1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* AFS filesystem file handling 3 * 4 * Copyright (C) 2002, 2007 Red Hat, Inc. All Rights Reserved. 5 * Written by David Howells (dhowells@redhat.com) 6 */ 7 8 #include <linux/kernel.h> 9 #include <linux/module.h> 10 #include <linux/init.h> 11 #include <linux/fs.h> 12 #include <linux/pagemap.h> 13 #include <linux/writeback.h> 14 #include <linux/gfp.h> 15 #include <linux/task_io_accounting_ops.h> 16 #include <linux/mm.h> 17 #include <linux/swap.h> 18 #include <linux/netfs.h> 19 #include <trace/events/netfs.h> 20 #include "internal.h" 21 22 static int afs_file_mmap(struct file *file, struct vm_area_struct *vma); 23 24 static ssize_t afs_file_read_iter(struct kiocb *iocb, struct iov_iter *iter); 25 static ssize_t afs_file_splice_read(struct file *in, loff_t *ppos, 26 struct pipe_inode_info *pipe, 27 size_t len, unsigned int flags); 28 static void afs_vm_open(struct vm_area_struct *area); 29 static void afs_vm_close(struct vm_area_struct *area); 30 static vm_fault_t afs_vm_map_pages(struct vm_fault *vmf, pgoff_t start_pgoff, pgoff_t end_pgoff); 31 32 const struct file_operations afs_file_operations = { 33 .open = afs_open, 34 .release = afs_release, 35 .llseek = generic_file_llseek, 36 .read_iter = afs_file_read_iter, 37 .write_iter = netfs_file_write_iter, 38 .mmap = afs_file_mmap, 39 .splice_read = afs_file_splice_read, 40 .splice_write = iter_file_splice_write, 41 .fsync = afs_fsync, 42 .lock = afs_lock, 43 .flock = afs_flock, 44 }; 45 46 const struct inode_operations afs_file_inode_operations = { 47 .getattr = afs_getattr, 48 .setattr = afs_setattr, 49 .permission = afs_permission, 50 }; 51 52 const struct address_space_operations afs_file_aops = { 53 .direct_IO = noop_direct_IO, 54 .read_folio = netfs_read_folio, 55 .readahead = netfs_readahead, 56 .dirty_folio = netfs_dirty_folio, 57 .release_folio = netfs_release_folio, 58 .invalidate_folio = netfs_invalidate_folio, 59 .migrate_folio = filemap_migrate_folio, 60 .writepages = afs_writepages, 61 }; 62 63 static const struct vm_operations_struct afs_vm_ops = { 64 .open = afs_vm_open, 65 .close = afs_vm_close, 66 .fault = filemap_fault, 67 .map_pages = afs_vm_map_pages, 68 .page_mkwrite = afs_page_mkwrite, 69 }; 70 71 /* 72 * Discard a pin on a writeback key. 73 */ 74 void afs_put_wb_key(struct afs_wb_key *wbk) 75 { 76 if (wbk && refcount_dec_and_test(&wbk->usage)) { 77 key_put(wbk->key); 78 kfree(wbk); 79 } 80 } 81 82 /* 83 * Cache key for writeback. 84 */ 85 int afs_cache_wb_key(struct afs_vnode *vnode, struct afs_file *af) 86 { 87 struct afs_wb_key *wbk, *p; 88 89 wbk = kzalloc(sizeof(struct afs_wb_key), GFP_KERNEL); 90 if (!wbk) 91 return -ENOMEM; 92 refcount_set(&wbk->usage, 2); 93 wbk->key = af->key; 94 95 spin_lock(&vnode->wb_lock); 96 list_for_each_entry(p, &vnode->wb_keys, vnode_link) { 97 if (p->key == wbk->key) 98 goto found; 99 } 100 101 key_get(wbk->key); 102 list_add_tail(&wbk->vnode_link, &vnode->wb_keys); 103 spin_unlock(&vnode->wb_lock); 104 af->wb = wbk; 105 return 0; 106 107 found: 108 refcount_inc(&p->usage); 109 spin_unlock(&vnode->wb_lock); 110 af->wb = p; 111 kfree(wbk); 112 return 0; 113 } 114 115 /* 116 * open an AFS file or directory and attach a key to it 117 */ 118 int afs_open(struct inode *inode, struct file *file) 119 { 120 struct afs_vnode *vnode = AFS_FS_I(inode); 121 struct afs_file *af; 122 struct key *key; 123 int ret; 124 125 _enter("{%llx:%llu},", vnode->fid.vid, vnode->fid.vnode); 126 127 key = afs_request_key(vnode->volume->cell); 128 if (IS_ERR(key)) { 129 ret = PTR_ERR(key); 130 goto error; 131 } 132 133 af = kzalloc(sizeof(*af), GFP_KERNEL); 134 if (!af) { 135 ret = -ENOMEM; 136 goto error_key; 137 } 138 af->key = key; 139 140 ret = afs_validate(vnode, key); 141 if (ret < 0) 142 goto error_af; 143 144 if (file->f_mode & FMODE_WRITE) { 145 ret = afs_cache_wb_key(vnode, af); 146 if (ret < 0) 147 goto error_af; 148 } 149 150 if (file->f_flags & O_TRUNC) 151 set_bit(AFS_VNODE_NEW_CONTENT, &vnode->flags); 152 153 fscache_use_cookie(afs_vnode_cache(vnode), file->f_mode & FMODE_WRITE); 154 155 file->private_data = af; 156 _leave(" = 0"); 157 return 0; 158 159 error_af: 160 kfree(af); 161 error_key: 162 key_put(key); 163 error: 164 _leave(" = %d", ret); 165 return ret; 166 } 167 168 /* 169 * release an AFS file or directory and discard its key 170 */ 171 int afs_release(struct inode *inode, struct file *file) 172 { 173 struct afs_vnode_cache_aux aux; 174 struct afs_vnode *vnode = AFS_FS_I(inode); 175 struct afs_file *af = file->private_data; 176 loff_t i_size; 177 int ret = 0; 178 179 _enter("{%llx:%llu},", vnode->fid.vid, vnode->fid.vnode); 180 181 if ((file->f_mode & FMODE_WRITE)) 182 ret = vfs_fsync(file, 0); 183 184 file->private_data = NULL; 185 if (af->wb) 186 afs_put_wb_key(af->wb); 187 188 if ((file->f_mode & FMODE_WRITE)) { 189 i_size = i_size_read(&vnode->netfs.inode); 190 afs_set_cache_aux(vnode, &aux); 191 fscache_unuse_cookie(afs_vnode_cache(vnode), &aux, &i_size); 192 } else { 193 fscache_unuse_cookie(afs_vnode_cache(vnode), NULL, NULL); 194 } 195 196 key_put(af->key); 197 kfree(af); 198 afs_prune_wb_keys(vnode); 199 _leave(" = %d", ret); 200 return ret; 201 } 202 203 static void afs_fetch_data_notify(struct afs_operation *op) 204 { 205 struct netfs_io_subrequest *subreq = op->fetch.subreq; 206 207 subreq->error = afs_op_error(op); 208 netfs_read_subreq_terminated(subreq); 209 } 210 211 static void afs_fetch_data_success(struct afs_operation *op) 212 { 213 struct afs_vnode *vnode = op->file[0].vnode; 214 215 _enter("op=%08x", op->debug_id); 216 afs_vnode_commit_status(op, &op->file[0]); 217 afs_stat_v(vnode, n_fetches); 218 atomic_long_add(op->fetch.subreq->transferred, &op->net->n_fetch_bytes); 219 afs_fetch_data_notify(op); 220 } 221 222 static void afs_fetch_data_aborted(struct afs_operation *op) 223 { 224 afs_check_for_remote_deletion(op); 225 afs_fetch_data_notify(op); 226 } 227 228 const struct afs_operation_ops afs_fetch_data_operation = { 229 .issue_afs_rpc = afs_fs_fetch_data, 230 .issue_yfs_rpc = yfs_fs_fetch_data, 231 .success = afs_fetch_data_success, 232 .aborted = afs_fetch_data_aborted, 233 .failed = afs_fetch_data_notify, 234 }; 235 236 static void afs_issue_read_call(struct afs_operation *op) 237 { 238 op->call_responded = false; 239 op->call_error = 0; 240 op->call_abort_code = 0; 241 if (test_bit(AFS_SERVER_FL_IS_YFS, &op->server->flags)) 242 yfs_fs_fetch_data(op); 243 else 244 afs_fs_fetch_data(op); 245 } 246 247 static void afs_end_read(struct afs_operation *op) 248 { 249 if (op->call_responded && op->server) 250 set_bit(AFS_SERVER_FL_RESPONDING, &op->server->flags); 251 252 if (!afs_op_error(op)) 253 afs_fetch_data_success(op); 254 else if (op->cumul_error.aborted) 255 afs_fetch_data_aborted(op); 256 else 257 afs_fetch_data_notify(op); 258 259 afs_end_vnode_operation(op); 260 afs_put_operation(op); 261 } 262 263 /* 264 * Perform I/O processing on an asynchronous call. The work item carries a ref 265 * to the call struct that we either need to release or to pass on. 266 */ 267 static void afs_read_receive(struct afs_call *call) 268 { 269 struct afs_operation *op = call->op; 270 enum afs_call_state state; 271 272 _enter(""); 273 274 state = READ_ONCE(call->state); 275 if (state == AFS_CALL_COMPLETE) 276 return; 277 trace_afs_read_recv(op, call); 278 279 while (state < AFS_CALL_COMPLETE && READ_ONCE(call->need_attention)) { 280 WRITE_ONCE(call->need_attention, false); 281 afs_deliver_to_call(call); 282 state = READ_ONCE(call->state); 283 } 284 285 if (state < AFS_CALL_COMPLETE) { 286 netfs_read_subreq_progress(op->fetch.subreq); 287 if (rxrpc_kernel_check_life(call->net->socket, call->rxcall)) 288 return; 289 /* rxrpc terminated the call. */ 290 afs_set_call_complete(call, call->error, call->abort_code); 291 } 292 293 op->call_abort_code = call->abort_code; 294 op->call_error = call->error; 295 op->call_responded = call->responded; 296 op->call = NULL; 297 call->op = NULL; 298 afs_put_call(call); 299 300 /* If the call failed, then we need to crank the server rotation 301 * handle and try the next. 302 */ 303 if (afs_select_fileserver(op)) { 304 afs_issue_read_call(op); 305 return; 306 } 307 308 afs_end_read(op); 309 } 310 311 void afs_fetch_data_async_rx(struct work_struct *work) 312 { 313 struct afs_call *call = container_of(work, struct afs_call, async_work); 314 315 afs_read_receive(call); 316 afs_put_call(call); 317 } 318 319 void afs_fetch_data_immediate_cancel(struct afs_call *call) 320 { 321 if (call->async) { 322 afs_get_call(call, afs_call_trace_wake); 323 if (!queue_work(afs_async_calls, &call->async_work)) 324 afs_deferred_put_call(call); 325 flush_work(&call->async_work); 326 } 327 } 328 329 /* 330 * Fetch file data from the volume. 331 */ 332 static void afs_issue_read(struct netfs_io_subrequest *subreq) 333 { 334 struct afs_operation *op; 335 struct afs_vnode *vnode = AFS_FS_I(subreq->rreq->inode); 336 struct key *key = subreq->rreq->netfs_priv; 337 338 _enter("%s{%llx:%llu.%u},%x,,,", 339 vnode->volume->name, 340 vnode->fid.vid, 341 vnode->fid.vnode, 342 vnode->fid.unique, 343 key_serial(key)); 344 345 op = afs_alloc_operation(key, vnode->volume); 346 if (IS_ERR(op)) { 347 subreq->error = PTR_ERR(op); 348 netfs_read_subreq_terminated(subreq); 349 return; 350 } 351 352 afs_op_set_vnode(op, 0, vnode); 353 354 op->fetch.subreq = subreq; 355 op->ops = &afs_fetch_data_operation; 356 357 trace_netfs_sreq(subreq, netfs_sreq_trace_submit); 358 359 if (subreq->rreq->origin == NETFS_READAHEAD || 360 subreq->rreq->iocb) { 361 op->flags |= AFS_OPERATION_ASYNC; 362 363 if (!afs_begin_vnode_operation(op)) { 364 subreq->error = afs_put_operation(op); 365 netfs_read_subreq_terminated(subreq); 366 return; 367 } 368 369 if (!afs_select_fileserver(op)) { 370 afs_end_read(op); 371 return; 372 } 373 374 afs_issue_read_call(op); 375 } else { 376 afs_do_sync_operation(op); 377 } 378 } 379 380 static int afs_init_request(struct netfs_io_request *rreq, struct file *file) 381 { 382 struct afs_vnode *vnode = AFS_FS_I(rreq->inode); 383 384 if (file) 385 rreq->netfs_priv = key_get(afs_file_key(file)); 386 rreq->rsize = 256 * 1024; 387 rreq->wsize = 256 * 1024 * 1024; 388 389 switch (rreq->origin) { 390 case NETFS_READ_SINGLE: 391 if (!file) { 392 struct key *key = afs_request_key(vnode->volume->cell); 393 394 if (IS_ERR(key)) 395 return PTR_ERR(key); 396 rreq->netfs_priv = key; 397 } 398 break; 399 case NETFS_WRITEBACK: 400 case NETFS_WRITETHROUGH: 401 case NETFS_UNBUFFERED_WRITE: 402 case NETFS_DIO_WRITE: 403 if (S_ISREG(rreq->inode->i_mode)) 404 rreq->io_streams[0].avail = true; 405 break; 406 case NETFS_WRITEBACK_SINGLE: 407 default: 408 break; 409 } 410 return 0; 411 } 412 413 static int afs_check_write_begin(struct file *file, loff_t pos, unsigned len, 414 struct folio **foliop, void **_fsdata) 415 { 416 struct afs_vnode *vnode = AFS_FS_I(file_inode(file)); 417 418 return test_bit(AFS_VNODE_DELETED, &vnode->flags) ? -ESTALE : 0; 419 } 420 421 static void afs_free_request(struct netfs_io_request *rreq) 422 { 423 key_put(rreq->netfs_priv); 424 afs_put_wb_key(rreq->netfs_priv2); 425 } 426 427 static void afs_update_i_size(struct inode *inode, loff_t new_i_size) 428 { 429 struct afs_vnode *vnode = AFS_FS_I(inode); 430 loff_t i_size; 431 432 write_seqlock(&vnode->cb_lock); 433 i_size = i_size_read(&vnode->netfs.inode); 434 if (new_i_size > i_size) { 435 i_size_write(&vnode->netfs.inode, new_i_size); 436 inode_set_bytes(&vnode->netfs.inode, new_i_size); 437 } 438 write_sequnlock(&vnode->cb_lock); 439 fscache_update_cookie(afs_vnode_cache(vnode), NULL, &new_i_size); 440 } 441 442 static void afs_netfs_invalidate_cache(struct netfs_io_request *wreq) 443 { 444 struct afs_vnode *vnode = AFS_FS_I(wreq->inode); 445 446 afs_invalidate_cache(vnode, 0); 447 } 448 449 const struct netfs_request_ops afs_req_ops = { 450 .init_request = afs_init_request, 451 .free_request = afs_free_request, 452 .check_write_begin = afs_check_write_begin, 453 .issue_read = afs_issue_read, 454 .update_i_size = afs_update_i_size, 455 .invalidate_cache = afs_netfs_invalidate_cache, 456 .begin_writeback = afs_begin_writeback, 457 .prepare_write = afs_prepare_write, 458 .issue_write = afs_issue_write, 459 .retry_request = afs_retry_request, 460 }; 461 462 static void afs_add_open_mmap(struct afs_vnode *vnode) 463 { 464 if (atomic_inc_return(&vnode->cb_nr_mmap) == 1) { 465 down_write(&vnode->volume->open_mmaps_lock); 466 467 if (list_empty(&vnode->cb_mmap_link)) 468 list_add_tail(&vnode->cb_mmap_link, &vnode->volume->open_mmaps); 469 470 up_write(&vnode->volume->open_mmaps_lock); 471 } 472 } 473 474 static void afs_drop_open_mmap(struct afs_vnode *vnode) 475 { 476 if (atomic_add_unless(&vnode->cb_nr_mmap, -1, 1)) 477 return; 478 479 down_write(&vnode->volume->open_mmaps_lock); 480 481 read_seqlock_excl(&vnode->cb_lock); 482 // the only place where ->cb_nr_mmap may hit 0 483 // see __afs_break_callback() for the other side... 484 if (atomic_dec_and_test(&vnode->cb_nr_mmap)) 485 list_del_init(&vnode->cb_mmap_link); 486 read_sequnlock_excl(&vnode->cb_lock); 487 488 up_write(&vnode->volume->open_mmaps_lock); 489 flush_work(&vnode->cb_work); 490 } 491 492 /* 493 * Handle setting up a memory mapping on an AFS file. 494 */ 495 static int afs_file_mmap(struct file *file, struct vm_area_struct *vma) 496 { 497 struct afs_vnode *vnode = AFS_FS_I(file_inode(file)); 498 int ret; 499 500 afs_add_open_mmap(vnode); 501 502 ret = generic_file_mmap(file, vma); 503 if (ret == 0) 504 vma->vm_ops = &afs_vm_ops; 505 else 506 afs_drop_open_mmap(vnode); 507 return ret; 508 } 509 510 static void afs_vm_open(struct vm_area_struct *vma) 511 { 512 afs_add_open_mmap(AFS_FS_I(file_inode(vma->vm_file))); 513 } 514 515 static void afs_vm_close(struct vm_area_struct *vma) 516 { 517 afs_drop_open_mmap(AFS_FS_I(file_inode(vma->vm_file))); 518 } 519 520 static vm_fault_t afs_vm_map_pages(struct vm_fault *vmf, pgoff_t start_pgoff, pgoff_t end_pgoff) 521 { 522 struct afs_vnode *vnode = AFS_FS_I(file_inode(vmf->vma->vm_file)); 523 524 if (afs_check_validity(vnode)) 525 return filemap_map_pages(vmf, start_pgoff, end_pgoff); 526 return 0; 527 } 528 529 static ssize_t afs_file_read_iter(struct kiocb *iocb, struct iov_iter *iter) 530 { 531 struct inode *inode = file_inode(iocb->ki_filp); 532 struct afs_vnode *vnode = AFS_FS_I(inode); 533 struct afs_file *af = iocb->ki_filp->private_data; 534 ssize_t ret; 535 536 if (iocb->ki_flags & IOCB_DIRECT) 537 return netfs_unbuffered_read_iter(iocb, iter); 538 539 ret = netfs_start_io_read(inode); 540 if (ret < 0) 541 return ret; 542 ret = afs_validate(vnode, af->key); 543 if (ret == 0) 544 ret = filemap_read(iocb, iter, 0); 545 netfs_end_io_read(inode); 546 return ret; 547 } 548 549 static ssize_t afs_file_splice_read(struct file *in, loff_t *ppos, 550 struct pipe_inode_info *pipe, 551 size_t len, unsigned int flags) 552 { 553 struct inode *inode = file_inode(in); 554 struct afs_vnode *vnode = AFS_FS_I(inode); 555 struct afs_file *af = in->private_data; 556 ssize_t ret; 557 558 ret = netfs_start_io_read(inode); 559 if (ret < 0) 560 return ret; 561 ret = afs_validate(vnode, af->key); 562 if (ret == 0) 563 ret = filemap_splice_read(in, ppos, pipe, len, flags); 564 netfs_end_io_read(inode); 565 return ret; 566 } 567