1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* Maintain an RxRPC server socket to do AFS communications through 3 * 4 * Copyright (C) 2007 Red Hat, Inc. All Rights Reserved. 5 * Written by David Howells (dhowells@redhat.com) 6 */ 7 8 #include <linux/slab.h> 9 #include <linux/sched/signal.h> 10 11 #include <net/sock.h> 12 #include <net/af_rxrpc.h> 13 #include "internal.h" 14 #include "afs_cm.h" 15 #include "protocol_yfs.h" 16 17 struct workqueue_struct *afs_async_calls; 18 19 static void afs_wake_up_call_waiter(struct sock *, struct rxrpc_call *, unsigned long); 20 static void afs_wake_up_async_call(struct sock *, struct rxrpc_call *, unsigned long); 21 static void afs_process_async_call(struct work_struct *); 22 static void afs_rx_new_call(struct sock *, struct rxrpc_call *, unsigned long); 23 static void afs_rx_discard_new_call(struct rxrpc_call *, unsigned long); 24 static int afs_deliver_cm_op_id(struct afs_call *); 25 26 /* asynchronous incoming call initial processing */ 27 static const struct afs_call_type afs_RXCMxxxx = { 28 .name = "CB.xxxx", 29 .deliver = afs_deliver_cm_op_id, 30 }; 31 32 /* 33 * open an RxRPC socket and bind it to be a server for callback notifications 34 * - the socket is left in blocking mode and non-blocking ops use MSG_DONTWAIT 35 */ 36 int afs_open_socket(struct afs_net *net) 37 { 38 struct sockaddr_rxrpc srx; 39 struct socket *socket; 40 int ret; 41 42 _enter(""); 43 44 ret = sock_create_kern(net->net, AF_RXRPC, SOCK_DGRAM, PF_INET6, &socket); 45 if (ret < 0) 46 goto error_1; 47 48 socket->sk->sk_allocation = GFP_NOFS; 49 50 /* bind the callback manager's address to make this a server socket */ 51 memset(&srx, 0, sizeof(srx)); 52 srx.srx_family = AF_RXRPC; 53 srx.srx_service = CM_SERVICE; 54 srx.transport_type = SOCK_DGRAM; 55 srx.transport_len = sizeof(srx.transport.sin6); 56 srx.transport.sin6.sin6_family = AF_INET6; 57 srx.transport.sin6.sin6_port = htons(AFS_CM_PORT); 58 59 ret = rxrpc_sock_set_min_security_level(socket->sk, 60 RXRPC_SECURITY_ENCRYPT); 61 if (ret < 0) 62 goto error_2; 63 64 ret = kernel_bind(socket, (struct sockaddr *) &srx, sizeof(srx)); 65 if (ret == -EADDRINUSE) { 66 srx.transport.sin6.sin6_port = 0; 67 ret = kernel_bind(socket, (struct sockaddr *) &srx, sizeof(srx)); 68 } 69 if (ret < 0) 70 goto error_2; 71 72 srx.srx_service = YFS_CM_SERVICE; 73 ret = kernel_bind(socket, (struct sockaddr *) &srx, sizeof(srx)); 74 if (ret < 0) 75 goto error_2; 76 77 /* Ideally, we'd turn on service upgrade here, but we can't because 78 * OpenAFS is buggy and leaks the userStatus field from packet to 79 * packet and between FS packets and CB packets - so if we try to do an 80 * upgrade on an FS packet, OpenAFS will leak that into the CB packet 81 * it sends back to us. 82 */ 83 84 rxrpc_kernel_new_call_notification(socket, afs_rx_new_call, 85 afs_rx_discard_new_call); 86 87 ret = kernel_listen(socket, INT_MAX); 88 if (ret < 0) 89 goto error_2; 90 91 net->socket = socket; 92 afs_charge_preallocation(&net->charge_preallocation_work); 93 _leave(" = 0"); 94 return 0; 95 96 error_2: 97 sock_release(socket); 98 error_1: 99 _leave(" = %d", ret); 100 return ret; 101 } 102 103 /* 104 * close the RxRPC socket AFS was using 105 */ 106 void afs_close_socket(struct afs_net *net) 107 { 108 _enter(""); 109 110 kernel_listen(net->socket, 0); 111 flush_workqueue(afs_async_calls); 112 113 if (net->spare_incoming_call) { 114 afs_put_call(net->spare_incoming_call); 115 net->spare_incoming_call = NULL; 116 } 117 118 _debug("outstanding %u", atomic_read(&net->nr_outstanding_calls)); 119 wait_var_event(&net->nr_outstanding_calls, 120 !atomic_read(&net->nr_outstanding_calls)); 121 _debug("no outstanding calls"); 122 123 kernel_sock_shutdown(net->socket, SHUT_RDWR); 124 flush_workqueue(afs_async_calls); 125 sock_release(net->socket); 126 127 _debug("dework"); 128 _leave(""); 129 } 130 131 /* 132 * Allocate a call. 133 */ 134 static struct afs_call *afs_alloc_call(struct afs_net *net, 135 const struct afs_call_type *type, 136 gfp_t gfp) 137 { 138 struct afs_call *call; 139 int o; 140 141 call = kzalloc(sizeof(*call), gfp); 142 if (!call) 143 return NULL; 144 145 call->type = type; 146 call->net = net; 147 call->debug_id = atomic_inc_return(&rxrpc_debug_id); 148 refcount_set(&call->ref, 1); 149 INIT_WORK(&call->async_work, afs_process_async_call); 150 init_waitqueue_head(&call->waitq); 151 spin_lock_init(&call->state_lock); 152 call->iter = &call->def_iter; 153 154 o = atomic_inc_return(&net->nr_outstanding_calls); 155 trace_afs_call(call->debug_id, afs_call_trace_alloc, 1, o, 156 __builtin_return_address(0)); 157 return call; 158 } 159 160 /* 161 * Dispose of a reference on a call. 162 */ 163 void afs_put_call(struct afs_call *call) 164 { 165 struct afs_net *net = call->net; 166 unsigned int debug_id = call->debug_id; 167 bool zero; 168 int r, o; 169 170 zero = __refcount_dec_and_test(&call->ref, &r); 171 o = atomic_read(&net->nr_outstanding_calls); 172 trace_afs_call(debug_id, afs_call_trace_put, r - 1, o, 173 __builtin_return_address(0)); 174 175 if (zero) { 176 ASSERT(!work_pending(&call->async_work)); 177 ASSERT(call->type->name != NULL); 178 179 if (call->rxcall) { 180 rxrpc_kernel_end_call(net->socket, call->rxcall); 181 call->rxcall = NULL; 182 } 183 if (call->type->destructor) 184 call->type->destructor(call); 185 186 afs_unuse_server_notime(call->net, call->server, afs_server_trace_put_call); 187 afs_put_addrlist(call->alist); 188 kfree(call->request); 189 190 trace_afs_call(call->debug_id, afs_call_trace_free, 0, o, 191 __builtin_return_address(0)); 192 kfree(call); 193 194 o = atomic_dec_return(&net->nr_outstanding_calls); 195 if (o == 0) 196 wake_up_var(&net->nr_outstanding_calls); 197 } 198 } 199 200 static struct afs_call *afs_get_call(struct afs_call *call, 201 enum afs_call_trace why) 202 { 203 int r; 204 205 __refcount_inc(&call->ref, &r); 206 207 trace_afs_call(call->debug_id, why, r + 1, 208 atomic_read(&call->net->nr_outstanding_calls), 209 __builtin_return_address(0)); 210 return call; 211 } 212 213 /* 214 * Queue the call for actual work. 215 */ 216 static void afs_queue_call_work(struct afs_call *call) 217 { 218 if (call->type->work) { 219 INIT_WORK(&call->work, call->type->work); 220 221 afs_get_call(call, afs_call_trace_work); 222 if (!queue_work(afs_wq, &call->work)) 223 afs_put_call(call); 224 } 225 } 226 227 /* 228 * allocate a call with flat request and reply buffers 229 */ 230 struct afs_call *afs_alloc_flat_call(struct afs_net *net, 231 const struct afs_call_type *type, 232 size_t request_size, size_t reply_max) 233 { 234 struct afs_call *call; 235 236 call = afs_alloc_call(net, type, GFP_NOFS); 237 if (!call) 238 goto nomem_call; 239 240 if (request_size) { 241 call->request_size = request_size; 242 call->request = kmalloc(request_size, GFP_NOFS); 243 if (!call->request) 244 goto nomem_free; 245 } 246 247 if (reply_max) { 248 call->reply_max = reply_max; 249 call->buffer = kmalloc(reply_max, GFP_NOFS); 250 if (!call->buffer) 251 goto nomem_free; 252 } 253 254 afs_extract_to_buf(call, call->reply_max); 255 call->operation_ID = type->op; 256 init_waitqueue_head(&call->waitq); 257 return call; 258 259 nomem_free: 260 afs_put_call(call); 261 nomem_call: 262 return NULL; 263 } 264 265 /* 266 * clean up a call with flat buffer 267 */ 268 void afs_flat_call_destructor(struct afs_call *call) 269 { 270 _enter(""); 271 272 kfree(call->request); 273 call->request = NULL; 274 kfree(call->buffer); 275 call->buffer = NULL; 276 } 277 278 /* 279 * Advance the AFS call state when the RxRPC call ends the transmit phase. 280 */ 281 static void afs_notify_end_request_tx(struct sock *sock, 282 struct rxrpc_call *rxcall, 283 unsigned long call_user_ID) 284 { 285 struct afs_call *call = (struct afs_call *)call_user_ID; 286 287 afs_set_call_state(call, AFS_CALL_CL_REQUESTING, AFS_CALL_CL_AWAIT_REPLY); 288 } 289 290 /* 291 * Initiate a call and synchronously queue up the parameters for dispatch. Any 292 * error is stored into the call struct, which the caller must check for. 293 */ 294 void afs_make_call(struct afs_addr_cursor *ac, struct afs_call *call, gfp_t gfp) 295 { 296 struct sockaddr_rxrpc *srx = &ac->alist->addrs[ac->index]; 297 struct rxrpc_call *rxcall; 298 struct msghdr msg; 299 struct kvec iov[1]; 300 size_t len; 301 s64 tx_total_len; 302 int ret; 303 304 _enter(",{%pISp},", &srx->transport); 305 306 ASSERT(call->type != NULL); 307 ASSERT(call->type->name != NULL); 308 309 _debug("____MAKE %p{%s,%x} [%d]____", 310 call, call->type->name, key_serial(call->key), 311 atomic_read(&call->net->nr_outstanding_calls)); 312 313 call->addr_ix = ac->index; 314 call->alist = afs_get_addrlist(ac->alist); 315 316 /* Work out the length we're going to transmit. This is awkward for 317 * calls such as FS.StoreData where there's an extra injection of data 318 * after the initial fixed part. 319 */ 320 tx_total_len = call->request_size; 321 if (call->write_iter) 322 tx_total_len += iov_iter_count(call->write_iter); 323 324 /* If the call is going to be asynchronous, we need an extra ref for 325 * the call to hold itself so the caller need not hang on to its ref. 326 */ 327 if (call->async) { 328 afs_get_call(call, afs_call_trace_get); 329 call->drop_ref = true; 330 } 331 332 /* create a call */ 333 rxcall = rxrpc_kernel_begin_call(call->net->socket, srx, call->key, 334 (unsigned long)call, 335 tx_total_len, gfp, 336 (call->async ? 337 afs_wake_up_async_call : 338 afs_wake_up_call_waiter), 339 call->upgrade, 340 (call->intr ? RXRPC_PREINTERRUPTIBLE : 341 RXRPC_UNINTERRUPTIBLE), 342 call->debug_id); 343 if (IS_ERR(rxcall)) { 344 ret = PTR_ERR(rxcall); 345 call->error = ret; 346 goto error_kill_call; 347 } 348 349 call->rxcall = rxcall; 350 351 if (call->max_lifespan) 352 rxrpc_kernel_set_max_life(call->net->socket, rxcall, 353 call->max_lifespan); 354 call->issue_time = ktime_get_real(); 355 356 /* send the request */ 357 iov[0].iov_base = call->request; 358 iov[0].iov_len = call->request_size; 359 360 msg.msg_name = NULL; 361 msg.msg_namelen = 0; 362 iov_iter_kvec(&msg.msg_iter, WRITE, iov, 1, call->request_size); 363 msg.msg_control = NULL; 364 msg.msg_controllen = 0; 365 msg.msg_flags = MSG_WAITALL | (call->write_iter ? MSG_MORE : 0); 366 367 ret = rxrpc_kernel_send_data(call->net->socket, rxcall, 368 &msg, call->request_size, 369 afs_notify_end_request_tx); 370 if (ret < 0) 371 goto error_do_abort; 372 373 if (call->write_iter) { 374 msg.msg_iter = *call->write_iter; 375 msg.msg_flags &= ~MSG_MORE; 376 trace_afs_send_data(call, &msg); 377 378 ret = rxrpc_kernel_send_data(call->net->socket, 379 call->rxcall, &msg, 380 iov_iter_count(&msg.msg_iter), 381 afs_notify_end_request_tx); 382 *call->write_iter = msg.msg_iter; 383 384 trace_afs_sent_data(call, &msg, ret); 385 if (ret < 0) 386 goto error_do_abort; 387 } 388 389 /* Note that at this point, we may have received the reply or an abort 390 * - and an asynchronous call may already have completed. 391 * 392 * afs_wait_for_call_to_complete(call, ac) 393 * must be called to synchronously clean up. 394 */ 395 return; 396 397 error_do_abort: 398 if (ret != -ECONNABORTED) { 399 rxrpc_kernel_abort_call(call->net->socket, rxcall, 400 RX_USER_ABORT, ret, "KSD"); 401 } else { 402 len = 0; 403 iov_iter_kvec(&msg.msg_iter, READ, NULL, 0, 0); 404 rxrpc_kernel_recv_data(call->net->socket, rxcall, 405 &msg.msg_iter, &len, false, 406 &call->abort_code, &call->service_id); 407 ac->abort_code = call->abort_code; 408 ac->responded = true; 409 } 410 call->error = ret; 411 trace_afs_call_done(call); 412 error_kill_call: 413 if (call->type->done) 414 call->type->done(call); 415 416 /* We need to dispose of the extra ref we grabbed for an async call. 417 * The call, however, might be queued on afs_async_calls and we need to 418 * make sure we don't get any more notifications that might requeue it. 419 */ 420 if (call->rxcall) { 421 rxrpc_kernel_end_call(call->net->socket, call->rxcall); 422 call->rxcall = NULL; 423 } 424 if (call->async) { 425 if (cancel_work_sync(&call->async_work)) 426 afs_put_call(call); 427 afs_put_call(call); 428 } 429 430 ac->error = ret; 431 call->state = AFS_CALL_COMPLETE; 432 _leave(" = %d", ret); 433 } 434 435 /* 436 * Log remote abort codes that indicate that we have a protocol disagreement 437 * with the server. 438 */ 439 static void afs_log_error(struct afs_call *call, s32 remote_abort) 440 { 441 static int max = 0; 442 const char *msg; 443 int m; 444 445 switch (remote_abort) { 446 case RX_EOF: msg = "unexpected EOF"; break; 447 case RXGEN_CC_MARSHAL: msg = "client marshalling"; break; 448 case RXGEN_CC_UNMARSHAL: msg = "client unmarshalling"; break; 449 case RXGEN_SS_MARSHAL: msg = "server marshalling"; break; 450 case RXGEN_SS_UNMARSHAL: msg = "server unmarshalling"; break; 451 case RXGEN_DECODE: msg = "opcode decode"; break; 452 case RXGEN_SS_XDRFREE: msg = "server XDR cleanup"; break; 453 case RXGEN_CC_XDRFREE: msg = "client XDR cleanup"; break; 454 case -32: msg = "insufficient data"; break; 455 default: 456 return; 457 } 458 459 m = max; 460 if (m < 3) { 461 max = m + 1; 462 pr_notice("kAFS: Peer reported %s failure on %s [%pISp]\n", 463 msg, call->type->name, 464 &call->alist->addrs[call->addr_ix].transport); 465 } 466 } 467 468 /* 469 * deliver messages to a call 470 */ 471 static void afs_deliver_to_call(struct afs_call *call) 472 { 473 enum afs_call_state state; 474 size_t len; 475 u32 abort_code, remote_abort = 0; 476 int ret; 477 478 _enter("%s", call->type->name); 479 480 while (state = READ_ONCE(call->state), 481 state == AFS_CALL_CL_AWAIT_REPLY || 482 state == AFS_CALL_SV_AWAIT_OP_ID || 483 state == AFS_CALL_SV_AWAIT_REQUEST || 484 state == AFS_CALL_SV_AWAIT_ACK 485 ) { 486 if (state == AFS_CALL_SV_AWAIT_ACK) { 487 len = 0; 488 iov_iter_kvec(&call->def_iter, READ, NULL, 0, 0); 489 ret = rxrpc_kernel_recv_data(call->net->socket, 490 call->rxcall, &call->def_iter, 491 &len, false, &remote_abort, 492 &call->service_id); 493 trace_afs_receive_data(call, &call->def_iter, false, ret); 494 495 if (ret == -EINPROGRESS || ret == -EAGAIN) 496 return; 497 if (ret < 0 || ret == 1) { 498 if (ret == 1) 499 ret = 0; 500 goto call_complete; 501 } 502 return; 503 } 504 505 ret = call->type->deliver(call); 506 state = READ_ONCE(call->state); 507 if (ret == 0 && call->unmarshalling_error) 508 ret = -EBADMSG; 509 switch (ret) { 510 case 0: 511 afs_queue_call_work(call); 512 if (state == AFS_CALL_CL_PROC_REPLY) { 513 if (call->op) 514 set_bit(AFS_SERVER_FL_MAY_HAVE_CB, 515 &call->op->server->flags); 516 goto call_complete; 517 } 518 ASSERTCMP(state, >, AFS_CALL_CL_PROC_REPLY); 519 goto done; 520 case -EINPROGRESS: 521 case -EAGAIN: 522 goto out; 523 case -ECONNABORTED: 524 ASSERTCMP(state, ==, AFS_CALL_COMPLETE); 525 afs_log_error(call, call->abort_code); 526 goto done; 527 case -ENOTSUPP: 528 abort_code = RXGEN_OPCODE; 529 rxrpc_kernel_abort_call(call->net->socket, call->rxcall, 530 abort_code, ret, "KIV"); 531 goto local_abort; 532 case -EIO: 533 pr_err("kAFS: Call %u in bad state %u\n", 534 call->debug_id, state); 535 fallthrough; 536 case -ENODATA: 537 case -EBADMSG: 538 case -EMSGSIZE: 539 case -ENOMEM: 540 case -EFAULT: 541 abort_code = RXGEN_CC_UNMARSHAL; 542 if (state != AFS_CALL_CL_AWAIT_REPLY) 543 abort_code = RXGEN_SS_UNMARSHAL; 544 rxrpc_kernel_abort_call(call->net->socket, call->rxcall, 545 abort_code, ret, "KUM"); 546 goto local_abort; 547 default: 548 abort_code = RX_CALL_DEAD; 549 rxrpc_kernel_abort_call(call->net->socket, call->rxcall, 550 abort_code, ret, "KER"); 551 goto local_abort; 552 } 553 } 554 555 done: 556 if (call->type->done) 557 call->type->done(call); 558 out: 559 _leave(""); 560 return; 561 562 local_abort: 563 abort_code = 0; 564 call_complete: 565 afs_set_call_complete(call, ret, remote_abort); 566 state = AFS_CALL_COMPLETE; 567 goto done; 568 } 569 570 /* 571 * Wait synchronously for a call to complete and clean up the call struct. 572 */ 573 long afs_wait_for_call_to_complete(struct afs_call *call, 574 struct afs_addr_cursor *ac) 575 { 576 long ret; 577 bool rxrpc_complete = false; 578 579 DECLARE_WAITQUEUE(myself, current); 580 581 _enter(""); 582 583 ret = call->error; 584 if (ret < 0) 585 goto out; 586 587 add_wait_queue(&call->waitq, &myself); 588 for (;;) { 589 set_current_state(TASK_UNINTERRUPTIBLE); 590 591 /* deliver any messages that are in the queue */ 592 if (!afs_check_call_state(call, AFS_CALL_COMPLETE) && 593 call->need_attention) { 594 call->need_attention = false; 595 __set_current_state(TASK_RUNNING); 596 afs_deliver_to_call(call); 597 continue; 598 } 599 600 if (afs_check_call_state(call, AFS_CALL_COMPLETE)) 601 break; 602 603 if (!rxrpc_kernel_check_life(call->net->socket, call->rxcall)) { 604 /* rxrpc terminated the call. */ 605 rxrpc_complete = true; 606 break; 607 } 608 609 schedule(); 610 } 611 612 remove_wait_queue(&call->waitq, &myself); 613 __set_current_state(TASK_RUNNING); 614 615 if (!afs_check_call_state(call, AFS_CALL_COMPLETE)) { 616 if (rxrpc_complete) { 617 afs_set_call_complete(call, call->error, call->abort_code); 618 } else { 619 /* Kill off the call if it's still live. */ 620 _debug("call interrupted"); 621 if (rxrpc_kernel_abort_call(call->net->socket, call->rxcall, 622 RX_USER_ABORT, -EINTR, "KWI")) 623 afs_set_call_complete(call, -EINTR, 0); 624 } 625 } 626 627 spin_lock_bh(&call->state_lock); 628 ac->abort_code = call->abort_code; 629 ac->error = call->error; 630 spin_unlock_bh(&call->state_lock); 631 632 ret = ac->error; 633 switch (ret) { 634 case 0: 635 ret = call->ret0; 636 call->ret0 = 0; 637 638 fallthrough; 639 case -ECONNABORTED: 640 ac->responded = true; 641 break; 642 } 643 644 out: 645 _debug("call complete"); 646 afs_put_call(call); 647 _leave(" = %p", (void *)ret); 648 return ret; 649 } 650 651 /* 652 * wake up a waiting call 653 */ 654 static void afs_wake_up_call_waiter(struct sock *sk, struct rxrpc_call *rxcall, 655 unsigned long call_user_ID) 656 { 657 struct afs_call *call = (struct afs_call *)call_user_ID; 658 659 call->need_attention = true; 660 wake_up(&call->waitq); 661 } 662 663 /* 664 * wake up an asynchronous call 665 */ 666 static void afs_wake_up_async_call(struct sock *sk, struct rxrpc_call *rxcall, 667 unsigned long call_user_ID) 668 { 669 struct afs_call *call = (struct afs_call *)call_user_ID; 670 int r; 671 672 trace_afs_notify_call(rxcall, call); 673 call->need_attention = true; 674 675 if (__refcount_inc_not_zero(&call->ref, &r)) { 676 trace_afs_call(call->debug_id, afs_call_trace_wake, r + 1, 677 atomic_read(&call->net->nr_outstanding_calls), 678 __builtin_return_address(0)); 679 680 if (!queue_work(afs_async_calls, &call->async_work)) 681 afs_put_call(call); 682 } 683 } 684 685 /* 686 * Perform I/O processing on an asynchronous call. The work item carries a ref 687 * to the call struct that we either need to release or to pass on. 688 */ 689 static void afs_process_async_call(struct work_struct *work) 690 { 691 struct afs_call *call = container_of(work, struct afs_call, async_work); 692 693 _enter(""); 694 695 if (call->state < AFS_CALL_COMPLETE && call->need_attention) { 696 call->need_attention = false; 697 afs_deliver_to_call(call); 698 } 699 700 afs_put_call(call); 701 _leave(""); 702 } 703 704 static void afs_rx_attach(struct rxrpc_call *rxcall, unsigned long user_call_ID) 705 { 706 struct afs_call *call = (struct afs_call *)user_call_ID; 707 708 call->rxcall = rxcall; 709 } 710 711 /* 712 * Charge the incoming call preallocation. 713 */ 714 void afs_charge_preallocation(struct work_struct *work) 715 { 716 struct afs_net *net = 717 container_of(work, struct afs_net, charge_preallocation_work); 718 struct afs_call *call = net->spare_incoming_call; 719 720 for (;;) { 721 if (!call) { 722 call = afs_alloc_call(net, &afs_RXCMxxxx, GFP_KERNEL); 723 if (!call) 724 break; 725 726 call->drop_ref = true; 727 call->async = true; 728 call->state = AFS_CALL_SV_AWAIT_OP_ID; 729 init_waitqueue_head(&call->waitq); 730 afs_extract_to_tmp(call); 731 } 732 733 if (rxrpc_kernel_charge_accept(net->socket, 734 afs_wake_up_async_call, 735 afs_rx_attach, 736 (unsigned long)call, 737 GFP_KERNEL, 738 call->debug_id) < 0) 739 break; 740 call = NULL; 741 } 742 net->spare_incoming_call = call; 743 } 744 745 /* 746 * Discard a preallocated call when a socket is shut down. 747 */ 748 static void afs_rx_discard_new_call(struct rxrpc_call *rxcall, 749 unsigned long user_call_ID) 750 { 751 struct afs_call *call = (struct afs_call *)user_call_ID; 752 753 call->rxcall = NULL; 754 afs_put_call(call); 755 } 756 757 /* 758 * Notification of an incoming call. 759 */ 760 static void afs_rx_new_call(struct sock *sk, struct rxrpc_call *rxcall, 761 unsigned long user_call_ID) 762 { 763 struct afs_net *net = afs_sock2net(sk); 764 765 queue_work(afs_wq, &net->charge_preallocation_work); 766 } 767 768 /* 769 * Grab the operation ID from an incoming cache manager call. The socket 770 * buffer is discarded on error or if we don't yet have sufficient data. 771 */ 772 static int afs_deliver_cm_op_id(struct afs_call *call) 773 { 774 int ret; 775 776 _enter("{%zu}", iov_iter_count(call->iter)); 777 778 /* the operation ID forms the first four bytes of the request data */ 779 ret = afs_extract_data(call, true); 780 if (ret < 0) 781 return ret; 782 783 call->operation_ID = ntohl(call->tmp); 784 afs_set_call_state(call, AFS_CALL_SV_AWAIT_OP_ID, AFS_CALL_SV_AWAIT_REQUEST); 785 786 /* ask the cache manager to route the call (it'll change the call type 787 * if successful) */ 788 if (!afs_cm_incoming_call(call)) 789 return -ENOTSUPP; 790 791 trace_afs_cb_call(call); 792 793 /* pass responsibility for the remainer of this message off to the 794 * cache manager op */ 795 return call->type->deliver(call); 796 } 797 798 /* 799 * Advance the AFS call state when an RxRPC service call ends the transmit 800 * phase. 801 */ 802 static void afs_notify_end_reply_tx(struct sock *sock, 803 struct rxrpc_call *rxcall, 804 unsigned long call_user_ID) 805 { 806 struct afs_call *call = (struct afs_call *)call_user_ID; 807 808 afs_set_call_state(call, AFS_CALL_SV_REPLYING, AFS_CALL_SV_AWAIT_ACK); 809 } 810 811 /* 812 * send an empty reply 813 */ 814 void afs_send_empty_reply(struct afs_call *call) 815 { 816 struct afs_net *net = call->net; 817 struct msghdr msg; 818 819 _enter(""); 820 821 rxrpc_kernel_set_tx_length(net->socket, call->rxcall, 0); 822 823 msg.msg_name = NULL; 824 msg.msg_namelen = 0; 825 iov_iter_kvec(&msg.msg_iter, WRITE, NULL, 0, 0); 826 msg.msg_control = NULL; 827 msg.msg_controllen = 0; 828 msg.msg_flags = 0; 829 830 switch (rxrpc_kernel_send_data(net->socket, call->rxcall, &msg, 0, 831 afs_notify_end_reply_tx)) { 832 case 0: 833 _leave(" [replied]"); 834 return; 835 836 case -ENOMEM: 837 _debug("oom"); 838 rxrpc_kernel_abort_call(net->socket, call->rxcall, 839 RXGEN_SS_MARSHAL, -ENOMEM, "KOO"); 840 fallthrough; 841 default: 842 _leave(" [error]"); 843 return; 844 } 845 } 846 847 /* 848 * send a simple reply 849 */ 850 void afs_send_simple_reply(struct afs_call *call, const void *buf, size_t len) 851 { 852 struct afs_net *net = call->net; 853 struct msghdr msg; 854 struct kvec iov[1]; 855 int n; 856 857 _enter(""); 858 859 rxrpc_kernel_set_tx_length(net->socket, call->rxcall, len); 860 861 iov[0].iov_base = (void *) buf; 862 iov[0].iov_len = len; 863 msg.msg_name = NULL; 864 msg.msg_namelen = 0; 865 iov_iter_kvec(&msg.msg_iter, WRITE, iov, 1, len); 866 msg.msg_control = NULL; 867 msg.msg_controllen = 0; 868 msg.msg_flags = 0; 869 870 n = rxrpc_kernel_send_data(net->socket, call->rxcall, &msg, len, 871 afs_notify_end_reply_tx); 872 if (n >= 0) { 873 /* Success */ 874 _leave(" [replied]"); 875 return; 876 } 877 878 if (n == -ENOMEM) { 879 _debug("oom"); 880 rxrpc_kernel_abort_call(net->socket, call->rxcall, 881 RXGEN_SS_MARSHAL, -ENOMEM, "KOO"); 882 } 883 _leave(" [error]"); 884 } 885 886 /* 887 * Extract a piece of data from the received data socket buffers. 888 */ 889 int afs_extract_data(struct afs_call *call, bool want_more) 890 { 891 struct afs_net *net = call->net; 892 struct iov_iter *iter = call->iter; 893 enum afs_call_state state; 894 u32 remote_abort = 0; 895 int ret; 896 897 _enter("{%s,%zu,%zu},%d", 898 call->type->name, call->iov_len, iov_iter_count(iter), want_more); 899 900 ret = rxrpc_kernel_recv_data(net->socket, call->rxcall, iter, 901 &call->iov_len, want_more, &remote_abort, 902 &call->service_id); 903 if (ret == 0 || ret == -EAGAIN) 904 return ret; 905 906 state = READ_ONCE(call->state); 907 if (ret == 1) { 908 switch (state) { 909 case AFS_CALL_CL_AWAIT_REPLY: 910 afs_set_call_state(call, state, AFS_CALL_CL_PROC_REPLY); 911 break; 912 case AFS_CALL_SV_AWAIT_REQUEST: 913 afs_set_call_state(call, state, AFS_CALL_SV_REPLYING); 914 break; 915 case AFS_CALL_COMPLETE: 916 kdebug("prem complete %d", call->error); 917 return afs_io_error(call, afs_io_error_extract); 918 default: 919 break; 920 } 921 return 0; 922 } 923 924 afs_set_call_complete(call, ret, remote_abort); 925 return ret; 926 } 927 928 /* 929 * Log protocol error production. 930 */ 931 noinline int afs_protocol_error(struct afs_call *call, 932 enum afs_eproto_cause cause) 933 { 934 trace_afs_protocol_error(call, cause); 935 if (call) 936 call->unmarshalling_error = true; 937 return -EBADMSG; 938 } 939