct afs_call *call)
216 {
217 	if (call->type->work) {
218 		INIT_WORK(&call->work, call->type->work);
219 
220 		afs_get_call(call, afs_call_trace_work);
221 		if (!queue_work(afs_wq, &call->work))
222 			afs_put_call(call);
223 	}
224 }
225 
226 /*
227  * allocate a call with flat request and reply buffers
228  */
229 struct afs_call *afs_alloc_flat_call(struct afs_net *net,
230 				     const struct afs_call_type *type,
231 				     size_t request_size, size_t reply_max)
232 {
233 	struct afs_call *call;
234 
235 	call = afs_alloc_call(net, type, GFP_NOFS);
236 	if (!call)
237 		goto nomem_call;
238 
239 	if (request_size) {
240 		call->request_size = request_size;
241 		call->request = kmalloc(request_size, GFP_NOFS);
242 		if (!call->request)
243 			goto nomem_free;
244 	}
245 
246 	if (reply_max) {
247 		call->reply_max = reply_max;
248 		call->buffer = kmalloc(reply_max, GFP_NOFS);
249 		if (!call->buffer)
250 			goto nomem_free;
251 	}
252 
253 	afs_extract_to_buf(call, call->reply_max);
254 	call->operation_ID = type->op;
255 	init_waitqueue_head(&call->waitq);
256 	return call;
257 
258 nomem_free:
259 	afs_put_call(call);
260 nomem_call:
261 	return NULL;
262 }
263 
264 /*
265  * clean up a call with flat buffer
266  */
267 void afs_flat_call_destructor(struct afs_call *call)
268 {
269 	_enter("");
270 
271 	kfree(call->request);
272 	call->request = NULL;
273 	kfree(call->buffer);
274 	call->buffer = NULL;
275 }
276 
277 #define AFS_BVEC_MAX 8
278 
279 /*
280  * Load the given bvec with the next few pages.
281  */
282 static void afs_load_bvec(struct afs_call *call, struct msghdr *msg,
283 			  struct bio_vec *bv, pgoff_t first, pgoff_t last,
284 			  unsigned offset)
285 {
286 	struct page *pages[AFS_BVEC_MAX];
287 	unsigned int nr, n, i, to, bytes = 0;
288 
289 	nr = min_t(pgoff_t, last - first + 1, AFS_BVEC_MAX);
290 	n = find_get_pages_contig(call->mapping, first, nr, pages);
291 	ASSERTCMP(n, ==, nr);
292 
293 	msg->msg_flags |= MSG_MORE;
294 	for (i = 0; i < nr; i++) {
295 		to = PAGE_SIZE;
296 		if (first + i >= last) {
297 			to = call->last_to;
298 			msg->msg_flags &= ~MSG_MORE;
299 		}
300 		bv[i].bv_page = pages[i];
301 		bv[i].bv_len = to - offset;
302 		bv[i].bv_offset = offset;
303 		bytes += to - offset;
304 		offset = 0;
305 	}
306 
307 	iov_iter_bvec(&msg->msg_iter, WRITE, bv, nr, bytes);
308 }
309 
310 /*
311  * Advance the AFS call state when the RxRPC call ends the transmit phase.
312  */
313 static void afs_notify_end_request_tx(struct sock *sock,
314 				      struct rxrpc_call *rxcall,
315 				      unsigned long call_user_ID)
316 {
317 	struct afs_call *call = (struct afs_call *)call_user_ID;
318 
319 	afs_set_call_state(call, AFS_CALL_CL_REQUESTING, AFS_CALL_CL_AWAIT_REPLY);
320 }
321 
322 /*
323  * attach the data from a bunch of pages on an inode to a call
324  */
325 static int afs_send_pages(struct afs_call *call, struct msghdr *msg)
326 {
327 	struct bio_vec bv[AFS_BVEC_MAX];
328 	unsigned int bytes, nr, loop, offset;
329 	pgoff_t first = call->first, last = call->last;
330 	int ret;
331 
332 	offset = call->first_offset;
333 	call->first_offset = 0;
334 
335 	do {
336 		afs_load_bvec(call, msg, bv, first, last, offset);
337 		trace_afs_send_pages(call, msg, first, last, offset);
338 
339 		offset = 0;
340 		bytes = msg->msg_iter.count;
341 		nr = msg->msg_iter.nr_segs;
342 
343 		ret = rxrpc_kernel_send_data(call->net->socket, call->rxcall, msg,
344 					     bytes, afs_notify_end_request_tx);
345 		for (loop = 0; loop < nr; loop++)
346 			put_page(bv[loop].bv_page);
347 		if (ret < 0)
348 			break;
349 
350 		first += nr;
351 	} while (first <= last);
352 
353 	trace_afs_sent_pages(call, call->first, last, first, ret);
354 	return ret;
355 }
356 
357 /*
358  * Initiate a call and synchronously queue up the parameters for dispatch.  Any
359  * error is stored into the call struct, which the caller must check for.
360  */
361 void afs_make_call(struct afs_addr_cursor *ac, struct afs_call *call, gfp_t gfp)
362 {
363 	struct sockaddr_rxrpc *srx = &ac->alist->addrs[ac->index];
364 	struct rxrpc_call *rxcall;
365 	struct msghdr msg;
366 	struct kvec iov[1];
367 	s64 tx_total_len;
368 	int ret;
369 
370 	_enter(",{%pISp},", &srx->transport);
371 
372 	ASSERT(call->type != NULL);
373 	ASSERT(call->type->name != NULL);
374 
375 	_debug("____MAKE %p{%s,%x} [%d]____",
376 	       call, call->type->name, key_serial(call->key),
377 	       atomic_read(&call->net->nr_outstanding_calls));
378 
379 	call->addr_ix = ac->index;
380 	call->alist = afs_get_addrlist(ac->alist);
381 
382 	/* Work out the length we're going to transmit.  This is awkward for
383 	 * calls such as FS.StoreData where there's an extra injection of data
384 	 * after the initial fixed part.
385 	 */
386 	tx_total_len = call->request_size;
387 	if (call->send_pages) {
388 		if (call->last == call->first) {
389 			tx_total_len += call->last_to - call->first_offset;
390 		} else {
391 			/* It looks mathematically like you should be able to
392 			 * combine the following lines with the ones above, but
393 			 * unsigned arithmetic is fun when it wraps...
394 			 */
395 			tx_total_len += PAGE_SIZE - call->first_offset;
396 			tx_total_len += call->last_to;
397 			tx_total_len += (call->last - call->first - 1) * PAGE_SIZE;
398 		}
399 	}
400 
401 	/* If the call is going to be asynchronous, we need an extra ref for
402 	 * the call to hold itself so the caller need not hang on to its ref.
403 	 */
404 	if (call->async) {
405 		afs_get_call(call, afs_call_trace_get);
406 		call->drop_ref = true;
407 	}
408 
409 	/* create a call */
410 	rxcall = rxrpc_kernel_begin_call(call->net->socket, srx, call->key,
411 					 (unsigned long)call,
412 					 tx_total_len, gfp,
413 					 (call->async ?
414 					  afs_wake_up_async_call :
415 					  afs_wake_up_call_waiter),
416 					 call->upgrade,
417 					 (call->intr ? RXRPC_PREINTERRUPTIBLE :
418 					  RXRPC_UNINTERRUPTIBLE),
419 					 call->debug_id);
420 	if (IS_ERR(rxcall)) {
421 		ret = PTR_ERR(rxcall);
422 		call->error = ret;
423 		goto error_kill_call;
424 	}
425 
426 	call->rxcall = rxcall;
427 
428 	if (call->max_lifespan)
429 		rxrpc_kernel_set_max_life(call->net->socket, rxcall,
430 					  call->max_lifespan);
431 
432 	/* send the request */
433 	iov[0].iov_base	= call->request;
434 	iov[0].iov_len	= call->request_size;
435 
436 	msg.msg_name		= NULL;
437 	msg.msg_namelen		= 0;
438 	iov_iter_kvec(&msg.msg_iter, WRITE, iov, 1, call->request_size);
439 	msg.msg_control		= NULL;
440 	msg.msg_controllen	= 0;
441 	msg.msg_flags		= MSG_WAITALL | (call->send_pages ? MSG_MORE : 0);
442 
443 	ret = rxrpc_kernel_send_data(call->net->socket, rxcall,
444 				     &msg, call->request_size,
445 				     afs_notify_end_request_tx);
446 	if (ret < 0)
447 		goto error_do_abort;
448 
449 	if (call->send_pages) {
450 		ret = afs_send_pages(call, &msg);
451 		if (ret < 0)
452 			goto error_do_abort;
453 	}
454 
455 	/* Note that at this point, we may have received the reply or an abort
456 	 * - and an asynchronous call may already have completed.
457 	 *
458 	 * afs_wait_for_call_to_complete(call, ac)
459 	 * must be called to synchronously clean up.
460 	 */
461 	return;
462 
463 error_do_abort:
464 	if (ret != -ECONNABORTED) {
465 		rxrpc_kernel_abort_call(call->net->socket, rxcall,
466 					RX_USER_ABORT, ret, "KSD");
467 	} else {
468 		iov_iter_kvec(&msg.msg_iter, READ, NULL, 0, 0);
469 		rxrpc_kernel_recv_data(call->net->socket, rxcall,
470 				       &msg.msg_iter, false,
471 				       &call->abort_code, &call->service_id);
472 		ac->abort_code = call->abort_code;
473 		ac->responded = true;
474 	}
475 	call->error = ret;
476 	trace_afs_call_done(call);
477 error_kill_call:
478 	if (call->type->done)
479 		call->type->done(call);
480 
481 	/* We need to dispose of the extra ref we grabbed for an async call.
482 	 * The call, however, might be queued on afs_async_calls and we need to
483 	 * make sure we don't get any more notifications that might requeue it.
484 	 */
485 	if (call->rxcall) {
486 		rxrpc_kernel_end_call(call->net->socket, call->rxcall);
487 		call->rxcall = NULL;
488 	}
489 	if (call->async) {
490 		if (cancel_work_sync(&call->async_work))
491 			afs_put_call(call);
492 		afs_put_call(call);
493 	}
494 
495 	ac->error = ret;
496 	call->state = AFS_CALL_COMPLETE;
497 	_leave(" = %d", ret);
498 }
499 
500 /*
501  * deliver messages to a call
502  */
503 static void afs_deliver_to_call(struct afs_call *call)
504 {
505 	enum afs_call_state state;
506 	u32 abort_code, remote_abort = 0;
507 	int ret;
508 
509 	_enter("%s", call->type->name);
510 
511 	while (state = READ_ONCE(call->state),
512 	       state == AFS_CALL_CL_AWAIT_REPLY ||
513 	       state == AFS_CALL_SV_AWAIT_OP_ID ||
514 	       state == AFS_CALL_SV_AWAIT_REQUEST ||
515 	       state == AFS_CALL_SV_AWAIT_ACK
516 	       ) {
517 		if (state == AFS_CALL_SV_AWAIT_ACK) {
518 			iov_iter_kvec(&call->def_iter, READ, NULL, 0, 0);
519 			ret = rxrpc_kernel_recv_data(call->net->socket,
520 						     call->rxcall, &call->def_iter,
521 						     false, &remote_abort,
522 						     &call->service_id);
523 			trace_afs_receive_data(call, &call->def_iter, false, ret);
524 
525 			if (ret == -EINPROGRESS || ret == -EAGAIN)
526 				return;
527 			if (ret < 0 || ret == 1) {
528 				if (ret == 1)
529 					ret = 0;
530 				goto call_complete;
531 			}
532 			return;
533 		}
534 
535 		if (!call->have_reply_time &&
536 		    rxrpc_kernel_get_reply_time(call->net->socket,
537 						call->rxcall,
538 						&call->reply_time))
539 			call->have_reply_time = true;
540 
541 		ret = call->type->deliver(call);
542 		state = READ_ONCE(call->state);
543 		switch (ret) {
544 		case 0:
545 			afs_queue_call_work(call);
546 			if (state == AFS_CALL_CL_PROC_REPLY) {
547 				if (call->cbi)
548 					set_bit(AFS_SERVER_FL_MAY_HAVE_CB,
549 						&call->cbi->server->flags);
550 				goto call_complete;
551 			}
552 			ASSERTCMP(state, >, AFS_CALL_CL_PROC_REPLY);
553 			goto done;
554 		case -EINPROGRESS:
555 		case -EAGAIN:
556 			goto out;
557 		case -ECONNABORTED:
558 			ASSERTCMP(state, ==, AFS_CALL_COMPLETE);
559 			goto done;
560 		case -ENOTSUPP:
561 			abort_code = RXGEN_OPCODE;
562 			rxrpc_kernel_abort_call(call->net->socket, call->rxcall,
563 						abort_code, ret, "KIV");
564 			goto local_abort;
565 		case -EIO:
566 			pr_err("kAFS: Call %u in bad state %u\n",
567 			       call->debug_id, state);
568 			/* Fall through */
569 		case -ENODATA:
570 		case -EBADMSG:
571 		case -EMSGSIZE:
572 			abort_code = RXGEN_CC_UNMARSHAL;
573 			if (state != AFS_CALL_CL_AWAIT_REPLY)
574 				abort_code = RXGEN_SS_UNMARSHAL;
575 			rxrpc_kernel_abort_call(call->net->socket, call->rxcall,
576 						abort_code, ret, "KUM");
577 			goto local_abort;
578 		default:
579 			abort_code = RX_USER_ABORT;
580 			rxrpc_kernel_abort_call(call->net->socket, call->rxcall,
581 						abort_code, ret, "KER");
582 			goto local_abort;
583 		}
584 	}
585 
586 done:
587 	if (call->type->done)
588 		call->type->done(call);
589 out:
590 	_leave("");
591 	return;
592 
593 local_abort:
594 	abort_code = 0;
595 call_complete:
596 	afs_set_call_complete(call, ret, remote_abort);
597 	state = AFS_CALL_COMPLETE;
598 	goto done;
599 }
600 
601 /*
602  * Wait synchronously for a call to complete and clean up the call struct.
603  */
604 long afs_wait_for_call_to_complete(struct afs_call *call,
605 				   struct afs_addr_cursor *ac)
606 {
607 	long ret;
608 	bool rxrpc_complete = false;
609 
610 	DECLARE_WAITQUEUE(myself, current);
611 
612 	_enter("");
613 
614 	ret = call->error;
615 	if (ret < 0)
616 		goto out;
617 
618 	add_wait_queue(&call->waitq, &myself);
619 	for (;;) {
620 		set_current_state(TASK_UNINTERRUPTIBLE);
621 
622 		/* deliver any messages that are in the queue */
623 		if (!afs_check_call_state(call, AFS_CALL_COMPLETE) &&
624 		    call->need_attention) {
625 			call->need_attention = false;
626 			__set_current_state(TASK_RUNNING);
627 			afs_deliver_to_call(call);
628 			continue;
629 		}
630 
631 		if (afs_check_call_state(call, AFS_CALL_COMPLETE))
632 			break;
633 
634 		if (!rxrpc_kernel_check_life(call->net->socket, call->rxcall)) {
635 			/* rxrpc terminated the call. */
636 			rxrpc_complete = true;
637 			break;
638 		}
639 
640 		schedule();
641 	}
642 
643 	remove_wait_queue(&call->waitq, &myself);
644 	__set_current_state(TASK_RUNNING);
645 
646 	if (!afs_check_call_state(call, AFS_CALL_COMPLETE)) {
647 		if (rxrpc_complete) {
648 			afs_set_call_complete(call, call->error, call->abort_code);
649 		} else {
650 			/* Kill off the call if it's still live. */
651 			_debug("call interrupted");
652 			if (rxrpc_kernel_abort_call(call->net->socket, call->rxcall,
653 						    RX_USER_ABORT, -EINTR, "KWI"))
654 				afs_set_call_complete(call, -EINTR, 0);
655 		}
656 	}
657 
658 	spin_lock_bh(&call->state_lock);
659 	ac->abort_code = call->abort_code;
660 	ac->error = call->error;
661 	spin_unlock_bh(&call->state_lock);
662 
663 	ret = ac->error;
664 	switch (ret) {
665 	case 0:
666 		ret = call->ret0;
667 		call->ret0 = 0;
668 
669 		/* Fall through */
670 	case -ECONNABORTED:
671 		ac->responded = true;
672 		break;
673 	}
674 
675 out:
676 	_debug("call complete");
677 	afs_put_call(call);
678 	_leave(" = %p", (void *)ret);
679 	return ret;
680 }
681 
682 /*
683  * wake up a waiting call
684  */
685 static void afs_wake_up_call_waiter(struct sock *sk, struct rxrpc_call *rxcall,
686 				    unsigned long call_user_ID)
687 {
688 	struct afs_call *call = (struct afs_call *)call_user_ID;
689 
690 	call->need_attention = true;
691 	wake_up(&call->waitq);
692 }
693 
694 /*
695  * wake up an asynchronous call
696  */
697 static void afs_wake_up_async_call(struct sock *sk, struct rxrpc_call *rxcall,
698 				   unsigned long call_user_ID)
699 {
700 	struct afs_call *call = (struct afs_call *)call_user_ID;
701 	int u;
702 
703 	trace_afs_notify_call(rxcall, call);
704 	call->need_attention = true;
705 
706 	u = atomic_fetch_add_unless(&call->usage, 1, 0);
707 	if (u != 0) {
708 		trace_afs_call(call, afs_call_trace_wake, u + 1,
709 			       atomic_read(&call->net->nr_outstanding_calls),
710 			       __builtin_return_address(0));
711 
712 		if (!queue_work(afs_async_calls, &call->async_work))
713 			afs_put_call(call);
714 	}
715 }
716 
717 /*
718  * Perform I/O processing on an asynchronous call.  The work item carries a ref
719  * to the call struct that we either need to release or to pass on.
720  */
721 static void afs_process_async_call(struct work_struct *work)
722 {
723 	struct afs_call *call = container_of(work, struct afs_call, async_work);
724 
725 	_enter("");
726 
727 	if (call->state < AFS_CALL_COMPLETE && call->need_attention) {
728 		call->need_attention = false;
729 		afs_deliver_to_call(call);
730 	}
731 
732 	afs_put_call(call);
733 	_leave("");
734 }
735 
736 static void afs_rx_attach(struct rxrpc_call *rxcall, unsigned long user_call_ID)
737 {
738 	struct afs_call *call = (struct afs_call *)user_call_ID;
739 
740 	call->rxcall = rxcall;
741 }
742 
743 /*
744  * Charge the incoming call preallocation.
745  */
746 void afs_charge_preallocation(struct work_struct *work)
747 {
748 	struct afs_net *net =
749 		container_of(work, struct afs_net, charge_preallocation_work);
750 	struct afs_call *call = net->spare_incoming_call;
751 
752 	for (;;) {
753 		if (!call) {
754 			call = afs_alloc_call(net, &afs_RXCMxxxx, GFP_KERNEL);
755 			if (!call)
756 				break;
757 
758 			call->drop_ref = true;
759 			call->async = true;
760 			call->state = AFS_CALL_SV_AWAIT_OP_ID;
761 			init_waitqueue_head(&call->waitq);
762 			afs_extract_to_tmp(call);
763 		}
764 
765 		if (rxrpc_kernel_charge_accept(net->socket,
766 					       afs_wake_up_async_call,
767 					       afs_rx_attach,
768 					       (unsigned long)call,
769 					       GFP_KERNEL,
770 					       call->debug_id) < 0)
771 			break;
772 		call = NULL;
773 	}
774 	net->spare_incoming_call = call;
775 }
776 
777 /*
778  * Discard a preallocated call when a socket is shut down.
779  */
780 static void afs_rx_discard_new_call(struct rxrpc_call *rxcall,
781 				    unsigned long user_call_ID)
782 {
783 	struct afs_call *call = (struct afs_call *)user_call_ID;
784 
785 	call->rxcall = NULL;
786 	afs_put_call(call);
787 }
788 
789 /*
790  * Notification of an incoming call.
791  */
792 static void afs_rx_new_call(struct sock *sk, struct rxrpc_call *rxcall,
793 			    unsigned long user_call_ID)
794 {
795 	struct afs_net *net = afs_sock2net(sk);
796 
797 	queue_work(afs_wq, &net->charge_preallocation_work);
798 }
799 
800 /*
801  * Grab the operation ID from an incoming cache manager call.  The socket
802  * buffer is discarded on error or if we don't yet have sufficient data.
803  */
804 static int afs_deliver_cm_op_id(struct afs_call *call)
805 {
806 	int ret;
807 
808 	_enter("{%zu}", iov_iter_count(call->iter));
809 
810 	/* the operation ID forms the first four bytes of the request data */
811 	ret = afs_extract_data(call, true);
812 	if (ret < 0)
813 		return ret;
814 
815 	call->operation_ID = ntohl(call->tmp);
816 	afs_set_call_state(call, AFS_CALL_SV_AWAIT_OP_ID, AFS_CALL_SV_AWAIT_REQUEST);
817 
818 	/* ask the cache manager to route the call (it'll change the call type
819 	 * if successful) */
820 	if (!afs_cm_incoming_call(call))
821 		return -ENOTSUPP;
822 
823 	trace_afs_cb_call(call);
824 
825 	/* pass responsibility for the remainer of this message off to the
826 	 * cache manager op */
827 	return call->type->deliver(call);
828 }
829 
830 /*
831  * Advance the AFS call state when an RxRPC service call ends the transmit
832  * phase.
833  */
834 static void afs_notify_end_reply_tx(struct sock *sock,
835 				    struct rxrpc_call *rxcall,
836 				    unsigned long call_user_ID)
837 {
838 	struct afs_call *call = (struct afs_call *)call_user_ID;
839 
840 	afs_set_call_state(call, AFS_CALL_SV_REPLYING, AFS_CALL_SV_AWAIT_ACK);
841 }
842 
843 /*
844  * send an empty reply
845  */
846 void afs_send_empty_reply(struct afs_call *call)
847 {
848 	struct afs_net *net = call->net;
849 	struct msghdr msg;
850 
851 	_enter("");
852 
853 	rxrpc_kernel_set_tx_length(net->socket, call->rxcall, 0);
854 
855 	msg.msg_name		= NULL;
856 	msg.msg_namelen		= 0;
857 	iov_iter_kvec(&msg.msg_iter, WRITE, NULL, 0, 0);
858 	msg.msg_control		= NULL;
859 	msg.msg_controllen	= 0;
860 	msg.msg_flags		= 0;
861 
862 	switch (rxrpc_kernel_send_data(net->socket, call->rxcall, &msg, 0,
863 				       afs_notify_end_reply_tx)) {
864 	case 0:
865 		_leave(" [replied]");
866 		return;
867 
868 	case -ENOMEM:
869 		_debug("oom");
870 		rxrpc_kernel_abort_call(net->socket, call->rxcall,
871 					RX_USER_ABORT, -ENOMEM, "KOO");
872 		/* Fall through */
873 	default:
874 		_leave(" [error]");
875 		return;
876 	}
877 }
878 
879 /*
880  * send a simple reply
881  */
882 void afs_send_simple_reply(struct afs_call *call, const void *buf, size_t len)
883 {
884 	struct afs_net *net = call->net;
885 	struct msghdr msg;
886 	struct kvec iov[1];
887 	int n;
888 
889 	_enter("");
890 
891 	rxrpc_kernel_set_tx_length(net->socket, call->rxcall, len);
892 
893 	iov[0].iov_base		= (void *) buf;
894 	iov[0].iov_len		= len;
895 	msg.msg_name		= NULL;
896 	msg.msg_namelen		= 0;
897 	iov_iter_kvec(&msg.msg_iter, WRITE, iov, 1, len);
898 	msg.msg_control		= NULL;
899 	msg.msg_controllen	= 0;
900 	msg.msg_flags		= 0;
901 
902 	n = rxrpc_kernel_send_data(net->socket, call->rxcall, &msg, len,
903 				   afs_notify_end_reply_tx);
904 	if (n >= 0) {
905 		/* Success */
906 		_leave(" [replied]");
907 		return;
908 	}
909 
910 	if (n == -ENOMEM) {
911 		_debug("oom");
912 		rxrpc_kernel_abort_call(net->socket, call->rxcall,
913 					RX_USER_ABORT, -ENOMEM, "KOO");
914 	}
915 	_leave(" [error]");
916 }
917 
918 /*
919  * Extract a piece of data from the received data socket buffers.
920  */
921 int afs_extract_data(struct afs_call *call, bool want_more)
922 {
923 	struct afs_net *net = call->net;
924 	struct iov_iter *iter = call->iter;
925 	enum afs_call_state state;
926 	u32 remote_abort = 0;
927 	int ret;
928 
929 	_enter("{%s,%zu},%d", call->type->name, iov_iter_count(iter), want_more);
930 
931 	ret = rxrpc_kernel_recv_data(net->socket, call->rxcall, iter,
932 				     want_more, &remote_abort,
933 				     &call->service_id);
934 	if (ret == 0 || ret == -EAGAIN)
935 		return ret;
936 
937 	state = READ_ONCE(call->state);
938 	if (ret == 1) {
939 		switch (state) {
940 		case AFS_CALL_CL_AWAIT_REPLY:
941 			afs_set_call_state(call, state, AFS_CALL_CL_PROC_REPLY);
942 			break;
943 		case AFS_CALL_SV_AWAIT_REQUEST:
944 			afs_set_call_state(call, state, AFS_CALL_SV_REPLYING);
945 			break;
946 		case AFS_CALL_COMPLETE:
947 			kdebug("prem complete %d", call->error);
948 			return afs_io_error(call, afs_io_error_extract);
949 		default:
950 			break;
951 		}
952 		return 0;
953 	}
954 
955 	afs_set_call_complete(call, ret, remote_abort);
956 	return ret;
957 }
958 
959 /*
960  * Log protocol error production.
961  */
962 noinline int afs_protocol_error(struct afs_call *call, int error,
963 				enum afs_eproto_cause cause)
964 {
965 	trace_afs_protocol_error(call, error, cause);
966 	return error;
967 }
968