1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* Maintain an RxRPC server socket to do AFS communications through 3 * 4 * Copyright (C) 2007 Red Hat, Inc. All Rights Reserved. 5 * Written by David Howells (dhowells@redhat.com) 6 */ 7 8 #include <linux/slab.h> 9 #include <linux/sched/signal.h> 10 11 #include <net/sock.h> 12 #include <net/af_rxrpc.h> 13 #include "internal.h" 14 #include "afs_cm.h" 15 #include "protocol_yfs.h" 16 17 struct workqueue_struct *afs_async_calls; 18 19 static void afs_wake_up_call_waiter(struct sock *, struct rxrpc_call *, unsigned long); 20 static void afs_wake_up_async_call(struct sock *, struct rxrpc_call *, unsigned long); 21 static void afs_delete_async_call(struct work_struct *); 22 static void afs_process_async_call(struct work_struct *); 23 static void afs_rx_new_call(struct sock *, struct rxrpc_call *, unsigned long); 24 static void afs_rx_discard_new_call(struct rxrpc_call *, unsigned long); 25 static int afs_deliver_cm_op_id(struct afs_call *); 26 27 /* asynchronous incoming call initial processing */ 28 static const struct afs_call_type afs_RXCMxxxx = { 29 .name = "CB.xxxx", 30 .deliver = afs_deliver_cm_op_id, 31 }; 32 33 /* 34 * open an RxRPC socket and bind it to be a server for callback notifications 35 * - the socket is left in blocking mode and non-blocking ops use MSG_DONTWAIT 36 */ 37 int afs_open_socket(struct afs_net *net) 38 { 39 struct sockaddr_rxrpc srx; 40 struct socket *socket; 41 unsigned int min_level; 42 int ret; 43 44 _enter(""); 45 46 ret = sock_create_kern(net->net, AF_RXRPC, SOCK_DGRAM, PF_INET6, &socket); 47 if (ret < 0) 48 goto error_1; 49 50 socket->sk->sk_allocation = GFP_NOFS; 51 52 /* bind the callback manager's address to make this a server socket */ 53 memset(&srx, 0, sizeof(srx)); 54 srx.srx_family = AF_RXRPC; 55 srx.srx_service = CM_SERVICE; 56 srx.transport_type = SOCK_DGRAM; 57 srx.transport_len = sizeof(srx.transport.sin6); 58 srx.transport.sin6.sin6_family = AF_INET6; 59 srx.transport.sin6.sin6_port = htons(AFS_CM_PORT); 60 61 min_level = RXRPC_SECURITY_ENCRYPT; 62 ret = kernel_setsockopt(socket, SOL_RXRPC, RXRPC_MIN_SECURITY_LEVEL, 63 (void *)&min_level, sizeof(min_level)); 64 if (ret < 0) 65 goto error_2; 66 67 ret = kernel_bind(socket, (struct sockaddr *) &srx, sizeof(srx)); 68 if (ret == -EADDRINUSE) { 69 srx.transport.sin6.sin6_port = 0; 70 ret = kernel_bind(socket, (struct sockaddr *) &srx, sizeof(srx)); 71 } 72 if (ret < 0) 73 goto error_2; 74 75 srx.srx_service = YFS_CM_SERVICE; 76 ret = kernel_bind(socket, (struct sockaddr *) &srx, sizeof(srx)); 77 if (ret < 0) 78 goto error_2; 79 80 /* Ideally, we'd turn on service upgrade here, but we can't because 81 * OpenAFS is buggy and leaks the userStatus field from packet to 82 * packet and between FS packets and CB packets - so if we try to do an 83 * upgrade on an FS packet, OpenAFS will leak that into the CB packet 84 * it sends back to us. 85 */ 86 87 rxrpc_kernel_new_call_notification(socket, afs_rx_new_call, 88 afs_rx_discard_new_call); 89 90 ret = kernel_listen(socket, INT_MAX); 91 if (ret < 0) 92 goto error_2; 93 94 net->socket = socket; 95 afs_charge_preallocation(&net->charge_preallocation_work); 96 _leave(" = 0"); 97 return 0; 98 99 error_2: 100 sock_release(socket); 101 error_1: 102 _leave(" = %d", ret); 103 return ret; 104 } 105 106 /* 107 * close the RxRPC socket AFS was using 108 */ 109 void afs_close_socket(struct afs_net *net) 110 { 111 _enter(""); 112 113 kernel_listen(net->socket, 0); 114 flush_workqueue(afs_async_calls); 115 116 if (net->spare_incoming_call) { 117 afs_put_call(net->spare_incoming_call); 118 net->spare_incoming_call = NULL; 119 } 120 121 _debug("outstanding %u", atomic_read(&net->nr_outstanding_calls)); 122 wait_var_event(&net->nr_outstanding_calls, 123 !atomic_read(&net->nr_outstanding_calls)); 124 _debug("no outstanding calls"); 125 126 kernel_sock_shutdown(net->socket, SHUT_RDWR); 127 flush_workqueue(afs_async_calls); 128 sock_release(net->socket); 129 130 _debug("dework"); 131 _leave(""); 132 } 133 134 /* 135 * Allocate a call. 136 */ 137 static struct afs_call *afs_alloc_call(struct afs_net *net, 138 const struct afs_call_type *type, 139 gfp_t gfp) 140 { 141 struct afs_call *call; 142 int o; 143 144 call = kzalloc(sizeof(*call), gfp); 145 if (!call) 146 return NULL; 147 148 call->type = type; 149 call->net = net; 150 call->debug_id = atomic_inc_return(&rxrpc_debug_id); 151 atomic_set(&call->usage, 1); 152 INIT_WORK(&call->async_work, afs_process_async_call); 153 init_waitqueue_head(&call->waitq); 154 spin_lock_init(&call->state_lock); 155 call->iter = &call->def_iter; 156 157 o = atomic_inc_return(&net->nr_outstanding_calls); 158 trace_afs_call(call, afs_call_trace_alloc, 1, o, 159 __builtin_return_address(0)); 160 return call; 161 } 162 163 /* 164 * Dispose of a reference on a call. 165 */ 166 void afs_put_call(struct afs_call *call) 167 { 168 struct afs_net *net = call->net; 169 int n = atomic_dec_return(&call->usage); 170 int o = atomic_read(&net->nr_outstanding_calls); 171 172 trace_afs_call(call, afs_call_trace_put, n + 1, o, 173 __builtin_return_address(0)); 174 175 ASSERTCMP(n, >=, 0); 176 if (n == 0) { 177 ASSERT(!work_pending(&call->async_work)); 178 ASSERT(call->type->name != NULL); 179 180 if (call->rxcall) { 181 rxrpc_kernel_end_call(net->socket, call->rxcall); 182 call->rxcall = NULL; 183 } 184 if (call->type->destructor) 185 call->type->destructor(call); 186 187 afs_put_server(call->net, call->server, afs_server_trace_put_call); 188 afs_put_cb_interest(call->net, call->cbi); 189 afs_put_addrlist(call->alist); 190 kfree(call->request); 191 192 trace_afs_call(call, afs_call_trace_free, 0, o, 193 __builtin_return_address(0)); 194 kfree(call); 195 196 o = atomic_dec_return(&net->nr_outstanding_calls); 197 if (o == 0) 198 wake_up_var(&net->nr_outstanding_calls); 199 } 200 } 201 202 static struct afs_call *afs_get_call(struct afs_call *call, 203 enum afs_call_trace why) 204 { 205 int u = atomic_inc_return(&call->usage); 206 207 trace_afs_call(call, why, u, 208 atomic_read(&call->net->nr_outstanding_calls), 209 __builtin_return_address(0)); 210 return call; 211 } 212 213 /* 214 * Queue the call for actual work. 215 */ 216 static void afs_queue_call_work(struct afs_call *call) 217 { 218 if (call->type->work) { 219 INIT_WORK(&call->work, call->type->work); 220 221 afs_get_call(call, afs_call_trace_work); 222 if (!queue_work(afs_wq, &call->work)) 223 afs_put_call(call); 224 } 225 } 226 227 /* 228 * allocate a call with flat request and reply buffers 229 */ 230 struct afs_call *afs_alloc_flat_call(struct afs_net *net, 231 const struct afs_call_type *type, 232 size_t request_size, size_t reply_max) 233 { 234 struct afs_call *call; 235 236 call = afs_alloc_call(net, type, GFP_NOFS); 237 if (!call) 238 goto nomem_call; 239 240 if (request_size) { 241 call->request_size = request_size; 242 call->request = kmalloc(request_size, GFP_NOFS); 243 if (!call->request) 244 goto nomem_free; 245 } 246 247 if (reply_max) { 248 call->reply_max = reply_max; 249 call->buffer = kmalloc(reply_max, GFP_NOFS); 250 if (!call->buffer) 251 goto nomem_free; 252 } 253 254 afs_extract_to_buf(call, call->reply_max); 255 call->operation_ID = type->op; 256 init_waitqueue_head(&call->waitq); 257 return call; 258 259 nomem_free: 260 afs_put_call(call); 261 nomem_call: 262 return NULL; 263 } 264 265 /* 266 * clean up a call with flat buffer 267 */ 268 void afs_flat_call_destructor(struct afs_call *call) 269 { 270 _enter(""); 271 272 kfree(call->request); 273 call->request = NULL; 274 kfree(call->buffer); 275 call->buffer = NULL; 276 } 277 278 #define AFS_BVEC_MAX 8 279 280 /* 281 * Load the given bvec with the next few pages. 282 */ 283 static void afs_load_bvec(struct afs_call *call, struct msghdr *msg, 284 struct bio_vec *bv, pgoff_t first, pgoff_t last, 285 unsigned offset) 286 { 287 struct page *pages[AFS_BVEC_MAX]; 288 unsigned int nr, n, i, to, bytes = 0; 289 290 nr = min_t(pgoff_t, last - first + 1, AFS_BVEC_MAX); 291 n = find_get_pages_contig(call->mapping, first, nr, pages); 292 ASSERTCMP(n, ==, nr); 293 294 msg->msg_flags |= MSG_MORE; 295 for (i = 0; i < nr; i++) { 296 to = PAGE_SIZE; 297 if (first + i >= last) { 298 to = call->last_to; 299 msg->msg_flags &= ~MSG_MORE; 300 } 301 bv[i].bv_page = pages[i]; 302 bv[i].bv_len = to - offset; 303 bv[i].bv_offset = offset; 304 bytes += to - offset; 305 offset = 0; 306 } 307 308 iov_iter_bvec(&msg->msg_iter, WRITE, bv, nr, bytes); 309 } 310 311 /* 312 * Advance the AFS call state when the RxRPC call ends the transmit phase. 313 */ 314 static void afs_notify_end_request_tx(struct sock *sock, 315 struct rxrpc_call *rxcall, 316 unsigned long call_user_ID) 317 { 318 struct afs_call *call = (struct afs_call *)call_user_ID; 319 320 afs_set_call_state(call, AFS_CALL_CL_REQUESTING, AFS_CALL_CL_AWAIT_REPLY); 321 } 322 323 /* 324 * attach the data from a bunch of pages on an inode to a call 325 */ 326 static int afs_send_pages(struct afs_call *call, struct msghdr *msg) 327 { 328 struct bio_vec bv[AFS_BVEC_MAX]; 329 unsigned int bytes, nr, loop, offset; 330 pgoff_t first = call->first, last = call->last; 331 int ret; 332 333 offset = call->first_offset; 334 call->first_offset = 0; 335 336 do { 337 afs_load_bvec(call, msg, bv, first, last, offset); 338 trace_afs_send_pages(call, msg, first, last, offset); 339 340 offset = 0; 341 bytes = msg->msg_iter.count; 342 nr = msg->msg_iter.nr_segs; 343 344 ret = rxrpc_kernel_send_data(call->net->socket, call->rxcall, msg, 345 bytes, afs_notify_end_request_tx); 346 for (loop = 0; loop < nr; loop++) 347 put_page(bv[loop].bv_page); 348 if (ret < 0) 349 break; 350 351 first += nr; 352 } while (first <= last); 353 354 trace_afs_sent_pages(call, call->first, last, first, ret); 355 return ret; 356 } 357 358 /* 359 * Initiate a call and synchronously queue up the parameters for dispatch. Any 360 * error is stored into the call struct, which the caller must check for. 361 */ 362 void afs_make_call(struct afs_addr_cursor *ac, struct afs_call *call, gfp_t gfp) 363 { 364 struct sockaddr_rxrpc *srx = &ac->alist->addrs[ac->index]; 365 struct rxrpc_call *rxcall; 366 struct msghdr msg; 367 struct kvec iov[1]; 368 s64 tx_total_len; 369 int ret; 370 371 _enter(",{%pISp},", &srx->transport); 372 373 ASSERT(call->type != NULL); 374 ASSERT(call->type->name != NULL); 375 376 _debug("____MAKE %p{%s,%x} [%d]____", 377 call, call->type->name, key_serial(call->key), 378 atomic_read(&call->net->nr_outstanding_calls)); 379 380 call->addr_ix = ac->index; 381 call->alist = afs_get_addrlist(ac->alist); 382 383 /* Work out the length we're going to transmit. This is awkward for 384 * calls such as FS.StoreData where there's an extra injection of data 385 * after the initial fixed part. 386 */ 387 tx_total_len = call->request_size; 388 if (call->send_pages) { 389 if (call->last == call->first) { 390 tx_total_len += call->last_to - call->first_offset; 391 } else { 392 /* It looks mathematically like you should be able to 393 * combine the following lines with the ones above, but 394 * unsigned arithmetic is fun when it wraps... 395 */ 396 tx_total_len += PAGE_SIZE - call->first_offset; 397 tx_total_len += call->last_to; 398 tx_total_len += (call->last - call->first - 1) * PAGE_SIZE; 399 } 400 } 401 402 /* If the call is going to be asynchronous, we need an extra ref for 403 * the call to hold itself so the caller need not hang on to its ref. 404 */ 405 if (call->async) 406 afs_get_call(call, afs_call_trace_get); 407 408 /* create a call */ 409 rxcall = rxrpc_kernel_begin_call(call->net->socket, srx, call->key, 410 (unsigned long)call, 411 tx_total_len, gfp, 412 (call->async ? 413 afs_wake_up_async_call : 414 afs_wake_up_call_waiter), 415 call->upgrade, 416 call->intr, 417 call->debug_id); 418 if (IS_ERR(rxcall)) { 419 ret = PTR_ERR(rxcall); 420 call->error = ret; 421 goto error_kill_call; 422 } 423 424 call->rxcall = rxcall; 425 426 if (call->max_lifespan) 427 rxrpc_kernel_set_max_life(call->net->socket, rxcall, 428 call->max_lifespan); 429 430 /* send the request */ 431 iov[0].iov_base = call->request; 432 iov[0].iov_len = call->request_size; 433 434 msg.msg_name = NULL; 435 msg.msg_namelen = 0; 436 iov_iter_kvec(&msg.msg_iter, WRITE, iov, 1, call->request_size); 437 msg.msg_control = NULL; 438 msg.msg_controllen = 0; 439 msg.msg_flags = MSG_WAITALL | (call->send_pages ? MSG_MORE : 0); 440 441 ret = rxrpc_kernel_send_data(call->net->socket, rxcall, 442 &msg, call->request_size, 443 afs_notify_end_request_tx); 444 if (ret < 0) 445 goto error_do_abort; 446 447 if (call->send_pages) { 448 ret = afs_send_pages(call, &msg); 449 if (ret < 0) 450 goto error_do_abort; 451 } 452 453 /* Note that at this point, we may have received the reply or an abort 454 * - and an asynchronous call may already have completed. 455 * 456 * afs_wait_for_call_to_complete(call, ac) 457 * must be called to synchronously clean up. 458 */ 459 return; 460 461 error_do_abort: 462 if (ret != -ECONNABORTED) { 463 rxrpc_kernel_abort_call(call->net->socket, rxcall, 464 RX_USER_ABORT, ret, "KSD"); 465 } else { 466 iov_iter_kvec(&msg.msg_iter, READ, NULL, 0, 0); 467 rxrpc_kernel_recv_data(call->net->socket, rxcall, 468 &msg.msg_iter, false, 469 &call->abort_code, &call->service_id); 470 ac->abort_code = call->abort_code; 471 ac->responded = true; 472 } 473 call->error = ret; 474 trace_afs_call_done(call); 475 error_kill_call: 476 if (call->type->done) 477 call->type->done(call); 478 479 /* We need to dispose of the extra ref we grabbed for an async call. 480 * The call, however, might be queued on afs_async_calls and we need to 481 * make sure we don't get any more notifications that might requeue it. 482 */ 483 if (call->rxcall) { 484 rxrpc_kernel_end_call(call->net->socket, call->rxcall); 485 call->rxcall = NULL; 486 } 487 if (call->async) { 488 if (cancel_work_sync(&call->async_work)) 489 afs_put_call(call); 490 afs_put_call(call); 491 } 492 493 ac->error = ret; 494 call->state = AFS_CALL_COMPLETE; 495 _leave(" = %d", ret); 496 } 497 498 /* 499 * deliver messages to a call 500 */ 501 static void afs_deliver_to_call(struct afs_call *call) 502 { 503 enum afs_call_state state; 504 u32 abort_code, remote_abort = 0; 505 int ret; 506 507 _enter("%s", call->type->name); 508 509 while (state = READ_ONCE(call->state), 510 state == AFS_CALL_CL_AWAIT_REPLY || 511 state == AFS_CALL_SV_AWAIT_OP_ID || 512 state == AFS_CALL_SV_AWAIT_REQUEST || 513 state == AFS_CALL_SV_AWAIT_ACK 514 ) { 515 if (state == AFS_CALL_SV_AWAIT_ACK) { 516 iov_iter_kvec(&call->def_iter, READ, NULL, 0, 0); 517 ret = rxrpc_kernel_recv_data(call->net->socket, 518 call->rxcall, &call->def_iter, 519 false, &remote_abort, 520 &call->service_id); 521 trace_afs_receive_data(call, &call->def_iter, false, ret); 522 523 if (ret == -EINPROGRESS || ret == -EAGAIN) 524 return; 525 if (ret < 0 || ret == 1) { 526 if (ret == 1) 527 ret = 0; 528 goto call_complete; 529 } 530 return; 531 } 532 533 if (!call->have_reply_time && 534 rxrpc_kernel_get_reply_time(call->net->socket, 535 call->rxcall, 536 &call->reply_time)) 537 call->have_reply_time = true; 538 539 ret = call->type->deliver(call); 540 state = READ_ONCE(call->state); 541 switch (ret) { 542 case 0: 543 afs_queue_call_work(call); 544 if (state == AFS_CALL_CL_PROC_REPLY) { 545 if (call->cbi) 546 set_bit(AFS_SERVER_FL_MAY_HAVE_CB, 547 &call->cbi->server->flags); 548 goto call_complete; 549 } 550 ASSERTCMP(state, >, AFS_CALL_CL_PROC_REPLY); 551 goto done; 552 case -EINPROGRESS: 553 case -EAGAIN: 554 goto out; 555 case -ECONNABORTED: 556 ASSERTCMP(state, ==, AFS_CALL_COMPLETE); 557 goto done; 558 case -ENOTSUPP: 559 abort_code = RXGEN_OPCODE; 560 rxrpc_kernel_abort_call(call->net->socket, call->rxcall, 561 abort_code, ret, "KIV"); 562 goto local_abort; 563 case -EIO: 564 pr_err("kAFS: Call %u in bad state %u\n", 565 call->debug_id, state); 566 /* Fall through */ 567 case -ENODATA: 568 case -EBADMSG: 569 case -EMSGSIZE: 570 abort_code = RXGEN_CC_UNMARSHAL; 571 if (state != AFS_CALL_CL_AWAIT_REPLY) 572 abort_code = RXGEN_SS_UNMARSHAL; 573 rxrpc_kernel_abort_call(call->net->socket, call->rxcall, 574 abort_code, ret, "KUM"); 575 goto local_abort; 576 default: 577 abort_code = RX_USER_ABORT; 578 rxrpc_kernel_abort_call(call->net->socket, call->rxcall, 579 abort_code, ret, "KER"); 580 goto local_abort; 581 } 582 } 583 584 done: 585 if (call->type->done) 586 call->type->done(call); 587 if (state == AFS_CALL_COMPLETE && call->incoming) 588 afs_put_call(call); 589 out: 590 _leave(""); 591 return; 592 593 local_abort: 594 abort_code = 0; 595 call_complete: 596 afs_set_call_complete(call, ret, remote_abort); 597 state = AFS_CALL_COMPLETE; 598 goto done; 599 } 600 601 /* 602 * Wait synchronously for a call to complete and clean up the call struct. 603 */ 604 long afs_wait_for_call_to_complete(struct afs_call *call, 605 struct afs_addr_cursor *ac) 606 { 607 signed long rtt2, timeout; 608 long ret; 609 bool stalled = false; 610 u64 rtt; 611 u32 life, last_life; 612 bool rxrpc_complete = false; 613 614 DECLARE_WAITQUEUE(myself, current); 615 616 _enter(""); 617 618 ret = call->error; 619 if (ret < 0) 620 goto out; 621 622 rtt = rxrpc_kernel_get_rtt(call->net->socket, call->rxcall); 623 rtt2 = nsecs_to_jiffies64(rtt) * 2; 624 if (rtt2 < 2) 625 rtt2 = 2; 626 627 timeout = rtt2; 628 rxrpc_kernel_check_life(call->net->socket, call->rxcall, &last_life); 629 630 add_wait_queue(&call->waitq, &myself); 631 for (;;) { 632 set_current_state(TASK_UNINTERRUPTIBLE); 633 634 /* deliver any messages that are in the queue */ 635 if (!afs_check_call_state(call, AFS_CALL_COMPLETE) && 636 call->need_attention) { 637 call->need_attention = false; 638 __set_current_state(TASK_RUNNING); 639 afs_deliver_to_call(call); 640 timeout = rtt2; 641 continue; 642 } 643 644 if (afs_check_call_state(call, AFS_CALL_COMPLETE)) 645 break; 646 647 if (!rxrpc_kernel_check_life(call->net->socket, call->rxcall, &life)) { 648 /* rxrpc terminated the call. */ 649 rxrpc_complete = true; 650 break; 651 } 652 653 if (call->intr && timeout == 0 && 654 life == last_life && signal_pending(current)) { 655 if (stalled) 656 break; 657 __set_current_state(TASK_RUNNING); 658 rxrpc_kernel_probe_life(call->net->socket, call->rxcall); 659 timeout = rtt2; 660 stalled = true; 661 continue; 662 } 663 664 if (life != last_life) { 665 timeout = rtt2; 666 last_life = life; 667 stalled = false; 668 } 669 670 timeout = schedule_timeout(timeout); 671 } 672 673 remove_wait_queue(&call->waitq, &myself); 674 __set_current_state(TASK_RUNNING); 675 676 if (!afs_check_call_state(call, AFS_CALL_COMPLETE)) { 677 if (rxrpc_complete) { 678 afs_set_call_complete(call, call->error, call->abort_code); 679 } else { 680 /* Kill off the call if it's still live. */ 681 _debug("call interrupted"); 682 if (rxrpc_kernel_abort_call(call->net->socket, call->rxcall, 683 RX_USER_ABORT, -EINTR, "KWI")) 684 afs_set_call_complete(call, -EINTR, 0); 685 } 686 } 687 688 spin_lock_bh(&call->state_lock); 689 ac->abort_code = call->abort_code; 690 ac->error = call->error; 691 spin_unlock_bh(&call->state_lock); 692 693 ret = ac->error; 694 switch (ret) { 695 case 0: 696 ret = call->ret0; 697 call->ret0 = 0; 698 699 /* Fall through */ 700 case -ECONNABORTED: 701 ac->responded = true; 702 break; 703 } 704 705 out: 706 _debug("call complete"); 707 afs_put_call(call); 708 _leave(" = %p", (void *)ret); 709 return ret; 710 } 711 712 /* 713 * wake up a waiting call 714 */ 715 static void afs_wake_up_call_waiter(struct sock *sk, struct rxrpc_call *rxcall, 716 unsigned long call_user_ID) 717 { 718 struct afs_call *call = (struct afs_call *)call_user_ID; 719 720 call->need_attention = true; 721 wake_up(&call->waitq); 722 } 723 724 /* 725 * wake up an asynchronous call 726 */ 727 static void afs_wake_up_async_call(struct sock *sk, struct rxrpc_call *rxcall, 728 unsigned long call_user_ID) 729 { 730 struct afs_call *call = (struct afs_call *)call_user_ID; 731 int u; 732 733 trace_afs_notify_call(rxcall, call); 734 call->need_attention = true; 735 736 u = atomic_fetch_add_unless(&call->usage, 1, 0); 737 if (u != 0) { 738 trace_afs_call(call, afs_call_trace_wake, u, 739 atomic_read(&call->net->nr_outstanding_calls), 740 __builtin_return_address(0)); 741 742 if (!queue_work(afs_async_calls, &call->async_work)) 743 afs_put_call(call); 744 } 745 } 746 747 /* 748 * Delete an asynchronous call. The work item carries a ref to the call struct 749 * that we need to release. 750 */ 751 static void afs_delete_async_call(struct work_struct *work) 752 { 753 struct afs_call *call = container_of(work, struct afs_call, async_work); 754 755 _enter(""); 756 757 afs_put_call(call); 758 759 _leave(""); 760 } 761 762 /* 763 * Perform I/O processing on an asynchronous call. The work item carries a ref 764 * to the call struct that we either need to release or to pass on. 765 */ 766 static void afs_process_async_call(struct work_struct *work) 767 { 768 struct afs_call *call = container_of(work, struct afs_call, async_work); 769 770 _enter(""); 771 772 if (call->state < AFS_CALL_COMPLETE && call->need_attention) { 773 call->need_attention = false; 774 afs_deliver_to_call(call); 775 } 776 777 if (call->state == AFS_CALL_COMPLETE) { 778 /* We have two refs to release - one from the alloc and one 779 * queued with the work item - and we can't just deallocate the 780 * call because the work item may be queued again. 781 */ 782 call->async_work.func = afs_delete_async_call; 783 if (!queue_work(afs_async_calls, &call->async_work)) 784 afs_put_call(call); 785 } 786 787 afs_put_call(call); 788 _leave(""); 789 } 790 791 static void afs_rx_attach(struct rxrpc_call *rxcall, unsigned long user_call_ID) 792 { 793 struct afs_call *call = (struct afs_call *)user_call_ID; 794 795 call->rxcall = rxcall; 796 } 797 798 /* 799 * Charge the incoming call preallocation. 800 */ 801 void afs_charge_preallocation(struct work_struct *work) 802 { 803 struct afs_net *net = 804 container_of(work, struct afs_net, charge_preallocation_work); 805 struct afs_call *call = net->spare_incoming_call; 806 807 for (;;) { 808 if (!call) { 809 call = afs_alloc_call(net, &afs_RXCMxxxx, GFP_KERNEL); 810 if (!call) 811 break; 812 813 call->async = true; 814 call->state = AFS_CALL_SV_AWAIT_OP_ID; 815 init_waitqueue_head(&call->waitq); 816 afs_extract_to_tmp(call); 817 } 818 819 if (rxrpc_kernel_charge_accept(net->socket, 820 afs_wake_up_async_call, 821 afs_rx_attach, 822 (unsigned long)call, 823 GFP_KERNEL, 824 call->debug_id) < 0) 825 break; 826 call = NULL; 827 } 828 net->spare_incoming_call = call; 829 } 830 831 /* 832 * Discard a preallocated call when a socket is shut down. 833 */ 834 static void afs_rx_discard_new_call(struct rxrpc_call *rxcall, 835 unsigned long user_call_ID) 836 { 837 struct afs_call *call = (struct afs_call *)user_call_ID; 838 839 call->rxcall = NULL; 840 afs_put_call(call); 841 } 842 843 /* 844 * Notification of an incoming call. 845 */ 846 static void afs_rx_new_call(struct sock *sk, struct rxrpc_call *rxcall, 847 unsigned long user_call_ID) 848 { 849 struct afs_net *net = afs_sock2net(sk); 850 851 queue_work(afs_wq, &net->charge_preallocation_work); 852 } 853 854 /* 855 * Grab the operation ID from an incoming cache manager call. The socket 856 * buffer is discarded on error or if we don't yet have sufficient data. 857 */ 858 static int afs_deliver_cm_op_id(struct afs_call *call) 859 { 860 int ret; 861 862 _enter("{%zu}", iov_iter_count(call->iter)); 863 864 /* the operation ID forms the first four bytes of the request data */ 865 ret = afs_extract_data(call, true); 866 if (ret < 0) 867 return ret; 868 869 call->operation_ID = ntohl(call->tmp); 870 afs_set_call_state(call, AFS_CALL_SV_AWAIT_OP_ID, AFS_CALL_SV_AWAIT_REQUEST); 871 872 /* ask the cache manager to route the call (it'll change the call type 873 * if successful) */ 874 if (!afs_cm_incoming_call(call)) 875 return -ENOTSUPP; 876 877 trace_afs_cb_call(call); 878 879 /* pass responsibility for the remainer of this message off to the 880 * cache manager op */ 881 return call->type->deliver(call); 882 } 883 884 /* 885 * Advance the AFS call state when an RxRPC service call ends the transmit 886 * phase. 887 */ 888 static void afs_notify_end_reply_tx(struct sock *sock, 889 struct rxrpc_call *rxcall, 890 unsigned long call_user_ID) 891 { 892 struct afs_call *call = (struct afs_call *)call_user_ID; 893 894 afs_set_call_state(call, AFS_CALL_SV_REPLYING, AFS_CALL_SV_AWAIT_ACK); 895 } 896 897 /* 898 * send an empty reply 899 */ 900 void afs_send_empty_reply(struct afs_call *call) 901 { 902 struct afs_net *net = call->net; 903 struct msghdr msg; 904 905 _enter(""); 906 907 rxrpc_kernel_set_tx_length(net->socket, call->rxcall, 0); 908 909 msg.msg_name = NULL; 910 msg.msg_namelen = 0; 911 iov_iter_kvec(&msg.msg_iter, WRITE, NULL, 0, 0); 912 msg.msg_control = NULL; 913 msg.msg_controllen = 0; 914 msg.msg_flags = 0; 915 916 switch (rxrpc_kernel_send_data(net->socket, call->rxcall, &msg, 0, 917 afs_notify_end_reply_tx)) { 918 case 0: 919 _leave(" [replied]"); 920 return; 921 922 case -ENOMEM: 923 _debug("oom"); 924 rxrpc_kernel_abort_call(net->socket, call->rxcall, 925 RX_USER_ABORT, -ENOMEM, "KOO"); 926 /* Fall through */ 927 default: 928 _leave(" [error]"); 929 return; 930 } 931 } 932 933 /* 934 * send a simple reply 935 */ 936 void afs_send_simple_reply(struct afs_call *call, const void *buf, size_t len) 937 { 938 struct afs_net *net = call->net; 939 struct msghdr msg; 940 struct kvec iov[1]; 941 int n; 942 943 _enter(""); 944 945 rxrpc_kernel_set_tx_length(net->socket, call->rxcall, len); 946 947 iov[0].iov_base = (void *) buf; 948 iov[0].iov_len = len; 949 msg.msg_name = NULL; 950 msg.msg_namelen = 0; 951 iov_iter_kvec(&msg.msg_iter, WRITE, iov, 1, len); 952 msg.msg_control = NULL; 953 msg.msg_controllen = 0; 954 msg.msg_flags = 0; 955 956 n = rxrpc_kernel_send_data(net->socket, call->rxcall, &msg, len, 957 afs_notify_end_reply_tx); 958 if (n >= 0) { 959 /* Success */ 960 _leave(" [replied]"); 961 return; 962 } 963 964 if (n == -ENOMEM) { 965 _debug("oom"); 966 rxrpc_kernel_abort_call(net->socket, call->rxcall, 967 RX_USER_ABORT, -ENOMEM, "KOO"); 968 } 969 _leave(" [error]"); 970 } 971 972 /* 973 * Extract a piece of data from the received data socket buffers. 974 */ 975 int afs_extract_data(struct afs_call *call, bool want_more) 976 { 977 struct afs_net *net = call->net; 978 struct iov_iter *iter = call->iter; 979 enum afs_call_state state; 980 u32 remote_abort = 0; 981 int ret; 982 983 _enter("{%s,%zu},%d", call->type->name, iov_iter_count(iter), want_more); 984 985 ret = rxrpc_kernel_recv_data(net->socket, call->rxcall, iter, 986 want_more, &remote_abort, 987 &call->service_id); 988 if (ret == 0 || ret == -EAGAIN) 989 return ret; 990 991 state = READ_ONCE(call->state); 992 if (ret == 1) { 993 switch (state) { 994 case AFS_CALL_CL_AWAIT_REPLY: 995 afs_set_call_state(call, state, AFS_CALL_CL_PROC_REPLY); 996 break; 997 case AFS_CALL_SV_AWAIT_REQUEST: 998 afs_set_call_state(call, state, AFS_CALL_SV_REPLYING); 999 break; 1000 case AFS_CALL_COMPLETE: 1001 kdebug("prem complete %d", call->error); 1002 return afs_io_error(call, afs_io_error_extract); 1003 default: 1004 break; 1005 } 1006 return 0; 1007 } 1008 1009 afs_set_call_complete(call, ret, remote_abort); 1010 return ret; 1011 } 1012 1013 /* 1014 * Log protocol error production. 1015 */ 1016 noinline int afs_protocol_error(struct afs_call *call, int error, 1017 enum afs_eproto_cause cause) 1018 { 1019 trace_afs_protocol_error(call, error, cause); 1020 return error; 1021 } 1022