xref: /linux/fs/afs/rxrpc.c (revision 79d2e1919a2728ef49d938eb20ebd5903c14dfb0)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /* Maintain an RxRPC server socket to do AFS communications through
3  *
4  * Copyright (C) 2007 Red Hat, Inc. All Rights Reserved.
5  * Written by David Howells (dhowells@redhat.com)
6  */
7 
8 #include <linux/slab.h>
9 #include <linux/sched/signal.h>
10 
11 #include <net/sock.h>
12 #include <net/af_rxrpc.h>
13 #include "internal.h"
14 #include "afs_cm.h"
15 #include "protocol_yfs.h"
16 #define RXRPC_TRACE_ONLY_DEFINE_ENUMS
17 #include <trace/events/rxrpc.h>
18 
19 struct workqueue_struct *afs_async_calls;
20 
21 static void afs_deferred_free_worker(struct work_struct *work);
22 static void afs_wake_up_call_waiter(struct sock *, struct rxrpc_call *, unsigned long);
23 static void afs_wake_up_async_call(struct sock *, struct rxrpc_call *, unsigned long);
24 static void afs_process_async_call(struct work_struct *);
25 static void afs_rx_new_call(struct sock *, struct rxrpc_call *, unsigned long);
26 static void afs_rx_discard_new_call(struct rxrpc_call *, unsigned long);
27 static int afs_deliver_cm_op_id(struct afs_call *);
28 
29 /* asynchronous incoming call initial processing */
30 static const struct afs_call_type afs_RXCMxxxx = {
31 	.name		= "CB.xxxx",
32 	.deliver	= afs_deliver_cm_op_id,
33 };
34 
35 /*
36  * open an RxRPC socket and bind it to be a server for callback notifications
37  * - the socket is left in blocking mode and non-blocking ops use MSG_DONTWAIT
38  */
39 int afs_open_socket(struct afs_net *net)
40 {
41 	struct sockaddr_rxrpc srx;
42 	struct socket *socket;
43 	int ret;
44 
45 	_enter("");
46 
47 	ret = sock_create_kern(net->net, AF_RXRPC, SOCK_DGRAM, PF_INET6, &socket);
48 	if (ret < 0)
49 		goto error_1;
50 
51 	socket->sk->sk_allocation = GFP_NOFS;
52 
53 	/* bind the callback manager's address to make this a server socket */
54 	memset(&srx, 0, sizeof(srx));
55 	srx.srx_family			= AF_RXRPC;
56 	srx.srx_service			= CM_SERVICE;
57 	srx.transport_type		= SOCK_DGRAM;
58 	srx.transport_len		= sizeof(srx.transport.sin6);
59 	srx.transport.sin6.sin6_family	= AF_INET6;
60 	srx.transport.sin6.sin6_port	= htons(AFS_CM_PORT);
61 
62 	ret = rxrpc_sock_set_min_security_level(socket->sk,
63 						RXRPC_SECURITY_ENCRYPT);
64 	if (ret < 0)
65 		goto error_2;
66 
67 	ret = kernel_bind(socket, (struct sockaddr *) &srx, sizeof(srx));
68 	if (ret == -EADDRINUSE) {
69 		srx.transport.sin6.sin6_port = 0;
70 		ret = kernel_bind(socket, (struct sockaddr *) &srx, sizeof(srx));
71 	}
72 	if (ret < 0)
73 		goto error_2;
74 
75 	srx.srx_service = YFS_CM_SERVICE;
76 	ret = kernel_bind(socket, (struct sockaddr *) &srx, sizeof(srx));
77 	if (ret < 0)
78 		goto error_2;
79 
80 	/* Ideally, we'd turn on service upgrade here, but we can't because
81 	 * OpenAFS is buggy and leaks the userStatus field from packet to
82 	 * packet and between FS packets and CB packets - so if we try to do an
83 	 * upgrade on an FS packet, OpenAFS will leak that into the CB packet
84 	 * it sends back to us.
85 	 */
86 
87 	rxrpc_kernel_new_call_notification(socket, afs_rx_new_call,
88 					   afs_rx_discard_new_call);
89 
90 	ret = kernel_listen(socket, INT_MAX);
91 	if (ret < 0)
92 		goto error_2;
93 
94 	net->socket = socket;
95 	afs_charge_preallocation(&net->charge_preallocation_work);
96 	_leave(" = 0");
97 	return 0;
98 
99 error_2:
100 	sock_release(socket);
101 error_1:
102 	_leave(" = %d", ret);
103 	return ret;
104 }
105 
106 /*
107  * close the RxRPC socket AFS was using
108  */
109 void afs_close_socket(struct afs_net *net)
110 {
111 	_enter("");
112 
113 	kernel_listen(net->socket, 0);
114 	flush_workqueue(afs_async_calls);
115 
116 	if (net->spare_incoming_call) {
117 		afs_put_call(net->spare_incoming_call);
118 		net->spare_incoming_call = NULL;
119 	}
120 
121 	_debug("outstanding %u", atomic_read(&net->nr_outstanding_calls));
122 	wait_var_event(&net->nr_outstanding_calls,
123 		       !atomic_read(&net->nr_outstanding_calls));
124 	_debug("no outstanding calls");
125 
126 	kernel_sock_shutdown(net->socket, SHUT_RDWR);
127 	flush_workqueue(afs_async_calls);
128 	sock_release(net->socket);
129 
130 	_debug("dework");
131 	_leave("");
132 }
133 
134 /*
135  * Allocate a call.
136  */
137 static struct afs_call *afs_alloc_call(struct afs_net *net,
138 				       const struct afs_call_type *type,
139 				       gfp_t gfp)
140 {
141 	struct afs_call *call;
142 	int o;
143 
144 	call = kzalloc(sizeof(*call), gfp);
145 	if (!call)
146 		return NULL;
147 
148 	call->type = type;
149 	call->net = net;
150 	call->debug_id = atomic_inc_return(&rxrpc_debug_id);
151 	refcount_set(&call->ref, 1);
152 	INIT_WORK(&call->async_work, afs_process_async_call);
153 	INIT_WORK(&call->free_work, afs_deferred_free_worker);
154 	init_waitqueue_head(&call->waitq);
155 	spin_lock_init(&call->state_lock);
156 	call->iter = &call->def_iter;
157 
158 	o = atomic_inc_return(&net->nr_outstanding_calls);
159 	trace_afs_call(call->debug_id, afs_call_trace_alloc, 1, o,
160 		       __builtin_return_address(0));
161 	return call;
162 }
163 
164 static void afs_free_call(struct afs_call *call)
165 {
166 	struct afs_net *net = call->net;
167 	int o;
168 
169 	ASSERT(!work_pending(&call->async_work));
170 
171 	rxrpc_kernel_put_peer(call->peer);
172 
173 	if (call->rxcall) {
174 		rxrpc_kernel_shutdown_call(net->socket, call->rxcall);
175 		rxrpc_kernel_put_call(net->socket, call->rxcall);
176 		call->rxcall = NULL;
177 	}
178 	if (call->type->destructor)
179 		call->type->destructor(call);
180 
181 	afs_unuse_server_notime(call->net, call->server, afs_server_trace_put_call);
182 	kfree(call->request);
183 
184 	o = atomic_read(&net->nr_outstanding_calls);
185 	trace_afs_call(call->debug_id, afs_call_trace_free, 0, o,
186 		       __builtin_return_address(0));
187 	kfree(call);
188 
189 	o = atomic_dec_return(&net->nr_outstanding_calls);
190 	if (o == 0)
191 		wake_up_var(&net->nr_outstanding_calls);
192 }
193 
194 /*
195  * Dispose of a reference on a call.
196  */
197 void afs_put_call(struct afs_call *call)
198 {
199 	struct afs_net *net = call->net;
200 	unsigned int debug_id = call->debug_id;
201 	bool zero;
202 	int r, o;
203 
204 	zero = __refcount_dec_and_test(&call->ref, &r);
205 	o = atomic_read(&net->nr_outstanding_calls);
206 	trace_afs_call(debug_id, afs_call_trace_put, r - 1, o,
207 		       __builtin_return_address(0));
208 	if (zero)
209 		afs_free_call(call);
210 }
211 
212 static void afs_deferred_free_worker(struct work_struct *work)
213 {
214 	struct afs_call *call = container_of(work, struct afs_call, free_work);
215 
216 	afs_free_call(call);
217 }
218 
219 /*
220  * Dispose of a reference on a call, deferring the cleanup to a workqueue
221  * to avoid lock recursion.
222  */
223 void afs_deferred_put_call(struct afs_call *call)
224 {
225 	struct afs_net *net = call->net;
226 	unsigned int debug_id = call->debug_id;
227 	bool zero;
228 	int r, o;
229 
230 	zero = __refcount_dec_and_test(&call->ref, &r);
231 	o = atomic_read(&net->nr_outstanding_calls);
232 	trace_afs_call(debug_id, afs_call_trace_put, r - 1, o,
233 		       __builtin_return_address(0));
234 	if (zero)
235 		schedule_work(&call->free_work);
236 }
237 
238 static struct afs_call *afs_get_call(struct afs_call *call,
239 				     enum afs_call_trace why)
240 {
241 	int r;
242 
243 	__refcount_inc(&call->ref, &r);
244 
245 	trace_afs_call(call->debug_id, why, r + 1,
246 		       atomic_read(&call->net->nr_outstanding_calls),
247 		       __builtin_return_address(0));
248 	return call;
249 }
250 
251 /*
252  * Queue the call for actual work.
253  */
254 static void afs_queue_call_work(struct afs_call *call)
255 {
256 	if (call->type->work) {
257 		INIT_WORK(&call->work, call->type->work);
258 
259 		afs_get_call(call, afs_call_trace_work);
260 		if (!queue_work(afs_wq, &call->work))
261 			afs_put_call(call);
262 	}
263 }
264 
265 /*
266  * allocate a call with flat request and reply buffers
267  */
268 struct afs_call *afs_alloc_flat_call(struct afs_net *net,
269 				     const struct afs_call_type *type,
270 				     size_t request_size, size_t reply_max)
271 {
272 	struct afs_call *call;
273 
274 	call = afs_alloc_call(net, type, GFP_NOFS);
275 	if (!call)
276 		goto nomem_call;
277 
278 	if (request_size) {
279 		call->request_size = request_size;
280 		call->request = kmalloc(request_size, GFP_NOFS);
281 		if (!call->request)
282 			goto nomem_free;
283 	}
284 
285 	if (reply_max) {
286 		call->reply_max = reply_max;
287 		call->buffer = kmalloc(reply_max, GFP_NOFS);
288 		if (!call->buffer)
289 			goto nomem_free;
290 	}
291 
292 	afs_extract_to_buf(call, call->reply_max);
293 	call->operation_ID = type->op;
294 	init_waitqueue_head(&call->waitq);
295 	return call;
296 
297 nomem_free:
298 	afs_put_call(call);
299 nomem_call:
300 	return NULL;
301 }
302 
303 /*
304  * clean up a call with flat buffer
305  */
306 void afs_flat_call_destructor(struct afs_call *call)
307 {
308 	_enter("");
309 
310 	kfree(call->request);
311 	call->request = NULL;
312 	kfree(call->buffer);
313 	call->buffer = NULL;
314 }
315 
316 /*
317  * Advance the AFS call state when the RxRPC call ends the transmit phase.
318  */
319 static void afs_notify_end_request_tx(struct sock *sock,
320 				      struct rxrpc_call *rxcall,
321 				      unsigned long call_user_ID)
322 {
323 	struct afs_call *call = (struct afs_call *)call_user_ID;
324 
325 	afs_set_call_state(call, AFS_CALL_CL_REQUESTING, AFS_CALL_CL_AWAIT_REPLY);
326 }
327 
328 /*
329  * Initiate a call and synchronously queue up the parameters for dispatch.  Any
330  * error is stored into the call struct, which the caller must check for.
331  */
332 void afs_make_call(struct afs_call *call, gfp_t gfp)
333 {
334 	struct rxrpc_call *rxcall;
335 	struct msghdr msg;
336 	struct kvec iov[1];
337 	size_t len;
338 	s64 tx_total_len;
339 	int ret;
340 
341 	_enter(",{%pISp+%u},", rxrpc_kernel_remote_addr(call->peer), call->service_id);
342 
343 	ASSERT(call->type != NULL);
344 	ASSERT(call->type->name != NULL);
345 
346 	_debug("____MAKE %p{%s,%x} [%d]____",
347 	       call, call->type->name, key_serial(call->key),
348 	       atomic_read(&call->net->nr_outstanding_calls));
349 
350 	trace_afs_make_call(call);
351 
352 	/* Work out the length we're going to transmit.  This is awkward for
353 	 * calls such as FS.StoreData where there's an extra injection of data
354 	 * after the initial fixed part.
355 	 */
356 	tx_total_len = call->request_size;
357 	if (call->write_iter)
358 		tx_total_len += iov_iter_count(call->write_iter);
359 
360 	/* If the call is going to be asynchronous, we need an extra ref for
361 	 * the call to hold itself so the caller need not hang on to its ref.
362 	 */
363 	if (call->async) {
364 		afs_get_call(call, afs_call_trace_get);
365 		call->drop_ref = true;
366 	}
367 
368 	/* create a call */
369 	rxcall = rxrpc_kernel_begin_call(call->net->socket, call->peer, call->key,
370 					 (unsigned long)call,
371 					 tx_total_len,
372 					 call->max_lifespan,
373 					 gfp,
374 					 (call->async ?
375 					  afs_wake_up_async_call :
376 					  afs_wake_up_call_waiter),
377 					 call->service_id,
378 					 call->upgrade,
379 					 (call->intr ? RXRPC_PREINTERRUPTIBLE :
380 					  RXRPC_UNINTERRUPTIBLE),
381 					 call->debug_id);
382 	if (IS_ERR(rxcall)) {
383 		ret = PTR_ERR(rxcall);
384 		call->error = ret;
385 		goto error_kill_call;
386 	}
387 
388 	call->rxcall = rxcall;
389 	call->issue_time = ktime_get_real();
390 
391 	/* send the request */
392 	iov[0].iov_base	= call->request;
393 	iov[0].iov_len	= call->request_size;
394 
395 	msg.msg_name		= NULL;
396 	msg.msg_namelen		= 0;
397 	iov_iter_kvec(&msg.msg_iter, ITER_SOURCE, iov, 1, call->request_size);
398 	msg.msg_control		= NULL;
399 	msg.msg_controllen	= 0;
400 	msg.msg_flags		= MSG_WAITALL | (call->write_iter ? MSG_MORE : 0);
401 
402 	ret = rxrpc_kernel_send_data(call->net->socket, rxcall,
403 				     &msg, call->request_size,
404 				     afs_notify_end_request_tx);
405 	if (ret < 0)
406 		goto error_do_abort;
407 
408 	if (call->write_iter) {
409 		msg.msg_iter = *call->write_iter;
410 		msg.msg_flags &= ~MSG_MORE;
411 		trace_afs_send_data(call, &msg);
412 
413 		ret = rxrpc_kernel_send_data(call->net->socket,
414 					     call->rxcall, &msg,
415 					     iov_iter_count(&msg.msg_iter),
416 					     afs_notify_end_request_tx);
417 		*call->write_iter = msg.msg_iter;
418 
419 		trace_afs_sent_data(call, &msg, ret);
420 		if (ret < 0)
421 			goto error_do_abort;
422 	}
423 
424 	/* Note that at this point, we may have received the reply or an abort
425 	 * - and an asynchronous call may already have completed.
426 	 *
427 	 * afs_wait_for_call_to_complete(call)
428 	 * must be called to synchronously clean up.
429 	 */
430 	return;
431 
432 error_do_abort:
433 	if (ret != -ECONNABORTED) {
434 		rxrpc_kernel_abort_call(call->net->socket, rxcall,
435 					RX_USER_ABORT, ret,
436 					afs_abort_send_data_error);
437 	} else {
438 		len = 0;
439 		iov_iter_kvec(&msg.msg_iter, ITER_DEST, NULL, 0, 0);
440 		rxrpc_kernel_recv_data(call->net->socket, rxcall,
441 				       &msg.msg_iter, &len, false,
442 				       &call->abort_code, &call->service_id);
443 		call->responded = true;
444 	}
445 	call->error = ret;
446 	trace_afs_call_done(call);
447 error_kill_call:
448 	if (call->type->done)
449 		call->type->done(call);
450 
451 	/* We need to dispose of the extra ref we grabbed for an async call.
452 	 * The call, however, might be queued on afs_async_calls and we need to
453 	 * make sure we don't get any more notifications that might requeue it.
454 	 */
455 	if (call->rxcall)
456 		rxrpc_kernel_shutdown_call(call->net->socket, call->rxcall);
457 	if (call->async) {
458 		if (cancel_work_sync(&call->async_work))
459 			afs_put_call(call);
460 		afs_set_call_complete(call, ret, 0);
461 	}
462 
463 	call->error = ret;
464 	call->state = AFS_CALL_COMPLETE;
465 	_leave(" = %d", ret);
466 }
467 
468 /*
469  * Log remote abort codes that indicate that we have a protocol disagreement
470  * with the server.
471  */
472 static void afs_log_error(struct afs_call *call, s32 remote_abort)
473 {
474 	static int max = 0;
475 	const char *msg;
476 	int m;
477 
478 	switch (remote_abort) {
479 	case RX_EOF:		 msg = "unexpected EOF";	break;
480 	case RXGEN_CC_MARSHAL:	 msg = "client marshalling";	break;
481 	case RXGEN_CC_UNMARSHAL: msg = "client unmarshalling";	break;
482 	case RXGEN_SS_MARSHAL:	 msg = "server marshalling";	break;
483 	case RXGEN_SS_UNMARSHAL: msg = "server unmarshalling";	break;
484 	case RXGEN_DECODE:	 msg = "opcode decode";		break;
485 	case RXGEN_SS_XDRFREE:	 msg = "server XDR cleanup";	break;
486 	case RXGEN_CC_XDRFREE:	 msg = "client XDR cleanup";	break;
487 	case -32:		 msg = "insufficient data";	break;
488 	default:
489 		return;
490 	}
491 
492 	m = max;
493 	if (m < 3) {
494 		max = m + 1;
495 		pr_notice("kAFS: Peer reported %s failure on %s [%pISp]\n",
496 			  msg, call->type->name,
497 			  rxrpc_kernel_remote_addr(call->peer));
498 	}
499 }
500 
501 /*
502  * deliver messages to a call
503  */
504 static void afs_deliver_to_call(struct afs_call *call)
505 {
506 	enum afs_call_state state;
507 	size_t len;
508 	u32 abort_code, remote_abort = 0;
509 	int ret;
510 
511 	_enter("%s", call->type->name);
512 
513 	while (state = READ_ONCE(call->state),
514 	       state == AFS_CALL_CL_AWAIT_REPLY ||
515 	       state == AFS_CALL_SV_AWAIT_OP_ID ||
516 	       state == AFS_CALL_SV_AWAIT_REQUEST ||
517 	       state == AFS_CALL_SV_AWAIT_ACK
518 	       ) {
519 		if (state == AFS_CALL_SV_AWAIT_ACK) {
520 			len = 0;
521 			iov_iter_kvec(&call->def_iter, ITER_DEST, NULL, 0, 0);
522 			ret = rxrpc_kernel_recv_data(call->net->socket,
523 						     call->rxcall, &call->def_iter,
524 						     &len, false, &remote_abort,
525 						     &call->service_id);
526 			trace_afs_receive_data(call, &call->def_iter, false, ret);
527 
528 			if (ret == -EINPROGRESS || ret == -EAGAIN)
529 				return;
530 			if (ret < 0 || ret == 1) {
531 				if (ret == 1)
532 					ret = 0;
533 				goto call_complete;
534 			}
535 			return;
536 		}
537 
538 		ret = call->type->deliver(call);
539 		state = READ_ONCE(call->state);
540 		if (ret == 0 && call->unmarshalling_error)
541 			ret = -EBADMSG;
542 		switch (ret) {
543 		case 0:
544 			call->responded = true;
545 			afs_queue_call_work(call);
546 			if (state == AFS_CALL_CL_PROC_REPLY) {
547 				if (call->op)
548 					set_bit(AFS_SERVER_FL_MAY_HAVE_CB,
549 						&call->op->server->flags);
550 				goto call_complete;
551 			}
552 			ASSERTCMP(state, >, AFS_CALL_CL_PROC_REPLY);
553 			goto done;
554 		case -EINPROGRESS:
555 		case -EAGAIN:
556 			goto out;
557 		case -ECONNABORTED:
558 			ASSERTCMP(state, ==, AFS_CALL_COMPLETE);
559 			call->responded = true;
560 			afs_log_error(call, call->abort_code);
561 			goto done;
562 		case -ENOTSUPP:
563 			call->responded = true;
564 			abort_code = RXGEN_OPCODE;
565 			rxrpc_kernel_abort_call(call->net->socket, call->rxcall,
566 						abort_code, ret,
567 						afs_abort_op_not_supported);
568 			goto local_abort;
569 		case -EIO:
570 			pr_err("kAFS: Call %u in bad state %u\n",
571 			       call->debug_id, state);
572 			fallthrough;
573 		case -ENODATA:
574 		case -EBADMSG:
575 		case -EMSGSIZE:
576 		case -ENOMEM:
577 		case -EFAULT:
578 			abort_code = RXGEN_CC_UNMARSHAL;
579 			if (state != AFS_CALL_CL_AWAIT_REPLY)
580 				abort_code = RXGEN_SS_UNMARSHAL;
581 			rxrpc_kernel_abort_call(call->net->socket, call->rxcall,
582 						abort_code, ret,
583 						afs_abort_unmarshal_error);
584 			goto local_abort;
585 		default:
586 			abort_code = RX_CALL_DEAD;
587 			rxrpc_kernel_abort_call(call->net->socket, call->rxcall,
588 						abort_code, ret,
589 						afs_abort_general_error);
590 			goto local_abort;
591 		}
592 	}
593 
594 done:
595 	if (call->type->done)
596 		call->type->done(call);
597 out:
598 	_leave("");
599 	return;
600 
601 local_abort:
602 	abort_code = 0;
603 call_complete:
604 	afs_set_call_complete(call, ret, remote_abort);
605 	state = AFS_CALL_COMPLETE;
606 	goto done;
607 }
608 
609 /*
610  * Wait synchronously for a call to complete.
611  */
612 void afs_wait_for_call_to_complete(struct afs_call *call)
613 {
614 	bool rxrpc_complete = false;
615 
616 	_enter("");
617 
618 	if (!afs_check_call_state(call, AFS_CALL_COMPLETE)) {
619 		DECLARE_WAITQUEUE(myself, current);
620 
621 		add_wait_queue(&call->waitq, &myself);
622 		for (;;) {
623 			set_current_state(TASK_UNINTERRUPTIBLE);
624 
625 			/* deliver any messages that are in the queue */
626 			if (!afs_check_call_state(call, AFS_CALL_COMPLETE) &&
627 			    call->need_attention) {
628 				call->need_attention = false;
629 				__set_current_state(TASK_RUNNING);
630 				afs_deliver_to_call(call);
631 				continue;
632 			}
633 
634 			if (afs_check_call_state(call, AFS_CALL_COMPLETE))
635 				break;
636 
637 			if (!rxrpc_kernel_check_life(call->net->socket, call->rxcall)) {
638 				/* rxrpc terminated the call. */
639 				rxrpc_complete = true;
640 				break;
641 			}
642 
643 			schedule();
644 		}
645 
646 		remove_wait_queue(&call->waitq, &myself);
647 		__set_current_state(TASK_RUNNING);
648 	}
649 
650 	if (!afs_check_call_state(call, AFS_CALL_COMPLETE)) {
651 		if (rxrpc_complete) {
652 			afs_set_call_complete(call, call->error, call->abort_code);
653 		} else {
654 			/* Kill off the call if it's still live. */
655 			_debug("call interrupted");
656 			if (rxrpc_kernel_abort_call(call->net->socket, call->rxcall,
657 						    RX_USER_ABORT, -EINTR,
658 						    afs_abort_interrupted))
659 				afs_set_call_complete(call, -EINTR, 0);
660 		}
661 	}
662 }
663 
664 /*
665  * wake up a waiting call
666  */
667 static void afs_wake_up_call_waiter(struct sock *sk, struct rxrpc_call *rxcall,
668 				    unsigned long call_user_ID)
669 {
670 	struct afs_call *call = (struct afs_call *)call_user_ID;
671 
672 	call->need_attention = true;
673 	wake_up(&call->waitq);
674 }
675 
676 /*
677  * Wake up an asynchronous call.  The caller is holding the call notify
678  * spinlock around this, so we can't call afs_put_call().
679  */
680 static void afs_wake_up_async_call(struct sock *sk, struct rxrpc_call *rxcall,
681 				   unsigned long call_user_ID)
682 {
683 	struct afs_call *call = (struct afs_call *)call_user_ID;
684 	int r;
685 
686 	trace_afs_notify_call(rxcall, call);
687 	call->need_attention = true;
688 
689 	if (__refcount_inc_not_zero(&call->ref, &r)) {
690 		trace_afs_call(call->debug_id, afs_call_trace_wake, r + 1,
691 			       atomic_read(&call->net->nr_outstanding_calls),
692 			       __builtin_return_address(0));
693 
694 		if (!queue_work(afs_async_calls, &call->async_work))
695 			afs_deferred_put_call(call);
696 	}
697 }
698 
699 /*
700  * Perform I/O processing on an asynchronous call.  The work item carries a ref
701  * to the call struct that we either need to release or to pass on.
702  */
703 static void afs_process_async_call(struct work_struct *work)
704 {
705 	struct afs_call *call = container_of(work, struct afs_call, async_work);
706 
707 	_enter("");
708 
709 	if (call->state < AFS_CALL_COMPLETE && call->need_attention) {
710 		call->need_attention = false;
711 		afs_deliver_to_call(call);
712 	}
713 
714 	afs_put_call(call);
715 	_leave("");
716 }
717 
718 static void afs_rx_attach(struct rxrpc_call *rxcall, unsigned long user_call_ID)
719 {
720 	struct afs_call *call = (struct afs_call *)user_call_ID;
721 
722 	call->rxcall = rxcall;
723 }
724 
725 /*
726  * Charge the incoming call preallocation.
727  */
728 void afs_charge_preallocation(struct work_struct *work)
729 {
730 	struct afs_net *net =
731 		container_of(work, struct afs_net, charge_preallocation_work);
732 	struct afs_call *call = net->spare_incoming_call;
733 
734 	for (;;) {
735 		if (!call) {
736 			call = afs_alloc_call(net, &afs_RXCMxxxx, GFP_KERNEL);
737 			if (!call)
738 				break;
739 
740 			call->drop_ref = true;
741 			call->async = true;
742 			call->state = AFS_CALL_SV_AWAIT_OP_ID;
743 			init_waitqueue_head(&call->waitq);
744 			afs_extract_to_tmp(call);
745 		}
746 
747 		if (rxrpc_kernel_charge_accept(net->socket,
748 					       afs_wake_up_async_call,
749 					       afs_rx_attach,
750 					       (unsigned long)call,
751 					       GFP_KERNEL,
752 					       call->debug_id) < 0)
753 			break;
754 		call = NULL;
755 	}
756 	net->spare_incoming_call = call;
757 }
758 
759 /*
760  * Discard a preallocated call when a socket is shut down.
761  */
762 static void afs_rx_discard_new_call(struct rxrpc_call *rxcall,
763 				    unsigned long user_call_ID)
764 {
765 	struct afs_call *call = (struct afs_call *)user_call_ID;
766 
767 	call->rxcall = NULL;
768 	afs_put_call(call);
769 }
770 
771 /*
772  * Notification of an incoming call.
773  */
774 static void afs_rx_new_call(struct sock *sk, struct rxrpc_call *rxcall,
775 			    unsigned long user_call_ID)
776 {
777 	struct afs_net *net = afs_sock2net(sk);
778 
779 	queue_work(afs_wq, &net->charge_preallocation_work);
780 }
781 
782 /*
783  * Grab the operation ID from an incoming cache manager call.  The socket
784  * buffer is discarded on error or if we don't yet have sufficient data.
785  */
786 static int afs_deliver_cm_op_id(struct afs_call *call)
787 {
788 	int ret;
789 
790 	_enter("{%zu}", iov_iter_count(call->iter));
791 
792 	/* the operation ID forms the first four bytes of the request data */
793 	ret = afs_extract_data(call, true);
794 	if (ret < 0)
795 		return ret;
796 
797 	call->operation_ID = ntohl(call->tmp);
798 	afs_set_call_state(call, AFS_CALL_SV_AWAIT_OP_ID, AFS_CALL_SV_AWAIT_REQUEST);
799 
800 	/* ask the cache manager to route the call (it'll change the call type
801 	 * if successful) */
802 	if (!afs_cm_incoming_call(call))
803 		return -ENOTSUPP;
804 
805 	trace_afs_cb_call(call);
806 
807 	/* pass responsibility for the remainer of this message off to the
808 	 * cache manager op */
809 	return call->type->deliver(call);
810 }
811 
812 /*
813  * Advance the AFS call state when an RxRPC service call ends the transmit
814  * phase.
815  */
816 static void afs_notify_end_reply_tx(struct sock *sock,
817 				    struct rxrpc_call *rxcall,
818 				    unsigned long call_user_ID)
819 {
820 	struct afs_call *call = (struct afs_call *)call_user_ID;
821 
822 	afs_set_call_state(call, AFS_CALL_SV_REPLYING, AFS_CALL_SV_AWAIT_ACK);
823 }
824 
825 /*
826  * send an empty reply
827  */
828 void afs_send_empty_reply(struct afs_call *call)
829 {
830 	struct afs_net *net = call->net;
831 	struct msghdr msg;
832 
833 	_enter("");
834 
835 	rxrpc_kernel_set_tx_length(net->socket, call->rxcall, 0);
836 
837 	msg.msg_name		= NULL;
838 	msg.msg_namelen		= 0;
839 	iov_iter_kvec(&msg.msg_iter, ITER_SOURCE, NULL, 0, 0);
840 	msg.msg_control		= NULL;
841 	msg.msg_controllen	= 0;
842 	msg.msg_flags		= 0;
843 
844 	switch (rxrpc_kernel_send_data(net->socket, call->rxcall, &msg, 0,
845 				       afs_notify_end_reply_tx)) {
846 	case 0:
847 		_leave(" [replied]");
848 		return;
849 
850 	case -ENOMEM:
851 		_debug("oom");
852 		rxrpc_kernel_abort_call(net->socket, call->rxcall,
853 					RXGEN_SS_MARSHAL, -ENOMEM,
854 					afs_abort_oom);
855 		fallthrough;
856 	default:
857 		_leave(" [error]");
858 		return;
859 	}
860 }
861 
862 /*
863  * send a simple reply
864  */
865 void afs_send_simple_reply(struct afs_call *call, const void *buf, size_t len)
866 {
867 	struct afs_net *net = call->net;
868 	struct msghdr msg;
869 	struct kvec iov[1];
870 	int n;
871 
872 	_enter("");
873 
874 	rxrpc_kernel_set_tx_length(net->socket, call->rxcall, len);
875 
876 	iov[0].iov_base		= (void *) buf;
877 	iov[0].iov_len		= len;
878 	msg.msg_name		= NULL;
879 	msg.msg_namelen		= 0;
880 	iov_iter_kvec(&msg.msg_iter, ITER_SOURCE, iov, 1, len);
881 	msg.msg_control		= NULL;
882 	msg.msg_controllen	= 0;
883 	msg.msg_flags		= 0;
884 
885 	n = rxrpc_kernel_send_data(net->socket, call->rxcall, &msg, len,
886 				   afs_notify_end_reply_tx);
887 	if (n >= 0) {
888 		/* Success */
889 		_leave(" [replied]");
890 		return;
891 	}
892 
893 	if (n == -ENOMEM) {
894 		_debug("oom");
895 		rxrpc_kernel_abort_call(net->socket, call->rxcall,
896 					RXGEN_SS_MARSHAL, -ENOMEM,
897 					afs_abort_oom);
898 	}
899 	_leave(" [error]");
900 }
901 
902 /*
903  * Extract a piece of data from the received data socket buffers.
904  */
905 int afs_extract_data(struct afs_call *call, bool want_more)
906 {
907 	struct afs_net *net = call->net;
908 	struct iov_iter *iter = call->iter;
909 	enum afs_call_state state;
910 	u32 remote_abort = 0;
911 	int ret;
912 
913 	_enter("{%s,%zu,%zu},%d",
914 	       call->type->name, call->iov_len, iov_iter_count(iter), want_more);
915 
916 	ret = rxrpc_kernel_recv_data(net->socket, call->rxcall, iter,
917 				     &call->iov_len, want_more, &remote_abort,
918 				     &call->service_id);
919 	trace_afs_receive_data(call, call->iter, want_more, ret);
920 	if (ret == 0 || ret == -EAGAIN)
921 		return ret;
922 
923 	state = READ_ONCE(call->state);
924 	if (ret == 1) {
925 		switch (state) {
926 		case AFS_CALL_CL_AWAIT_REPLY:
927 			afs_set_call_state(call, state, AFS_CALL_CL_PROC_REPLY);
928 			break;
929 		case AFS_CALL_SV_AWAIT_REQUEST:
930 			afs_set_call_state(call, state, AFS_CALL_SV_REPLYING);
931 			break;
932 		case AFS_CALL_COMPLETE:
933 			kdebug("prem complete %d", call->error);
934 			return afs_io_error(call, afs_io_error_extract);
935 		default:
936 			break;
937 		}
938 		return 0;
939 	}
940 
941 	afs_set_call_complete(call, ret, remote_abort);
942 	return ret;
943 }
944 
945 /*
946  * Log protocol error production.
947  */
948 noinline int afs_protocol_error(struct afs_call *call,
949 				enum afs_eproto_cause cause)
950 {
951 	trace_afs_protocol_error(call, cause);
952 	if (call)
953 		call->unmarshalling_error = true;
954 	return -EBADMSG;
955 }
956