1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* AFS filesystem file handling 3 * 4 * Copyright (C) 2002, 2007 Red Hat, Inc. All Rights Reserved. 5 * Written by David Howells (dhowells@redhat.com) 6 */ 7 8 #include <linux/kernel.h> 9 #include <linux/module.h> 10 #include <linux/init.h> 11 #include <linux/fs.h> 12 #include <linux/pagemap.h> 13 #include <linux/writeback.h> 14 #include <linux/gfp.h> 15 #include <linux/task_io_accounting_ops.h> 16 #include <linux/mm.h> 17 #include <linux/swap.h> 18 #include <linux/netfs.h> 19 #include "internal.h" 20 21 static int afs_file_mmap(struct file *file, struct vm_area_struct *vma); 22 static int afs_symlink_readpage(struct file *file, struct page *page); 23 static void afs_invalidate_folio(struct folio *folio, size_t offset, 24 size_t length); 25 static int afs_releasepage(struct page *page, gfp_t gfp_flags); 26 27 static ssize_t afs_file_read_iter(struct kiocb *iocb, struct iov_iter *iter); 28 static void afs_vm_open(struct vm_area_struct *area); 29 static void afs_vm_close(struct vm_area_struct *area); 30 static vm_fault_t afs_vm_map_pages(struct vm_fault *vmf, pgoff_t start_pgoff, pgoff_t end_pgoff); 31 32 const struct file_operations afs_file_operations = { 33 .open = afs_open, 34 .release = afs_release, 35 .llseek = generic_file_llseek, 36 .read_iter = afs_file_read_iter, 37 .write_iter = afs_file_write, 38 .mmap = afs_file_mmap, 39 .splice_read = generic_file_splice_read, 40 .splice_write = iter_file_splice_write, 41 .fsync = afs_fsync, 42 .lock = afs_lock, 43 .flock = afs_flock, 44 }; 45 46 const struct inode_operations afs_file_inode_operations = { 47 .getattr = afs_getattr, 48 .setattr = afs_setattr, 49 .permission = afs_permission, 50 }; 51 52 const struct address_space_operations afs_file_aops = { 53 .readpage = netfs_readpage, 54 .readahead = netfs_readahead, 55 .dirty_folio = afs_dirty_folio, 56 .launder_folio = afs_launder_folio, 57 .releasepage = afs_releasepage, 58 .invalidate_folio = afs_invalidate_folio, 59 .write_begin = afs_write_begin, 60 .write_end = afs_write_end, 61 .writepage = afs_writepage, 62 .writepages = afs_writepages, 63 }; 64 65 const struct address_space_operations afs_symlink_aops = { 66 .readpage = afs_symlink_readpage, 67 .releasepage = afs_releasepage, 68 .invalidate_folio = afs_invalidate_folio, 69 }; 70 71 static const struct vm_operations_struct afs_vm_ops = { 72 .open = afs_vm_open, 73 .close = afs_vm_close, 74 .fault = filemap_fault, 75 .map_pages = afs_vm_map_pages, 76 .page_mkwrite = afs_page_mkwrite, 77 }; 78 79 /* 80 * Discard a pin on a writeback key. 81 */ 82 void afs_put_wb_key(struct afs_wb_key *wbk) 83 { 84 if (wbk && refcount_dec_and_test(&wbk->usage)) { 85 key_put(wbk->key); 86 kfree(wbk); 87 } 88 } 89 90 /* 91 * Cache key for writeback. 92 */ 93 int afs_cache_wb_key(struct afs_vnode *vnode, struct afs_file *af) 94 { 95 struct afs_wb_key *wbk, *p; 96 97 wbk = kzalloc(sizeof(struct afs_wb_key), GFP_KERNEL); 98 if (!wbk) 99 return -ENOMEM; 100 refcount_set(&wbk->usage, 2); 101 wbk->key = af->key; 102 103 spin_lock(&vnode->wb_lock); 104 list_for_each_entry(p, &vnode->wb_keys, vnode_link) { 105 if (p->key == wbk->key) 106 goto found; 107 } 108 109 key_get(wbk->key); 110 list_add_tail(&wbk->vnode_link, &vnode->wb_keys); 111 spin_unlock(&vnode->wb_lock); 112 af->wb = wbk; 113 return 0; 114 115 found: 116 refcount_inc(&p->usage); 117 spin_unlock(&vnode->wb_lock); 118 af->wb = p; 119 kfree(wbk); 120 return 0; 121 } 122 123 /* 124 * open an AFS file or directory and attach a key to it 125 */ 126 int afs_open(struct inode *inode, struct file *file) 127 { 128 struct afs_vnode *vnode = AFS_FS_I(inode); 129 struct afs_file *af; 130 struct key *key; 131 int ret; 132 133 _enter("{%llx:%llu},", vnode->fid.vid, vnode->fid.vnode); 134 135 key = afs_request_key(vnode->volume->cell); 136 if (IS_ERR(key)) { 137 ret = PTR_ERR(key); 138 goto error; 139 } 140 141 af = kzalloc(sizeof(*af), GFP_KERNEL); 142 if (!af) { 143 ret = -ENOMEM; 144 goto error_key; 145 } 146 af->key = key; 147 148 ret = afs_validate(vnode, key); 149 if (ret < 0) 150 goto error_af; 151 152 if (file->f_mode & FMODE_WRITE) { 153 ret = afs_cache_wb_key(vnode, af); 154 if (ret < 0) 155 goto error_af; 156 } 157 158 if (file->f_flags & O_TRUNC) 159 set_bit(AFS_VNODE_NEW_CONTENT, &vnode->flags); 160 161 fscache_use_cookie(afs_vnode_cache(vnode), file->f_mode & FMODE_WRITE); 162 163 file->private_data = af; 164 _leave(" = 0"); 165 return 0; 166 167 error_af: 168 kfree(af); 169 error_key: 170 key_put(key); 171 error: 172 _leave(" = %d", ret); 173 return ret; 174 } 175 176 /* 177 * release an AFS file or directory and discard its key 178 */ 179 int afs_release(struct inode *inode, struct file *file) 180 { 181 struct afs_vnode_cache_aux aux; 182 struct afs_vnode *vnode = AFS_FS_I(inode); 183 struct afs_file *af = file->private_data; 184 loff_t i_size; 185 int ret = 0; 186 187 _enter("{%llx:%llu},", vnode->fid.vid, vnode->fid.vnode); 188 189 if ((file->f_mode & FMODE_WRITE)) 190 ret = vfs_fsync(file, 0); 191 192 file->private_data = NULL; 193 if (af->wb) 194 afs_put_wb_key(af->wb); 195 196 if ((file->f_mode & FMODE_WRITE)) { 197 i_size = i_size_read(&vnode->vfs_inode); 198 afs_set_cache_aux(vnode, &aux); 199 fscache_unuse_cookie(afs_vnode_cache(vnode), &aux, &i_size); 200 } else { 201 fscache_unuse_cookie(afs_vnode_cache(vnode), NULL, NULL); 202 } 203 204 key_put(af->key); 205 kfree(af); 206 afs_prune_wb_keys(vnode); 207 _leave(" = %d", ret); 208 return ret; 209 } 210 211 /* 212 * Allocate a new read record. 213 */ 214 struct afs_read *afs_alloc_read(gfp_t gfp) 215 { 216 struct afs_read *req; 217 218 req = kzalloc(sizeof(struct afs_read), gfp); 219 if (req) 220 refcount_set(&req->usage, 1); 221 222 return req; 223 } 224 225 /* 226 * Dispose of a ref to a read record. 227 */ 228 void afs_put_read(struct afs_read *req) 229 { 230 if (refcount_dec_and_test(&req->usage)) { 231 if (req->cleanup) 232 req->cleanup(req); 233 key_put(req->key); 234 kfree(req); 235 } 236 } 237 238 static void afs_fetch_data_notify(struct afs_operation *op) 239 { 240 struct afs_read *req = op->fetch.req; 241 struct netfs_io_subrequest *subreq = req->subreq; 242 int error = op->error; 243 244 if (error == -ECONNABORTED) 245 error = afs_abort_to_error(op->ac.abort_code); 246 req->error = error; 247 248 if (subreq) { 249 __set_bit(NETFS_SREQ_CLEAR_TAIL, &subreq->flags); 250 netfs_subreq_terminated(subreq, error ?: req->actual_len, false); 251 req->subreq = NULL; 252 } else if (req->done) { 253 req->done(req); 254 } 255 } 256 257 static void afs_fetch_data_success(struct afs_operation *op) 258 { 259 struct afs_vnode *vnode = op->file[0].vnode; 260 261 _enter("op=%08x", op->debug_id); 262 afs_vnode_commit_status(op, &op->file[0]); 263 afs_stat_v(vnode, n_fetches); 264 atomic_long_add(op->fetch.req->actual_len, &op->net->n_fetch_bytes); 265 afs_fetch_data_notify(op); 266 } 267 268 static void afs_fetch_data_put(struct afs_operation *op) 269 { 270 op->fetch.req->error = op->error; 271 afs_put_read(op->fetch.req); 272 } 273 274 static const struct afs_operation_ops afs_fetch_data_operation = { 275 .issue_afs_rpc = afs_fs_fetch_data, 276 .issue_yfs_rpc = yfs_fs_fetch_data, 277 .success = afs_fetch_data_success, 278 .aborted = afs_check_for_remote_deletion, 279 .failed = afs_fetch_data_notify, 280 .put = afs_fetch_data_put, 281 }; 282 283 /* 284 * Fetch file data from the volume. 285 */ 286 int afs_fetch_data(struct afs_vnode *vnode, struct afs_read *req) 287 { 288 struct afs_operation *op; 289 290 _enter("%s{%llx:%llu.%u},%x,,,", 291 vnode->volume->name, 292 vnode->fid.vid, 293 vnode->fid.vnode, 294 vnode->fid.unique, 295 key_serial(req->key)); 296 297 op = afs_alloc_operation(req->key, vnode->volume); 298 if (IS_ERR(op)) { 299 if (req->subreq) 300 netfs_subreq_terminated(req->subreq, PTR_ERR(op), false); 301 return PTR_ERR(op); 302 } 303 304 afs_op_set_vnode(op, 0, vnode); 305 306 op->fetch.req = afs_get_read(req); 307 op->ops = &afs_fetch_data_operation; 308 return afs_do_sync_operation(op); 309 } 310 311 static void afs_issue_read(struct netfs_io_subrequest *subreq) 312 { 313 struct afs_vnode *vnode = AFS_FS_I(subreq->rreq->inode); 314 struct afs_read *fsreq; 315 316 fsreq = afs_alloc_read(GFP_NOFS); 317 if (!fsreq) 318 return netfs_subreq_terminated(subreq, -ENOMEM, false); 319 320 fsreq->subreq = subreq; 321 fsreq->pos = subreq->start + subreq->transferred; 322 fsreq->len = subreq->len - subreq->transferred; 323 fsreq->key = key_get(subreq->rreq->netfs_priv); 324 fsreq->vnode = vnode; 325 fsreq->iter = &fsreq->def_iter; 326 327 iov_iter_xarray(&fsreq->def_iter, READ, 328 &fsreq->vnode->vfs_inode.i_mapping->i_pages, 329 fsreq->pos, fsreq->len); 330 331 afs_fetch_data(fsreq->vnode, fsreq); 332 afs_put_read(fsreq); 333 } 334 335 static int afs_symlink_readpage(struct file *file, struct page *page) 336 { 337 struct afs_vnode *vnode = AFS_FS_I(page->mapping->host); 338 struct afs_read *fsreq; 339 struct folio *folio = page_folio(page); 340 int ret; 341 342 fsreq = afs_alloc_read(GFP_NOFS); 343 if (!fsreq) 344 return -ENOMEM; 345 346 fsreq->pos = folio_pos(folio); 347 fsreq->len = folio_size(folio); 348 fsreq->vnode = vnode; 349 fsreq->iter = &fsreq->def_iter; 350 iov_iter_xarray(&fsreq->def_iter, READ, &page->mapping->i_pages, 351 fsreq->pos, fsreq->len); 352 353 ret = afs_fetch_data(fsreq->vnode, fsreq); 354 if (ret == 0) 355 SetPageUptodate(page); 356 unlock_page(page); 357 return ret; 358 } 359 360 static int afs_init_request(struct netfs_io_request *rreq, struct file *file) 361 { 362 rreq->netfs_priv = key_get(afs_file_key(file)); 363 return 0; 364 } 365 366 static int afs_begin_cache_operation(struct netfs_io_request *rreq) 367 { 368 #ifdef CONFIG_AFS_FSCACHE 369 struct afs_vnode *vnode = AFS_FS_I(rreq->inode); 370 371 return fscache_begin_read_operation(&rreq->cache_resources, 372 afs_vnode_cache(vnode)); 373 #else 374 return -ENOBUFS; 375 #endif 376 } 377 378 static int afs_check_write_begin(struct file *file, loff_t pos, unsigned len, 379 struct folio *folio, void **_fsdata) 380 { 381 struct afs_vnode *vnode = AFS_FS_I(file_inode(file)); 382 383 return test_bit(AFS_VNODE_DELETED, &vnode->flags) ? -ESTALE : 0; 384 } 385 386 static void afs_priv_cleanup(struct address_space *mapping, void *netfs_priv) 387 { 388 key_put(netfs_priv); 389 } 390 391 const struct netfs_request_ops afs_req_ops = { 392 .init_request = afs_init_request, 393 .begin_cache_operation = afs_begin_cache_operation, 394 .check_write_begin = afs_check_write_begin, 395 .issue_read = afs_issue_read, 396 .cleanup = afs_priv_cleanup, 397 }; 398 399 int afs_write_inode(struct inode *inode, struct writeback_control *wbc) 400 { 401 fscache_unpin_writeback(wbc, afs_vnode_cache(AFS_FS_I(inode))); 402 return 0; 403 } 404 405 /* 406 * Adjust the dirty region of the page on truncation or full invalidation, 407 * getting rid of the markers altogether if the region is entirely invalidated. 408 */ 409 static void afs_invalidate_dirty(struct folio *folio, size_t offset, 410 size_t length) 411 { 412 struct afs_vnode *vnode = AFS_FS_I(folio_inode(folio)); 413 unsigned long priv; 414 unsigned int f, t, end = offset + length; 415 416 priv = (unsigned long)folio_get_private(folio); 417 418 /* we clean up only if the entire page is being invalidated */ 419 if (offset == 0 && length == folio_size(folio)) 420 goto full_invalidate; 421 422 /* If the page was dirtied by page_mkwrite(), the PTE stays writable 423 * and we don't get another notification to tell us to expand it 424 * again. 425 */ 426 if (afs_is_folio_dirty_mmapped(priv)) 427 return; 428 429 /* We may need to shorten the dirty region */ 430 f = afs_folio_dirty_from(folio, priv); 431 t = afs_folio_dirty_to(folio, priv); 432 433 if (t <= offset || f >= end) 434 return; /* Doesn't overlap */ 435 436 if (f < offset && t > end) 437 return; /* Splits the dirty region - just absorb it */ 438 439 if (f >= offset && t <= end) 440 goto undirty; 441 442 if (f < offset) 443 t = offset; 444 else 445 f = end; 446 if (f == t) 447 goto undirty; 448 449 priv = afs_folio_dirty(folio, f, t); 450 folio_change_private(folio, (void *)priv); 451 trace_afs_folio_dirty(vnode, tracepoint_string("trunc"), folio); 452 return; 453 454 undirty: 455 trace_afs_folio_dirty(vnode, tracepoint_string("undirty"), folio); 456 folio_clear_dirty_for_io(folio); 457 full_invalidate: 458 trace_afs_folio_dirty(vnode, tracepoint_string("inval"), folio); 459 folio_detach_private(folio); 460 } 461 462 /* 463 * invalidate part or all of a page 464 * - release a page and clean up its private data if offset is 0 (indicating 465 * the entire page) 466 */ 467 static void afs_invalidate_folio(struct folio *folio, size_t offset, 468 size_t length) 469 { 470 _enter("{%lu},%zu,%zu", folio->index, offset, length); 471 472 BUG_ON(!folio_test_locked(folio)); 473 474 if (folio_get_private(folio)) 475 afs_invalidate_dirty(folio, offset, length); 476 477 folio_wait_fscache(folio); 478 _leave(""); 479 } 480 481 /* 482 * release a page and clean up its private state if it's not busy 483 * - return true if the page can now be released, false if not 484 */ 485 static int afs_releasepage(struct page *page, gfp_t gfp) 486 { 487 struct folio *folio = page_folio(page); 488 struct afs_vnode *vnode = AFS_FS_I(folio_inode(folio)); 489 490 _enter("{{%llx:%llu}[%lu],%lx},%x", 491 vnode->fid.vid, vnode->fid.vnode, folio_index(folio), folio->flags, 492 gfp); 493 494 /* deny if page is being written to the cache and the caller hasn't 495 * elected to wait */ 496 #ifdef CONFIG_AFS_FSCACHE 497 if (folio_test_fscache(folio)) { 498 if (current_is_kswapd() || !(gfp & __GFP_FS)) 499 return false; 500 folio_wait_fscache(folio); 501 } 502 fscache_note_page_release(afs_vnode_cache(vnode)); 503 #endif 504 505 if (folio_test_private(folio)) { 506 trace_afs_folio_dirty(vnode, tracepoint_string("rel"), folio); 507 folio_detach_private(folio); 508 } 509 510 /* Indicate that the folio can be released */ 511 _leave(" = T"); 512 return true; 513 } 514 515 static void afs_add_open_mmap(struct afs_vnode *vnode) 516 { 517 if (atomic_inc_return(&vnode->cb_nr_mmap) == 1) { 518 down_write(&vnode->volume->cell->fs_open_mmaps_lock); 519 520 if (list_empty(&vnode->cb_mmap_link)) 521 list_add_tail(&vnode->cb_mmap_link, 522 &vnode->volume->cell->fs_open_mmaps); 523 524 up_write(&vnode->volume->cell->fs_open_mmaps_lock); 525 } 526 } 527 528 static void afs_drop_open_mmap(struct afs_vnode *vnode) 529 { 530 if (!atomic_dec_and_test(&vnode->cb_nr_mmap)) 531 return; 532 533 down_write(&vnode->volume->cell->fs_open_mmaps_lock); 534 535 if (atomic_read(&vnode->cb_nr_mmap) == 0) 536 list_del_init(&vnode->cb_mmap_link); 537 538 up_write(&vnode->volume->cell->fs_open_mmaps_lock); 539 flush_work(&vnode->cb_work); 540 } 541 542 /* 543 * Handle setting up a memory mapping on an AFS file. 544 */ 545 static int afs_file_mmap(struct file *file, struct vm_area_struct *vma) 546 { 547 struct afs_vnode *vnode = AFS_FS_I(file_inode(file)); 548 int ret; 549 550 afs_add_open_mmap(vnode); 551 552 ret = generic_file_mmap(file, vma); 553 if (ret == 0) 554 vma->vm_ops = &afs_vm_ops; 555 else 556 afs_drop_open_mmap(vnode); 557 return ret; 558 } 559 560 static void afs_vm_open(struct vm_area_struct *vma) 561 { 562 afs_add_open_mmap(AFS_FS_I(file_inode(vma->vm_file))); 563 } 564 565 static void afs_vm_close(struct vm_area_struct *vma) 566 { 567 afs_drop_open_mmap(AFS_FS_I(file_inode(vma->vm_file))); 568 } 569 570 static vm_fault_t afs_vm_map_pages(struct vm_fault *vmf, pgoff_t start_pgoff, pgoff_t end_pgoff) 571 { 572 struct afs_vnode *vnode = AFS_FS_I(file_inode(vmf->vma->vm_file)); 573 struct afs_file *af = vmf->vma->vm_file->private_data; 574 575 switch (afs_validate(vnode, af->key)) { 576 case 0: 577 return filemap_map_pages(vmf, start_pgoff, end_pgoff); 578 case -ENOMEM: 579 return VM_FAULT_OOM; 580 case -EINTR: 581 case -ERESTARTSYS: 582 return VM_FAULT_RETRY; 583 case -ESTALE: 584 default: 585 return VM_FAULT_SIGBUS; 586 } 587 } 588 589 static ssize_t afs_file_read_iter(struct kiocb *iocb, struct iov_iter *iter) 590 { 591 struct afs_vnode *vnode = AFS_FS_I(file_inode(iocb->ki_filp)); 592 struct afs_file *af = iocb->ki_filp->private_data; 593 int ret; 594 595 ret = afs_validate(vnode, af->key); 596 if (ret < 0) 597 return ret; 598 599 return generic_file_read_iter(iocb, iter); 600 } 601