xref: /linux/fs/afs/rxrpc.c (revision b3b77c8caef1750ebeea1054e39e358550ea9f55)
1 /* Maintain an RxRPC server socket to do AFS communications through
2  *
3  * Copyright (C) 2007 Red Hat, Inc. All Rights Reserved.
4  * Written by David Howells (dhowells@redhat.com)
5  *
6  * This program is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU General Public License
8  * as published by the Free Software Foundation; either version
9  * 2 of the License, or (at your option) any later version.
10  */
11 
12 #include <linux/slab.h>
13 #include <net/sock.h>
14 #include <net/af_rxrpc.h>
15 #include <rxrpc/packet.h>
16 #include "internal.h"
17 #include "afs_cm.h"
18 
19 static struct socket *afs_socket; /* my RxRPC socket */
20 static struct workqueue_struct *afs_async_calls;
21 static atomic_t afs_outstanding_calls;
22 static atomic_t afs_outstanding_skbs;
23 
24 static void afs_wake_up_call_waiter(struct afs_call *);
25 static int afs_wait_for_call_to_complete(struct afs_call *);
26 static void afs_wake_up_async_call(struct afs_call *);
27 static int afs_dont_wait_for_call_to_complete(struct afs_call *);
28 static void afs_process_async_call(struct work_struct *);
29 static void afs_rx_interceptor(struct sock *, unsigned long, struct sk_buff *);
30 static int afs_deliver_cm_op_id(struct afs_call *, struct sk_buff *, bool);
31 
32 /* synchronous call management */
33 const struct afs_wait_mode afs_sync_call = {
34 	.rx_wakeup	= afs_wake_up_call_waiter,
35 	.wait		= afs_wait_for_call_to_complete,
36 };
37 
38 /* asynchronous call management */
39 const struct afs_wait_mode afs_async_call = {
40 	.rx_wakeup	= afs_wake_up_async_call,
41 	.wait		= afs_dont_wait_for_call_to_complete,
42 };
43 
44 /* asynchronous incoming call management */
45 static const struct afs_wait_mode afs_async_incoming_call = {
46 	.rx_wakeup	= afs_wake_up_async_call,
47 };
48 
49 /* asynchronous incoming call initial processing */
50 static const struct afs_call_type afs_RXCMxxxx = {
51 	.name		= "CB.xxxx",
52 	.deliver	= afs_deliver_cm_op_id,
53 	.abort_to_error	= afs_abort_to_error,
54 };
55 
56 static void afs_collect_incoming_call(struct work_struct *);
57 
58 static struct sk_buff_head afs_incoming_calls;
59 static DECLARE_WORK(afs_collect_incoming_call_work, afs_collect_incoming_call);
60 
61 /*
62  * open an RxRPC socket and bind it to be a server for callback notifications
63  * - the socket is left in blocking mode and non-blocking ops use MSG_DONTWAIT
64  */
65 int afs_open_socket(void)
66 {
67 	struct sockaddr_rxrpc srx;
68 	struct socket *socket;
69 	int ret;
70 
71 	_enter("");
72 
73 	skb_queue_head_init(&afs_incoming_calls);
74 
75 	afs_async_calls = create_singlethread_workqueue("kafsd");
76 	if (!afs_async_calls) {
77 		_leave(" = -ENOMEM [wq]");
78 		return -ENOMEM;
79 	}
80 
81 	ret = sock_create_kern(AF_RXRPC, SOCK_DGRAM, PF_INET, &socket);
82 	if (ret < 0) {
83 		destroy_workqueue(afs_async_calls);
84 		_leave(" = %d [socket]", ret);
85 		return ret;
86 	}
87 
88 	socket->sk->sk_allocation = GFP_NOFS;
89 
90 	/* bind the callback manager's address to make this a server socket */
91 	srx.srx_family			= AF_RXRPC;
92 	srx.srx_service			= CM_SERVICE;
93 	srx.transport_type		= SOCK_DGRAM;
94 	srx.transport_len		= sizeof(srx.transport.sin);
95 	srx.transport.sin.sin_family	= AF_INET;
96 	srx.transport.sin.sin_port	= htons(AFS_CM_PORT);
97 	memset(&srx.transport.sin.sin_addr, 0,
98 	       sizeof(srx.transport.sin.sin_addr));
99 
100 	ret = kernel_bind(socket, (struct sockaddr *) &srx, sizeof(srx));
101 	if (ret < 0) {
102 		sock_release(socket);
103 		_leave(" = %d [bind]", ret);
104 		return ret;
105 	}
106 
107 	rxrpc_kernel_intercept_rx_messages(socket, afs_rx_interceptor);
108 
109 	afs_socket = socket;
110 	_leave(" = 0");
111 	return 0;
112 }
113 
114 /*
115  * close the RxRPC socket AFS was using
116  */
117 void afs_close_socket(void)
118 {
119 	_enter("");
120 
121 	sock_release(afs_socket);
122 
123 	_debug("dework");
124 	destroy_workqueue(afs_async_calls);
125 
126 	ASSERTCMP(atomic_read(&afs_outstanding_skbs), ==, 0);
127 	ASSERTCMP(atomic_read(&afs_outstanding_calls), ==, 0);
128 	_leave("");
129 }
130 
131 /*
132  * note that the data in a socket buffer is now delivered and that the buffer
133  * should be freed
134  */
135 static void afs_data_delivered(struct sk_buff *skb)
136 {
137 	if (!skb) {
138 		_debug("DLVR NULL [%d]", atomic_read(&afs_outstanding_skbs));
139 		dump_stack();
140 	} else {
141 		_debug("DLVR %p{%u} [%d]",
142 		       skb, skb->mark, atomic_read(&afs_outstanding_skbs));
143 		if (atomic_dec_return(&afs_outstanding_skbs) == -1)
144 			BUG();
145 		rxrpc_kernel_data_delivered(skb);
146 	}
147 }
148 
149 /*
150  * free a socket buffer
151  */
152 static void afs_free_skb(struct sk_buff *skb)
153 {
154 	if (!skb) {
155 		_debug("FREE NULL [%d]", atomic_read(&afs_outstanding_skbs));
156 		dump_stack();
157 	} else {
158 		_debug("FREE %p{%u} [%d]",
159 		       skb, skb->mark, atomic_read(&afs_outstanding_skbs));
160 		if (atomic_dec_return(&afs_outstanding_skbs) == -1)
161 			BUG();
162 		rxrpc_kernel_free_skb(skb);
163 	}
164 }
165 
166 /*
167  * free a call
168  */
169 static void afs_free_call(struct afs_call *call)
170 {
171 	_debug("DONE %p{%s} [%d]",
172 	       call, call->type->name, atomic_read(&afs_outstanding_calls));
173 	if (atomic_dec_return(&afs_outstanding_calls) == -1)
174 		BUG();
175 
176 	ASSERTCMP(call->rxcall, ==, NULL);
177 	ASSERT(!work_pending(&call->async_work));
178 	ASSERT(skb_queue_empty(&call->rx_queue));
179 	ASSERT(call->type->name != NULL);
180 
181 	kfree(call->request);
182 	kfree(call);
183 }
184 
185 /*
186  * allocate a call with flat request and reply buffers
187  */
188 struct afs_call *afs_alloc_flat_call(const struct afs_call_type *type,
189 				     size_t request_size, size_t reply_size)
190 {
191 	struct afs_call *call;
192 
193 	call = kzalloc(sizeof(*call), GFP_NOFS);
194 	if (!call)
195 		goto nomem_call;
196 
197 	_debug("CALL %p{%s} [%d]",
198 	       call, type->name, atomic_read(&afs_outstanding_calls));
199 	atomic_inc(&afs_outstanding_calls);
200 
201 	call->type = type;
202 	call->request_size = request_size;
203 	call->reply_max = reply_size;
204 
205 	if (request_size) {
206 		call->request = kmalloc(request_size, GFP_NOFS);
207 		if (!call->request)
208 			goto nomem_free;
209 	}
210 
211 	if (reply_size) {
212 		call->buffer = kmalloc(reply_size, GFP_NOFS);
213 		if (!call->buffer)
214 			goto nomem_free;
215 	}
216 
217 	init_waitqueue_head(&call->waitq);
218 	skb_queue_head_init(&call->rx_queue);
219 	return call;
220 
221 nomem_free:
222 	afs_free_call(call);
223 nomem_call:
224 	return NULL;
225 }
226 
227 /*
228  * clean up a call with flat buffer
229  */
230 void afs_flat_call_destructor(struct afs_call *call)
231 {
232 	_enter("");
233 
234 	kfree(call->request);
235 	call->request = NULL;
236 	kfree(call->buffer);
237 	call->buffer = NULL;
238 }
239 
240 /*
241  * attach the data from a bunch of pages on an inode to a call
242  */
243 static int afs_send_pages(struct afs_call *call, struct msghdr *msg,
244 			  struct kvec *iov)
245 {
246 	struct page *pages[8];
247 	unsigned count, n, loop, offset, to;
248 	pgoff_t first = call->first, last = call->last;
249 	int ret;
250 
251 	_enter("");
252 
253 	offset = call->first_offset;
254 	call->first_offset = 0;
255 
256 	do {
257 		_debug("attach %lx-%lx", first, last);
258 
259 		count = last - first + 1;
260 		if (count > ARRAY_SIZE(pages))
261 			count = ARRAY_SIZE(pages);
262 		n = find_get_pages_contig(call->mapping, first, count, pages);
263 		ASSERTCMP(n, ==, count);
264 
265 		loop = 0;
266 		do {
267 			msg->msg_flags = 0;
268 			to = PAGE_SIZE;
269 			if (first + loop >= last)
270 				to = call->last_to;
271 			else
272 				msg->msg_flags = MSG_MORE;
273 			iov->iov_base = kmap(pages[loop]) + offset;
274 			iov->iov_len = to - offset;
275 			offset = 0;
276 
277 			_debug("- range %u-%u%s",
278 			       offset, to, msg->msg_flags ? " [more]" : "");
279 			msg->msg_iov = (struct iovec *) iov;
280 			msg->msg_iovlen = 1;
281 
282 			/* have to change the state *before* sending the last
283 			 * packet as RxRPC might give us the reply before it
284 			 * returns from sending the request */
285 			if (first + loop >= last)
286 				call->state = AFS_CALL_AWAIT_REPLY;
287 			ret = rxrpc_kernel_send_data(call->rxcall, msg,
288 						     to - offset);
289 			kunmap(pages[loop]);
290 			if (ret < 0)
291 				break;
292 		} while (++loop < count);
293 		first += count;
294 
295 		for (loop = 0; loop < count; loop++)
296 			put_page(pages[loop]);
297 		if (ret < 0)
298 			break;
299 	} while (first <= last);
300 
301 	_leave(" = %d", ret);
302 	return ret;
303 }
304 
305 /*
306  * initiate a call
307  */
308 int afs_make_call(struct in_addr *addr, struct afs_call *call, gfp_t gfp,
309 		  const struct afs_wait_mode *wait_mode)
310 {
311 	struct sockaddr_rxrpc srx;
312 	struct rxrpc_call *rxcall;
313 	struct msghdr msg;
314 	struct kvec iov[1];
315 	int ret;
316 
317 	_enter("%x,{%d},", addr->s_addr, ntohs(call->port));
318 
319 	ASSERT(call->type != NULL);
320 	ASSERT(call->type->name != NULL);
321 
322 	_debug("____MAKE %p{%s,%x} [%d]____",
323 	       call, call->type->name, key_serial(call->key),
324 	       atomic_read(&afs_outstanding_calls));
325 
326 	call->wait_mode = wait_mode;
327 	INIT_WORK(&call->async_work, afs_process_async_call);
328 
329 	memset(&srx, 0, sizeof(srx));
330 	srx.srx_family = AF_RXRPC;
331 	srx.srx_service = call->service_id;
332 	srx.transport_type = SOCK_DGRAM;
333 	srx.transport_len = sizeof(srx.transport.sin);
334 	srx.transport.sin.sin_family = AF_INET;
335 	srx.transport.sin.sin_port = call->port;
336 	memcpy(&srx.transport.sin.sin_addr, addr, 4);
337 
338 	/* create a call */
339 	rxcall = rxrpc_kernel_begin_call(afs_socket, &srx, call->key,
340 					 (unsigned long) call, gfp);
341 	call->key = NULL;
342 	if (IS_ERR(rxcall)) {
343 		ret = PTR_ERR(rxcall);
344 		goto error_kill_call;
345 	}
346 
347 	call->rxcall = rxcall;
348 
349 	/* send the request */
350 	iov[0].iov_base	= call->request;
351 	iov[0].iov_len	= call->request_size;
352 
353 	msg.msg_name		= NULL;
354 	msg.msg_namelen		= 0;
355 	msg.msg_iov		= (struct iovec *) iov;
356 	msg.msg_iovlen		= 1;
357 	msg.msg_control		= NULL;
358 	msg.msg_controllen	= 0;
359 	msg.msg_flags		= (call->send_pages ? MSG_MORE : 0);
360 
361 	/* have to change the state *before* sending the last packet as RxRPC
362 	 * might give us the reply before it returns from sending the
363 	 * request */
364 	if (!call->send_pages)
365 		call->state = AFS_CALL_AWAIT_REPLY;
366 	ret = rxrpc_kernel_send_data(rxcall, &msg, call->request_size);
367 	if (ret < 0)
368 		goto error_do_abort;
369 
370 	if (call->send_pages) {
371 		ret = afs_send_pages(call, &msg, iov);
372 		if (ret < 0)
373 			goto error_do_abort;
374 	}
375 
376 	/* at this point, an async call may no longer exist as it may have
377 	 * already completed */
378 	return wait_mode->wait(call);
379 
380 error_do_abort:
381 	rxrpc_kernel_abort_call(rxcall, RX_USER_ABORT);
382 	rxrpc_kernel_end_call(rxcall);
383 	call->rxcall = NULL;
384 error_kill_call:
385 	call->type->destructor(call);
386 	afs_free_call(call);
387 	_leave(" = %d", ret);
388 	return ret;
389 }
390 
391 /*
392  * handles intercepted messages that were arriving in the socket's Rx queue
393  * - called with the socket receive queue lock held to ensure message ordering
394  * - called with softirqs disabled
395  */
396 static void afs_rx_interceptor(struct sock *sk, unsigned long user_call_ID,
397 			       struct sk_buff *skb)
398 {
399 	struct afs_call *call = (struct afs_call *) user_call_ID;
400 
401 	_enter("%p,,%u", call, skb->mark);
402 
403 	_debug("ICPT %p{%u} [%d]",
404 	       skb, skb->mark, atomic_read(&afs_outstanding_skbs));
405 
406 	ASSERTCMP(sk, ==, afs_socket->sk);
407 	atomic_inc(&afs_outstanding_skbs);
408 
409 	if (!call) {
410 		/* its an incoming call for our callback service */
411 		skb_queue_tail(&afs_incoming_calls, skb);
412 		schedule_work(&afs_collect_incoming_call_work);
413 	} else {
414 		/* route the messages directly to the appropriate call */
415 		skb_queue_tail(&call->rx_queue, skb);
416 		call->wait_mode->rx_wakeup(call);
417 	}
418 
419 	_leave("");
420 }
421 
422 /*
423  * deliver messages to a call
424  */
425 static void afs_deliver_to_call(struct afs_call *call)
426 {
427 	struct sk_buff *skb;
428 	bool last;
429 	u32 abort_code;
430 	int ret;
431 
432 	_enter("");
433 
434 	while ((call->state == AFS_CALL_AWAIT_REPLY ||
435 		call->state == AFS_CALL_AWAIT_OP_ID ||
436 		call->state == AFS_CALL_AWAIT_REQUEST ||
437 		call->state == AFS_CALL_AWAIT_ACK) &&
438 	       (skb = skb_dequeue(&call->rx_queue))) {
439 		switch (skb->mark) {
440 		case RXRPC_SKB_MARK_DATA:
441 			_debug("Rcv DATA");
442 			last = rxrpc_kernel_is_data_last(skb);
443 			ret = call->type->deliver(call, skb, last);
444 			switch (ret) {
445 			case 0:
446 				if (last &&
447 				    call->state == AFS_CALL_AWAIT_REPLY)
448 					call->state = AFS_CALL_COMPLETE;
449 				break;
450 			case -ENOTCONN:
451 				abort_code = RX_CALL_DEAD;
452 				goto do_abort;
453 			case -ENOTSUPP:
454 				abort_code = RX_INVALID_OPERATION;
455 				goto do_abort;
456 			default:
457 				abort_code = RXGEN_CC_UNMARSHAL;
458 				if (call->state != AFS_CALL_AWAIT_REPLY)
459 					abort_code = RXGEN_SS_UNMARSHAL;
460 			do_abort:
461 				rxrpc_kernel_abort_call(call->rxcall,
462 							abort_code);
463 				call->error = ret;
464 				call->state = AFS_CALL_ERROR;
465 				break;
466 			}
467 			afs_data_delivered(skb);
468 			skb = NULL;
469 			continue;
470 		case RXRPC_SKB_MARK_FINAL_ACK:
471 			_debug("Rcv ACK");
472 			call->state = AFS_CALL_COMPLETE;
473 			break;
474 		case RXRPC_SKB_MARK_BUSY:
475 			_debug("Rcv BUSY");
476 			call->error = -EBUSY;
477 			call->state = AFS_CALL_BUSY;
478 			break;
479 		case RXRPC_SKB_MARK_REMOTE_ABORT:
480 			abort_code = rxrpc_kernel_get_abort_code(skb);
481 			call->error = call->type->abort_to_error(abort_code);
482 			call->state = AFS_CALL_ABORTED;
483 			_debug("Rcv ABORT %u -> %d", abort_code, call->error);
484 			break;
485 		case RXRPC_SKB_MARK_NET_ERROR:
486 			call->error = -rxrpc_kernel_get_error_number(skb);
487 			call->state = AFS_CALL_ERROR;
488 			_debug("Rcv NET ERROR %d", call->error);
489 			break;
490 		case RXRPC_SKB_MARK_LOCAL_ERROR:
491 			call->error = -rxrpc_kernel_get_error_number(skb);
492 			call->state = AFS_CALL_ERROR;
493 			_debug("Rcv LOCAL ERROR %d", call->error);
494 			break;
495 		default:
496 			BUG();
497 			break;
498 		}
499 
500 		afs_free_skb(skb);
501 	}
502 
503 	/* make sure the queue is empty if the call is done with (we might have
504 	 * aborted the call early because of an unmarshalling error) */
505 	if (call->state >= AFS_CALL_COMPLETE) {
506 		while ((skb = skb_dequeue(&call->rx_queue)))
507 			afs_free_skb(skb);
508 		if (call->incoming) {
509 			rxrpc_kernel_end_call(call->rxcall);
510 			call->rxcall = NULL;
511 			call->type->destructor(call);
512 			afs_free_call(call);
513 		}
514 	}
515 
516 	_leave("");
517 }
518 
519 /*
520  * wait synchronously for a call to complete
521  */
522 static int afs_wait_for_call_to_complete(struct afs_call *call)
523 {
524 	struct sk_buff *skb;
525 	int ret;
526 
527 	DECLARE_WAITQUEUE(myself, current);
528 
529 	_enter("");
530 
531 	add_wait_queue(&call->waitq, &myself);
532 	for (;;) {
533 		set_current_state(TASK_INTERRUPTIBLE);
534 
535 		/* deliver any messages that are in the queue */
536 		if (!skb_queue_empty(&call->rx_queue)) {
537 			__set_current_state(TASK_RUNNING);
538 			afs_deliver_to_call(call);
539 			continue;
540 		}
541 
542 		ret = call->error;
543 		if (call->state >= AFS_CALL_COMPLETE)
544 			break;
545 		ret = -EINTR;
546 		if (signal_pending(current))
547 			break;
548 		schedule();
549 	}
550 
551 	remove_wait_queue(&call->waitq, &myself);
552 	__set_current_state(TASK_RUNNING);
553 
554 	/* kill the call */
555 	if (call->state < AFS_CALL_COMPLETE) {
556 		_debug("call incomplete");
557 		rxrpc_kernel_abort_call(call->rxcall, RX_CALL_DEAD);
558 		while ((skb = skb_dequeue(&call->rx_queue)))
559 			afs_free_skb(skb);
560 	}
561 
562 	_debug("call complete");
563 	rxrpc_kernel_end_call(call->rxcall);
564 	call->rxcall = NULL;
565 	call->type->destructor(call);
566 	afs_free_call(call);
567 	_leave(" = %d", ret);
568 	return ret;
569 }
570 
571 /*
572  * wake up a waiting call
573  */
574 static void afs_wake_up_call_waiter(struct afs_call *call)
575 {
576 	wake_up(&call->waitq);
577 }
578 
579 /*
580  * wake up an asynchronous call
581  */
582 static void afs_wake_up_async_call(struct afs_call *call)
583 {
584 	_enter("");
585 	queue_work(afs_async_calls, &call->async_work);
586 }
587 
588 /*
589  * put a call into asynchronous mode
590  * - mustn't touch the call descriptor as the call my have completed by the
591  *   time we get here
592  */
593 static int afs_dont_wait_for_call_to_complete(struct afs_call *call)
594 {
595 	_enter("");
596 	return -EINPROGRESS;
597 }
598 
599 /*
600  * delete an asynchronous call
601  */
602 static void afs_delete_async_call(struct work_struct *work)
603 {
604 	struct afs_call *call =
605 		container_of(work, struct afs_call, async_work);
606 
607 	_enter("");
608 
609 	afs_free_call(call);
610 
611 	_leave("");
612 }
613 
614 /*
615  * perform processing on an asynchronous call
616  * - on a multiple-thread workqueue this work item may try to run on several
617  *   CPUs at the same time
618  */
619 static void afs_process_async_call(struct work_struct *work)
620 {
621 	struct afs_call *call =
622 		container_of(work, struct afs_call, async_work);
623 
624 	_enter("");
625 
626 	if (!skb_queue_empty(&call->rx_queue))
627 		afs_deliver_to_call(call);
628 
629 	if (call->state >= AFS_CALL_COMPLETE && call->wait_mode) {
630 		if (call->wait_mode->async_complete)
631 			call->wait_mode->async_complete(call->reply,
632 							call->error);
633 		call->reply = NULL;
634 
635 		/* kill the call */
636 		rxrpc_kernel_end_call(call->rxcall);
637 		call->rxcall = NULL;
638 		if (call->type->destructor)
639 			call->type->destructor(call);
640 
641 		/* we can't just delete the call because the work item may be
642 		 * queued */
643 		PREPARE_WORK(&call->async_work, afs_delete_async_call);
644 		queue_work(afs_async_calls, &call->async_work);
645 	}
646 
647 	_leave("");
648 }
649 
650 /*
651  * empty a socket buffer into a flat reply buffer
652  */
653 void afs_transfer_reply(struct afs_call *call, struct sk_buff *skb)
654 {
655 	size_t len = skb->len;
656 
657 	if (skb_copy_bits(skb, 0, call->buffer + call->reply_size, len) < 0)
658 		BUG();
659 	call->reply_size += len;
660 }
661 
662 /*
663  * accept the backlog of incoming calls
664  */
665 static void afs_collect_incoming_call(struct work_struct *work)
666 {
667 	struct rxrpc_call *rxcall;
668 	struct afs_call *call = NULL;
669 	struct sk_buff *skb;
670 
671 	while ((skb = skb_dequeue(&afs_incoming_calls))) {
672 		_debug("new call");
673 
674 		/* don't need the notification */
675 		afs_free_skb(skb);
676 
677 		if (!call) {
678 			call = kzalloc(sizeof(struct afs_call), GFP_KERNEL);
679 			if (!call) {
680 				rxrpc_kernel_reject_call(afs_socket);
681 				return;
682 			}
683 
684 			INIT_WORK(&call->async_work, afs_process_async_call);
685 			call->wait_mode = &afs_async_incoming_call;
686 			call->type = &afs_RXCMxxxx;
687 			init_waitqueue_head(&call->waitq);
688 			skb_queue_head_init(&call->rx_queue);
689 			call->state = AFS_CALL_AWAIT_OP_ID;
690 
691 			_debug("CALL %p{%s} [%d]",
692 			       call, call->type->name,
693 			       atomic_read(&afs_outstanding_calls));
694 			atomic_inc(&afs_outstanding_calls);
695 		}
696 
697 		rxcall = rxrpc_kernel_accept_call(afs_socket,
698 						  (unsigned long) call);
699 		if (!IS_ERR(rxcall)) {
700 			call->rxcall = rxcall;
701 			call = NULL;
702 		}
703 	}
704 
705 	if (call)
706 		afs_free_call(call);
707 }
708 
709 /*
710  * grab the operation ID from an incoming cache manager call
711  */
712 static int afs_deliver_cm_op_id(struct afs_call *call, struct sk_buff *skb,
713 				bool last)
714 {
715 	size_t len = skb->len;
716 	void *oibuf = (void *) &call->operation_ID;
717 
718 	_enter("{%u},{%zu},%d", call->offset, len, last);
719 
720 	ASSERTCMP(call->offset, <, 4);
721 
722 	/* the operation ID forms the first four bytes of the request data */
723 	len = min_t(size_t, len, 4 - call->offset);
724 	if (skb_copy_bits(skb, 0, oibuf + call->offset, len) < 0)
725 		BUG();
726 	if (!pskb_pull(skb, len))
727 		BUG();
728 	call->offset += len;
729 
730 	if (call->offset < 4) {
731 		if (last) {
732 			_leave(" = -EBADMSG [op ID short]");
733 			return -EBADMSG;
734 		}
735 		_leave(" = 0 [incomplete]");
736 		return 0;
737 	}
738 
739 	call->state = AFS_CALL_AWAIT_REQUEST;
740 
741 	/* ask the cache manager to route the call (it'll change the call type
742 	 * if successful) */
743 	if (!afs_cm_incoming_call(call))
744 		return -ENOTSUPP;
745 
746 	/* pass responsibility for the remainer of this message off to the
747 	 * cache manager op */
748 	return call->type->deliver(call, skb, last);
749 }
750 
751 /*
752  * send an empty reply
753  */
754 void afs_send_empty_reply(struct afs_call *call)
755 {
756 	struct msghdr msg;
757 	struct iovec iov[1];
758 
759 	_enter("");
760 
761 	iov[0].iov_base		= NULL;
762 	iov[0].iov_len		= 0;
763 	msg.msg_name		= NULL;
764 	msg.msg_namelen		= 0;
765 	msg.msg_iov		= iov;
766 	msg.msg_iovlen		= 0;
767 	msg.msg_control		= NULL;
768 	msg.msg_controllen	= 0;
769 	msg.msg_flags		= 0;
770 
771 	call->state = AFS_CALL_AWAIT_ACK;
772 	switch (rxrpc_kernel_send_data(call->rxcall, &msg, 0)) {
773 	case 0:
774 		_leave(" [replied]");
775 		return;
776 
777 	case -ENOMEM:
778 		_debug("oom");
779 		rxrpc_kernel_abort_call(call->rxcall, RX_USER_ABORT);
780 	default:
781 		rxrpc_kernel_end_call(call->rxcall);
782 		call->rxcall = NULL;
783 		call->type->destructor(call);
784 		afs_free_call(call);
785 		_leave(" [error]");
786 		return;
787 	}
788 }
789 
790 /*
791  * send a simple reply
792  */
793 void afs_send_simple_reply(struct afs_call *call, const void *buf, size_t len)
794 {
795 	struct msghdr msg;
796 	struct iovec iov[1];
797 	int n;
798 
799 	_enter("");
800 
801 	iov[0].iov_base		= (void *) buf;
802 	iov[0].iov_len		= len;
803 	msg.msg_name		= NULL;
804 	msg.msg_namelen		= 0;
805 	msg.msg_iov		= iov;
806 	msg.msg_iovlen		= 1;
807 	msg.msg_control		= NULL;
808 	msg.msg_controllen	= 0;
809 	msg.msg_flags		= 0;
810 
811 	call->state = AFS_CALL_AWAIT_ACK;
812 	n = rxrpc_kernel_send_data(call->rxcall, &msg, len);
813 	if (n >= 0) {
814 		_leave(" [replied]");
815 		return;
816 	}
817 	if (n == -ENOMEM) {
818 		_debug("oom");
819 		rxrpc_kernel_abort_call(call->rxcall, RX_USER_ABORT);
820 	}
821 	rxrpc_kernel_end_call(call->rxcall);
822 	call->rxcall = NULL;
823 	call->type->destructor(call);
824 	afs_free_call(call);
825 	_leave(" [error]");
826 }
827 
828 /*
829  * extract a piece of data from the received data socket buffers
830  */
831 int afs_extract_data(struct afs_call *call, struct sk_buff *skb,
832 		     bool last, void *buf, size_t count)
833 {
834 	size_t len = skb->len;
835 
836 	_enter("{%u},{%zu},%d,,%zu", call->offset, len, last, count);
837 
838 	ASSERTCMP(call->offset, <, count);
839 
840 	len = min_t(size_t, len, count - call->offset);
841 	if (skb_copy_bits(skb, 0, buf + call->offset, len) < 0 ||
842 	    !pskb_pull(skb, len))
843 		BUG();
844 	call->offset += len;
845 
846 	if (call->offset < count) {
847 		if (last) {
848 			_leave(" = -EBADMSG [%d < %zu]", call->offset, count);
849 			return -EBADMSG;
850 		}
851 		_leave(" = -EAGAIN");
852 		return -EAGAIN;
853 	}
854 	return 0;
855 }
856