xref: /linux/fs/afs/rxrpc.c (revision b2d0f5d5dc53532e6f07bc546a476a55ebdfe0f3)
1 /* Maintain an RxRPC server socket to do AFS communications through
2  *
3  * Copyright (C) 2007 Red Hat, Inc. All Rights Reserved.
4  * Written by David Howells (dhowells@redhat.com)
5  *
6  * This program is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU General Public License
8  * as published by the Free Software Foundation; either version
9  * 2 of the License, or (at your option) any later version.
10  */
11 
12 #include <linux/slab.h>
13 #include <linux/sched/signal.h>
14 
15 #include <net/sock.h>
16 #include <net/af_rxrpc.h>
17 #include "internal.h"
18 #include "afs_cm.h"
19 
20 struct socket *afs_socket; /* my RxRPC socket */
21 static struct workqueue_struct *afs_async_calls;
22 static struct afs_call *afs_spare_incoming_call;
23 atomic_t afs_outstanding_calls;
24 
25 static void afs_wake_up_call_waiter(struct sock *, struct rxrpc_call *, unsigned long);
26 static int afs_wait_for_call_to_complete(struct afs_call *);
27 static void afs_wake_up_async_call(struct sock *, struct rxrpc_call *, unsigned long);
28 static void afs_process_async_call(struct work_struct *);
29 static void afs_rx_new_call(struct sock *, struct rxrpc_call *, unsigned long);
30 static void afs_rx_discard_new_call(struct rxrpc_call *, unsigned long);
31 static int afs_deliver_cm_op_id(struct afs_call *);
32 
33 /* asynchronous incoming call initial processing */
34 static const struct afs_call_type afs_RXCMxxxx = {
35 	.name		= "CB.xxxx",
36 	.deliver	= afs_deliver_cm_op_id,
37 	.abort_to_error	= afs_abort_to_error,
38 };
39 
40 static void afs_charge_preallocation(struct work_struct *);
41 
42 static DECLARE_WORK(afs_charge_preallocation_work, afs_charge_preallocation);
43 
44 static int afs_wait_atomic_t(atomic_t *p)
45 {
46 	schedule();
47 	return 0;
48 }
49 
50 /*
51  * open an RxRPC socket and bind it to be a server for callback notifications
52  * - the socket is left in blocking mode and non-blocking ops use MSG_DONTWAIT
53  */
54 int afs_open_socket(void)
55 {
56 	struct sockaddr_rxrpc srx;
57 	struct socket *socket;
58 	int ret;
59 
60 	_enter("");
61 
62 	ret = -ENOMEM;
63 	afs_async_calls = alloc_workqueue("kafsd", WQ_MEM_RECLAIM, 0);
64 	if (!afs_async_calls)
65 		goto error_0;
66 
67 	ret = sock_create_kern(&init_net, AF_RXRPC, SOCK_DGRAM, PF_INET, &socket);
68 	if (ret < 0)
69 		goto error_1;
70 
71 	socket->sk->sk_allocation = GFP_NOFS;
72 
73 	/* bind the callback manager's address to make this a server socket */
74 	srx.srx_family			= AF_RXRPC;
75 	srx.srx_service			= CM_SERVICE;
76 	srx.transport_type		= SOCK_DGRAM;
77 	srx.transport_len		= sizeof(srx.transport.sin);
78 	srx.transport.sin.sin_family	= AF_INET;
79 	srx.transport.sin.sin_port	= htons(AFS_CM_PORT);
80 	memset(&srx.transport.sin.sin_addr, 0,
81 	       sizeof(srx.transport.sin.sin_addr));
82 
83 	ret = kernel_bind(socket, (struct sockaddr *) &srx, sizeof(srx));
84 	if (ret < 0)
85 		goto error_2;
86 
87 	rxrpc_kernel_new_call_notification(socket, afs_rx_new_call,
88 					   afs_rx_discard_new_call);
89 
90 	ret = kernel_listen(socket, INT_MAX);
91 	if (ret < 0)
92 		goto error_2;
93 
94 	afs_socket = socket;
95 	afs_charge_preallocation(NULL);
96 	_leave(" = 0");
97 	return 0;
98 
99 error_2:
100 	sock_release(socket);
101 error_1:
102 	destroy_workqueue(afs_async_calls);
103 error_0:
104 	_leave(" = %d", ret);
105 	return ret;
106 }
107 
108 /*
109  * close the RxRPC socket AFS was using
110  */
111 void afs_close_socket(void)
112 {
113 	_enter("");
114 
115 	kernel_listen(afs_socket, 0);
116 	flush_workqueue(afs_async_calls);
117 
118 	if (afs_spare_incoming_call) {
119 		afs_put_call(afs_spare_incoming_call);
120 		afs_spare_incoming_call = NULL;
121 	}
122 
123 	_debug("outstanding %u", atomic_read(&afs_outstanding_calls));
124 	wait_on_atomic_t(&afs_outstanding_calls, afs_wait_atomic_t,
125 			 TASK_UNINTERRUPTIBLE);
126 	_debug("no outstanding calls");
127 
128 	kernel_sock_shutdown(afs_socket, SHUT_RDWR);
129 	flush_workqueue(afs_async_calls);
130 	sock_release(afs_socket);
131 
132 	_debug("dework");
133 	destroy_workqueue(afs_async_calls);
134 	_leave("");
135 }
136 
137 /*
138  * Allocate a call.
139  */
140 static struct afs_call *afs_alloc_call(const struct afs_call_type *type,
141 				       gfp_t gfp)
142 {
143 	struct afs_call *call;
144 	int o;
145 
146 	call = kzalloc(sizeof(*call), gfp);
147 	if (!call)
148 		return NULL;
149 
150 	call->type = type;
151 	atomic_set(&call->usage, 1);
152 	INIT_WORK(&call->async_work, afs_process_async_call);
153 	init_waitqueue_head(&call->waitq);
154 
155 	o = atomic_inc_return(&afs_outstanding_calls);
156 	trace_afs_call(call, afs_call_trace_alloc, 1, o,
157 		       __builtin_return_address(0));
158 	return call;
159 }
160 
161 /*
162  * Dispose of a reference on a call.
163  */
164 void afs_put_call(struct afs_call *call)
165 {
166 	int n = atomic_dec_return(&call->usage);
167 	int o = atomic_read(&afs_outstanding_calls);
168 
169 	trace_afs_call(call, afs_call_trace_put, n + 1, o,
170 		       __builtin_return_address(0));
171 
172 	ASSERTCMP(n, >=, 0);
173 	if (n == 0) {
174 		ASSERT(!work_pending(&call->async_work));
175 		ASSERT(call->type->name != NULL);
176 
177 		if (call->rxcall) {
178 			rxrpc_kernel_end_call(afs_socket, call->rxcall);
179 			call->rxcall = NULL;
180 		}
181 		if (call->type->destructor)
182 			call->type->destructor(call);
183 
184 		kfree(call->request);
185 		kfree(call);
186 
187 		o = atomic_dec_return(&afs_outstanding_calls);
188 		trace_afs_call(call, afs_call_trace_free, 0, o,
189 			       __builtin_return_address(0));
190 		if (o == 0)
191 			wake_up_atomic_t(&afs_outstanding_calls);
192 	}
193 }
194 
195 /*
196  * Queue the call for actual work.  Returns 0 unconditionally for convenience.
197  */
198 int afs_queue_call_work(struct afs_call *call)
199 {
200 	int u = atomic_inc_return(&call->usage);
201 
202 	trace_afs_call(call, afs_call_trace_work, u,
203 		       atomic_read(&afs_outstanding_calls),
204 		       __builtin_return_address(0));
205 
206 	INIT_WORK(&call->work, call->type->work);
207 
208 	if (!queue_work(afs_wq, &call->work))
209 		afs_put_call(call);
210 	return 0;
211 }
212 
213 /*
214  * allocate a call with flat request and reply buffers
215  */
216 struct afs_call *afs_alloc_flat_call(const struct afs_call_type *type,
217 				     size_t request_size, size_t reply_max)
218 {
219 	struct afs_call *call;
220 
221 	call = afs_alloc_call(type, GFP_NOFS);
222 	if (!call)
223 		goto nomem_call;
224 
225 	if (request_size) {
226 		call->request_size = request_size;
227 		call->request = kmalloc(request_size, GFP_NOFS);
228 		if (!call->request)
229 			goto nomem_free;
230 	}
231 
232 	if (reply_max) {
233 		call->reply_max = reply_max;
234 		call->buffer = kmalloc(reply_max, GFP_NOFS);
235 		if (!call->buffer)
236 			goto nomem_free;
237 	}
238 
239 	init_waitqueue_head(&call->waitq);
240 	return call;
241 
242 nomem_free:
243 	afs_put_call(call);
244 nomem_call:
245 	return NULL;
246 }
247 
248 /*
249  * clean up a call with flat buffer
250  */
251 void afs_flat_call_destructor(struct afs_call *call)
252 {
253 	_enter("");
254 
255 	kfree(call->request);
256 	call->request = NULL;
257 	kfree(call->buffer);
258 	call->buffer = NULL;
259 }
260 
261 #define AFS_BVEC_MAX 8
262 
263 /*
264  * Load the given bvec with the next few pages.
265  */
266 static void afs_load_bvec(struct afs_call *call, struct msghdr *msg,
267 			  struct bio_vec *bv, pgoff_t first, pgoff_t last,
268 			  unsigned offset)
269 {
270 	struct page *pages[AFS_BVEC_MAX];
271 	unsigned int nr, n, i, to, bytes = 0;
272 
273 	nr = min_t(pgoff_t, last - first + 1, AFS_BVEC_MAX);
274 	n = find_get_pages_contig(call->mapping, first, nr, pages);
275 	ASSERTCMP(n, ==, nr);
276 
277 	msg->msg_flags |= MSG_MORE;
278 	for (i = 0; i < nr; i++) {
279 		to = PAGE_SIZE;
280 		if (first + i >= last) {
281 			to = call->last_to;
282 			msg->msg_flags &= ~MSG_MORE;
283 		}
284 		bv[i].bv_page = pages[i];
285 		bv[i].bv_len = to - offset;
286 		bv[i].bv_offset = offset;
287 		bytes += to - offset;
288 		offset = 0;
289 	}
290 
291 	iov_iter_bvec(&msg->msg_iter, WRITE | ITER_BVEC, bv, nr, bytes);
292 }
293 
294 /*
295  * Advance the AFS call state when the RxRPC call ends the transmit phase.
296  */
297 static void afs_notify_end_request_tx(struct sock *sock,
298 				      struct rxrpc_call *rxcall,
299 				      unsigned long call_user_ID)
300 {
301 	struct afs_call *call = (struct afs_call *)call_user_ID;
302 
303 	if (call->state == AFS_CALL_REQUESTING)
304 		call->state = AFS_CALL_AWAIT_REPLY;
305 }
306 
307 /*
308  * attach the data from a bunch of pages on an inode to a call
309  */
310 static int afs_send_pages(struct afs_call *call, struct msghdr *msg)
311 {
312 	struct bio_vec bv[AFS_BVEC_MAX];
313 	unsigned int bytes, nr, loop, offset;
314 	pgoff_t first = call->first, last = call->last;
315 	int ret;
316 
317 	offset = call->first_offset;
318 	call->first_offset = 0;
319 
320 	do {
321 		afs_load_bvec(call, msg, bv, first, last, offset);
322 		offset = 0;
323 		bytes = msg->msg_iter.count;
324 		nr = msg->msg_iter.nr_segs;
325 
326 		ret = rxrpc_kernel_send_data(afs_socket, call->rxcall, msg,
327 					     bytes, afs_notify_end_request_tx);
328 		for (loop = 0; loop < nr; loop++)
329 			put_page(bv[loop].bv_page);
330 		if (ret < 0)
331 			break;
332 
333 		first += nr;
334 	} while (first <= last);
335 
336 	return ret;
337 }
338 
339 /*
340  * initiate a call
341  */
342 int afs_make_call(struct in_addr *addr, struct afs_call *call, gfp_t gfp,
343 		  bool async)
344 {
345 	struct sockaddr_rxrpc srx;
346 	struct rxrpc_call *rxcall;
347 	struct msghdr msg;
348 	struct kvec iov[1];
349 	size_t offset;
350 	s64 tx_total_len;
351 	u32 abort_code;
352 	int ret;
353 
354 	_enter("%x,{%d},", addr->s_addr, ntohs(call->port));
355 
356 	ASSERT(call->type != NULL);
357 	ASSERT(call->type->name != NULL);
358 
359 	_debug("____MAKE %p{%s,%x} [%d]____",
360 	       call, call->type->name, key_serial(call->key),
361 	       atomic_read(&afs_outstanding_calls));
362 
363 	call->async = async;
364 
365 	memset(&srx, 0, sizeof(srx));
366 	srx.srx_family = AF_RXRPC;
367 	srx.srx_service = call->service_id;
368 	srx.transport_type = SOCK_DGRAM;
369 	srx.transport_len = sizeof(srx.transport.sin);
370 	srx.transport.sin.sin_family = AF_INET;
371 	srx.transport.sin.sin_port = call->port;
372 	memcpy(&srx.transport.sin.sin_addr, addr, 4);
373 
374 	/* Work out the length we're going to transmit.  This is awkward for
375 	 * calls such as FS.StoreData where there's an extra injection of data
376 	 * after the initial fixed part.
377 	 */
378 	tx_total_len = call->request_size;
379 	if (call->send_pages) {
380 		tx_total_len += call->last_to - call->first_offset;
381 		tx_total_len += (call->last - call->first) * PAGE_SIZE;
382 	}
383 
384 	/* create a call */
385 	rxcall = rxrpc_kernel_begin_call(afs_socket, &srx, call->key,
386 					 (unsigned long)call,
387 					 tx_total_len, gfp,
388 					 (async ?
389 					  afs_wake_up_async_call :
390 					  afs_wake_up_call_waiter),
391 					 call->upgrade);
392 	call->key = NULL;
393 	if (IS_ERR(rxcall)) {
394 		ret = PTR_ERR(rxcall);
395 		goto error_kill_call;
396 	}
397 
398 	call->rxcall = rxcall;
399 
400 	/* send the request */
401 	iov[0].iov_base	= call->request;
402 	iov[0].iov_len	= call->request_size;
403 
404 	msg.msg_name		= NULL;
405 	msg.msg_namelen		= 0;
406 	iov_iter_kvec(&msg.msg_iter, WRITE | ITER_KVEC, iov, 1,
407 		      call->request_size);
408 	msg.msg_control		= NULL;
409 	msg.msg_controllen	= 0;
410 	msg.msg_flags		= MSG_WAITALL | (call->send_pages ? MSG_MORE : 0);
411 
412 	/* We have to change the state *before* sending the last packet as
413 	 * rxrpc might give us the reply before it returns from sending the
414 	 * request.  Further, if the send fails, we may already have been given
415 	 * a notification and may have collected it.
416 	 */
417 	if (!call->send_pages)
418 		call->state = AFS_CALL_AWAIT_REPLY;
419 	ret = rxrpc_kernel_send_data(afs_socket, rxcall,
420 				     &msg, call->request_size,
421 				     afs_notify_end_request_tx);
422 	if (ret < 0)
423 		goto error_do_abort;
424 
425 	if (call->send_pages) {
426 		ret = afs_send_pages(call, &msg);
427 		if (ret < 0)
428 			goto error_do_abort;
429 	}
430 
431 	/* at this point, an async call may no longer exist as it may have
432 	 * already completed */
433 	if (call->async)
434 		return -EINPROGRESS;
435 
436 	return afs_wait_for_call_to_complete(call);
437 
438 error_do_abort:
439 	call->state = AFS_CALL_COMPLETE;
440 	if (ret != -ECONNABORTED) {
441 		rxrpc_kernel_abort_call(afs_socket, rxcall, RX_USER_ABORT,
442 					ret, "KSD");
443 	} else {
444 		abort_code = 0;
445 		offset = 0;
446 		rxrpc_kernel_recv_data(afs_socket, rxcall, NULL, 0, &offset,
447 				       false, &abort_code, &call->service_id);
448 		ret = call->type->abort_to_error(abort_code);
449 	}
450 error_kill_call:
451 	afs_put_call(call);
452 	_leave(" = %d", ret);
453 	return ret;
454 }
455 
456 /*
457  * deliver messages to a call
458  */
459 static void afs_deliver_to_call(struct afs_call *call)
460 {
461 	u32 abort_code;
462 	int ret;
463 
464 	_enter("%s", call->type->name);
465 
466 	while (call->state == AFS_CALL_AWAIT_REPLY ||
467 	       call->state == AFS_CALL_AWAIT_OP_ID ||
468 	       call->state == AFS_CALL_AWAIT_REQUEST ||
469 	       call->state == AFS_CALL_AWAIT_ACK
470 	       ) {
471 		if (call->state == AFS_CALL_AWAIT_ACK) {
472 			size_t offset = 0;
473 			ret = rxrpc_kernel_recv_data(afs_socket, call->rxcall,
474 						     NULL, 0, &offset, false,
475 						     &call->abort_code,
476 						     &call->service_id);
477 			trace_afs_recv_data(call, 0, offset, false, ret);
478 
479 			if (ret == -EINPROGRESS || ret == -EAGAIN)
480 				return;
481 			if (ret == 1 || ret < 0) {
482 				call->state = AFS_CALL_COMPLETE;
483 				goto done;
484 			}
485 			return;
486 		}
487 
488 		ret = call->type->deliver(call);
489 		switch (ret) {
490 		case 0:
491 			if (call->state == AFS_CALL_AWAIT_REPLY)
492 				call->state = AFS_CALL_COMPLETE;
493 			goto done;
494 		case -EINPROGRESS:
495 		case -EAGAIN:
496 			goto out;
497 		case -ECONNABORTED:
498 			goto call_complete;
499 		case -ENOTCONN:
500 			abort_code = RX_CALL_DEAD;
501 			rxrpc_kernel_abort_call(afs_socket, call->rxcall,
502 						abort_code, ret, "KNC");
503 			goto save_error;
504 		case -ENOTSUPP:
505 			abort_code = RXGEN_OPCODE;
506 			rxrpc_kernel_abort_call(afs_socket, call->rxcall,
507 						abort_code, ret, "KIV");
508 			goto save_error;
509 		case -ENODATA:
510 		case -EBADMSG:
511 		case -EMSGSIZE:
512 		default:
513 			abort_code = RXGEN_CC_UNMARSHAL;
514 			if (call->state != AFS_CALL_AWAIT_REPLY)
515 				abort_code = RXGEN_SS_UNMARSHAL;
516 			rxrpc_kernel_abort_call(afs_socket, call->rxcall,
517 						abort_code, -EBADMSG, "KUM");
518 			goto save_error;
519 		}
520 	}
521 
522 done:
523 	if (call->state == AFS_CALL_COMPLETE && call->incoming)
524 		afs_put_call(call);
525 out:
526 	_leave("");
527 	return;
528 
529 save_error:
530 	call->error = ret;
531 call_complete:
532 	call->state = AFS_CALL_COMPLETE;
533 	goto done;
534 }
535 
536 /*
537  * wait synchronously for a call to complete
538  */
539 static int afs_wait_for_call_to_complete(struct afs_call *call)
540 {
541 	signed long rtt2, timeout;
542 	int ret;
543 	u64 rtt;
544 	u32 life, last_life;
545 
546 	DECLARE_WAITQUEUE(myself, current);
547 
548 	_enter("");
549 
550 	rtt = rxrpc_kernel_get_rtt(afs_socket, call->rxcall);
551 	rtt2 = nsecs_to_jiffies64(rtt) * 2;
552 	if (rtt2 < 2)
553 		rtt2 = 2;
554 
555 	timeout = rtt2;
556 	last_life = rxrpc_kernel_check_life(afs_socket, call->rxcall);
557 
558 	add_wait_queue(&call->waitq, &myself);
559 	for (;;) {
560 		set_current_state(TASK_UNINTERRUPTIBLE);
561 
562 		/* deliver any messages that are in the queue */
563 		if (call->state < AFS_CALL_COMPLETE && call->need_attention) {
564 			call->need_attention = false;
565 			__set_current_state(TASK_RUNNING);
566 			afs_deliver_to_call(call);
567 			continue;
568 		}
569 
570 		if (call->state == AFS_CALL_COMPLETE)
571 			break;
572 
573 		life = rxrpc_kernel_check_life(afs_socket, call->rxcall);
574 		if (timeout == 0 &&
575 		    life == last_life && signal_pending(current))
576 				break;
577 
578 		if (life != last_life) {
579 			timeout = rtt2;
580 			last_life = life;
581 		}
582 
583 		timeout = schedule_timeout(timeout);
584 	}
585 
586 	remove_wait_queue(&call->waitq, &myself);
587 	__set_current_state(TASK_RUNNING);
588 
589 	/* Kill off the call if it's still live. */
590 	if (call->state < AFS_CALL_COMPLETE) {
591 		_debug("call interrupted");
592 		rxrpc_kernel_abort_call(afs_socket, call->rxcall,
593 					RX_USER_ABORT, -EINTR, "KWI");
594 	}
595 
596 	ret = call->error;
597 	_debug("call complete");
598 	afs_put_call(call);
599 	_leave(" = %d", ret);
600 	return ret;
601 }
602 
603 /*
604  * wake up a waiting call
605  */
606 static void afs_wake_up_call_waiter(struct sock *sk, struct rxrpc_call *rxcall,
607 				    unsigned long call_user_ID)
608 {
609 	struct afs_call *call = (struct afs_call *)call_user_ID;
610 
611 	call->need_attention = true;
612 	wake_up(&call->waitq);
613 }
614 
615 /*
616  * wake up an asynchronous call
617  */
618 static void afs_wake_up_async_call(struct sock *sk, struct rxrpc_call *rxcall,
619 				   unsigned long call_user_ID)
620 {
621 	struct afs_call *call = (struct afs_call *)call_user_ID;
622 	int u;
623 
624 	trace_afs_notify_call(rxcall, call);
625 	call->need_attention = true;
626 
627 	u = __atomic_add_unless(&call->usage, 1, 0);
628 	if (u != 0) {
629 		trace_afs_call(call, afs_call_trace_wake, u,
630 			       atomic_read(&afs_outstanding_calls),
631 			       __builtin_return_address(0));
632 
633 		if (!queue_work(afs_async_calls, &call->async_work))
634 			afs_put_call(call);
635 	}
636 }
637 
638 /*
639  * Delete an asynchronous call.  The work item carries a ref to the call struct
640  * that we need to release.
641  */
642 static void afs_delete_async_call(struct work_struct *work)
643 {
644 	struct afs_call *call = container_of(work, struct afs_call, async_work);
645 
646 	_enter("");
647 
648 	afs_put_call(call);
649 
650 	_leave("");
651 }
652 
653 /*
654  * Perform I/O processing on an asynchronous call.  The work item carries a ref
655  * to the call struct that we either need to release or to pass on.
656  */
657 static void afs_process_async_call(struct work_struct *work)
658 {
659 	struct afs_call *call = container_of(work, struct afs_call, async_work);
660 
661 	_enter("");
662 
663 	if (call->state < AFS_CALL_COMPLETE && call->need_attention) {
664 		call->need_attention = false;
665 		afs_deliver_to_call(call);
666 	}
667 
668 	if (call->state == AFS_CALL_COMPLETE) {
669 		call->reply = NULL;
670 
671 		/* We have two refs to release - one from the alloc and one
672 		 * queued with the work item - and we can't just deallocate the
673 		 * call because the work item may be queued again.
674 		 */
675 		call->async_work.func = afs_delete_async_call;
676 		if (!queue_work(afs_async_calls, &call->async_work))
677 			afs_put_call(call);
678 	}
679 
680 	afs_put_call(call);
681 	_leave("");
682 }
683 
684 static void afs_rx_attach(struct rxrpc_call *rxcall, unsigned long user_call_ID)
685 {
686 	struct afs_call *call = (struct afs_call *)user_call_ID;
687 
688 	call->rxcall = rxcall;
689 }
690 
691 /*
692  * Charge the incoming call preallocation.
693  */
694 static void afs_charge_preallocation(struct work_struct *work)
695 {
696 	struct afs_call *call = afs_spare_incoming_call;
697 
698 	for (;;) {
699 		if (!call) {
700 			call = afs_alloc_call(&afs_RXCMxxxx, GFP_KERNEL);
701 			if (!call)
702 				break;
703 
704 			call->async = true;
705 			call->state = AFS_CALL_AWAIT_OP_ID;
706 			init_waitqueue_head(&call->waitq);
707 		}
708 
709 		if (rxrpc_kernel_charge_accept(afs_socket,
710 					       afs_wake_up_async_call,
711 					       afs_rx_attach,
712 					       (unsigned long)call,
713 					       GFP_KERNEL) < 0)
714 			break;
715 		call = NULL;
716 	}
717 	afs_spare_incoming_call = call;
718 }
719 
720 /*
721  * Discard a preallocated call when a socket is shut down.
722  */
723 static void afs_rx_discard_new_call(struct rxrpc_call *rxcall,
724 				    unsigned long user_call_ID)
725 {
726 	struct afs_call *call = (struct afs_call *)user_call_ID;
727 
728 	call->rxcall = NULL;
729 	afs_put_call(call);
730 }
731 
732 /*
733  * Notification of an incoming call.
734  */
735 static void afs_rx_new_call(struct sock *sk, struct rxrpc_call *rxcall,
736 			    unsigned long user_call_ID)
737 {
738 	queue_work(afs_wq, &afs_charge_preallocation_work);
739 }
740 
741 /*
742  * Grab the operation ID from an incoming cache manager call.  The socket
743  * buffer is discarded on error or if we don't yet have sufficient data.
744  */
745 static int afs_deliver_cm_op_id(struct afs_call *call)
746 {
747 	int ret;
748 
749 	_enter("{%zu}", call->offset);
750 
751 	ASSERTCMP(call->offset, <, 4);
752 
753 	/* the operation ID forms the first four bytes of the request data */
754 	ret = afs_extract_data(call, &call->tmp, 4, true);
755 	if (ret < 0)
756 		return ret;
757 
758 	call->operation_ID = ntohl(call->tmp);
759 	call->state = AFS_CALL_AWAIT_REQUEST;
760 	call->offset = 0;
761 
762 	/* ask the cache manager to route the call (it'll change the call type
763 	 * if successful) */
764 	if (!afs_cm_incoming_call(call))
765 		return -ENOTSUPP;
766 
767 	trace_afs_cb_call(call);
768 
769 	/* pass responsibility for the remainer of this message off to the
770 	 * cache manager op */
771 	return call->type->deliver(call);
772 }
773 
774 /*
775  * Advance the AFS call state when an RxRPC service call ends the transmit
776  * phase.
777  */
778 static void afs_notify_end_reply_tx(struct sock *sock,
779 				    struct rxrpc_call *rxcall,
780 				    unsigned long call_user_ID)
781 {
782 	struct afs_call *call = (struct afs_call *)call_user_ID;
783 
784 	if (call->state == AFS_CALL_REPLYING)
785 		call->state = AFS_CALL_AWAIT_ACK;
786 }
787 
788 /*
789  * send an empty reply
790  */
791 void afs_send_empty_reply(struct afs_call *call)
792 {
793 	struct msghdr msg;
794 
795 	_enter("");
796 
797 	rxrpc_kernel_set_tx_length(afs_socket, call->rxcall, 0);
798 
799 	msg.msg_name		= NULL;
800 	msg.msg_namelen		= 0;
801 	iov_iter_kvec(&msg.msg_iter, WRITE | ITER_KVEC, NULL, 0, 0);
802 	msg.msg_control		= NULL;
803 	msg.msg_controllen	= 0;
804 	msg.msg_flags		= 0;
805 
806 	call->state = AFS_CALL_AWAIT_ACK;
807 	switch (rxrpc_kernel_send_data(afs_socket, call->rxcall, &msg, 0,
808 				       afs_notify_end_reply_tx)) {
809 	case 0:
810 		_leave(" [replied]");
811 		return;
812 
813 	case -ENOMEM:
814 		_debug("oom");
815 		rxrpc_kernel_abort_call(afs_socket, call->rxcall,
816 					RX_USER_ABORT, -ENOMEM, "KOO");
817 	default:
818 		_leave(" [error]");
819 		return;
820 	}
821 }
822 
823 /*
824  * send a simple reply
825  */
826 void afs_send_simple_reply(struct afs_call *call, const void *buf, size_t len)
827 {
828 	struct msghdr msg;
829 	struct kvec iov[1];
830 	int n;
831 
832 	_enter("");
833 
834 	rxrpc_kernel_set_tx_length(afs_socket, call->rxcall, len);
835 
836 	iov[0].iov_base		= (void *) buf;
837 	iov[0].iov_len		= len;
838 	msg.msg_name		= NULL;
839 	msg.msg_namelen		= 0;
840 	iov_iter_kvec(&msg.msg_iter, WRITE | ITER_KVEC, iov, 1, len);
841 	msg.msg_control		= NULL;
842 	msg.msg_controllen	= 0;
843 	msg.msg_flags		= 0;
844 
845 	call->state = AFS_CALL_AWAIT_ACK;
846 	n = rxrpc_kernel_send_data(afs_socket, call->rxcall, &msg, len,
847 				   afs_notify_end_reply_tx);
848 	if (n >= 0) {
849 		/* Success */
850 		_leave(" [replied]");
851 		return;
852 	}
853 
854 	if (n == -ENOMEM) {
855 		_debug("oom");
856 		rxrpc_kernel_abort_call(afs_socket, call->rxcall,
857 					RX_USER_ABORT, -ENOMEM, "KOO");
858 	}
859 	_leave(" [error]");
860 }
861 
862 /*
863  * Extract a piece of data from the received data socket buffers.
864  */
865 int afs_extract_data(struct afs_call *call, void *buf, size_t count,
866 		     bool want_more)
867 {
868 	int ret;
869 
870 	_enter("{%s,%zu},,%zu,%d",
871 	       call->type->name, call->offset, count, want_more);
872 
873 	ASSERTCMP(call->offset, <=, count);
874 
875 	ret = rxrpc_kernel_recv_data(afs_socket, call->rxcall,
876 				     buf, count, &call->offset,
877 				     want_more, &call->abort_code,
878 				     &call->service_id);
879 	trace_afs_recv_data(call, count, call->offset, want_more, ret);
880 	if (ret == 0 || ret == -EAGAIN)
881 		return ret;
882 
883 	if (ret == 1) {
884 		switch (call->state) {
885 		case AFS_CALL_AWAIT_REPLY:
886 			call->state = AFS_CALL_COMPLETE;
887 			break;
888 		case AFS_CALL_AWAIT_REQUEST:
889 			call->state = AFS_CALL_REPLYING;
890 			break;
891 		default:
892 			break;
893 		}
894 		return 0;
895 	}
896 
897 	if (ret == -ECONNABORTED)
898 		call->error = call->type->abort_to_error(call->abort_code);
899 	else
900 		call->error = ret;
901 	call->state = AFS_CALL_COMPLETE;
902 	return ret;
903 }
904