xref: /linux/fs/afs/dir.c (revision 64b9f64f80a6f4b7ea51bf0510119cb15e801dc6)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /* dir.c: AFS filesystem directory handling
3  *
4  * Copyright (C) 2002, 2018 Red Hat, Inc. All Rights Reserved.
5  * Written by David Howells (dhowells@redhat.com)
6  */
7 
8 #include <linux/kernel.h>
9 #include <linux/fs.h>
10 #include <linux/namei.h>
11 #include <linux/pagemap.h>
12 #include <linux/swap.h>
13 #include <linux/ctype.h>
14 #include <linux/sched.h>
15 #include <linux/task_io_accounting_ops.h>
16 #include "internal.h"
17 #include "afs_fs.h"
18 #include "xdr_fs.h"
19 
20 static struct dentry *afs_lookup(struct inode *dir, struct dentry *dentry,
21 				 unsigned int flags);
22 static int afs_dir_open(struct inode *inode, struct file *file);
23 static int afs_readdir(struct file *file, struct dir_context *ctx);
24 static int afs_d_revalidate(struct dentry *dentry, unsigned int flags);
25 static int afs_d_delete(const struct dentry *dentry);
26 static void afs_d_iput(struct dentry *dentry, struct inode *inode);
27 static int afs_lookup_one_filldir(struct dir_context *ctx, const char *name, int nlen,
28 				  loff_t fpos, u64 ino, unsigned dtype);
29 static int afs_lookup_filldir(struct dir_context *ctx, const char *name, int nlen,
30 			      loff_t fpos, u64 ino, unsigned dtype);
31 static int afs_create(struct user_namespace *mnt_userns, struct inode *dir,
32 		      struct dentry *dentry, umode_t mode, bool excl);
33 static int afs_mkdir(struct user_namespace *mnt_userns, struct inode *dir,
34 		     struct dentry *dentry, umode_t mode);
35 static int afs_rmdir(struct inode *dir, struct dentry *dentry);
36 static int afs_unlink(struct inode *dir, struct dentry *dentry);
37 static int afs_link(struct dentry *from, struct inode *dir,
38 		    struct dentry *dentry);
39 static int afs_symlink(struct user_namespace *mnt_userns, struct inode *dir,
40 		       struct dentry *dentry, const char *content);
41 static int afs_rename(struct user_namespace *mnt_userns, struct inode *old_dir,
42 		      struct dentry *old_dentry, struct inode *new_dir,
43 		      struct dentry *new_dentry, unsigned int flags);
44 static int afs_dir_releasepage(struct page *page, gfp_t gfp_flags);
45 static void afs_dir_invalidatepage(struct page *page, unsigned int offset,
46 				   unsigned int length);
47 
48 static int afs_dir_set_page_dirty(struct page *page)
49 {
50 	BUG(); /* This should never happen. */
51 }
52 
53 const struct file_operations afs_dir_file_operations = {
54 	.open		= afs_dir_open,
55 	.release	= afs_release,
56 	.iterate_shared	= afs_readdir,
57 	.lock		= afs_lock,
58 	.llseek		= generic_file_llseek,
59 };
60 
61 const struct inode_operations afs_dir_inode_operations = {
62 	.create		= afs_create,
63 	.lookup		= afs_lookup,
64 	.link		= afs_link,
65 	.unlink		= afs_unlink,
66 	.symlink	= afs_symlink,
67 	.mkdir		= afs_mkdir,
68 	.rmdir		= afs_rmdir,
69 	.rename		= afs_rename,
70 	.permission	= afs_permission,
71 	.getattr	= afs_getattr,
72 	.setattr	= afs_setattr,
73 };
74 
75 const struct address_space_operations afs_dir_aops = {
76 	.set_page_dirty	= afs_dir_set_page_dirty,
77 	.releasepage	= afs_dir_releasepage,
78 	.invalidatepage	= afs_dir_invalidatepage,
79 };
80 
81 const struct dentry_operations afs_fs_dentry_operations = {
82 	.d_revalidate	= afs_d_revalidate,
83 	.d_delete	= afs_d_delete,
84 	.d_release	= afs_d_release,
85 	.d_automount	= afs_d_automount,
86 	.d_iput		= afs_d_iput,
87 };
88 
89 struct afs_lookup_one_cookie {
90 	struct dir_context	ctx;
91 	struct qstr		name;
92 	bool			found;
93 	struct afs_fid		fid;
94 };
95 
96 struct afs_lookup_cookie {
97 	struct dir_context	ctx;
98 	struct qstr		name;
99 	bool			found;
100 	bool			one_only;
101 	unsigned short		nr_fids;
102 	struct afs_fid		fids[50];
103 };
104 
105 /*
106  * check that a directory page is valid
107  */
108 static bool afs_dir_check_page(struct afs_vnode *dvnode, struct page *page,
109 			       loff_t i_size)
110 {
111 	struct afs_xdr_dir_page *dbuf;
112 	loff_t latter, off;
113 	int tmp, qty;
114 
115 	/* Determine how many magic numbers there should be in this page, but
116 	 * we must take care because the directory may change size under us.
117 	 */
118 	off = page_offset(page);
119 	if (i_size <= off)
120 		goto checked;
121 
122 	latter = i_size - off;
123 	if (latter >= PAGE_SIZE)
124 		qty = PAGE_SIZE;
125 	else
126 		qty = latter;
127 	qty /= sizeof(union afs_xdr_dir_block);
128 
129 	/* check them */
130 	dbuf = kmap(page);
131 	for (tmp = 0; tmp < qty; tmp++) {
132 		if (dbuf->blocks[tmp].hdr.magic != AFS_DIR_MAGIC) {
133 			printk("kAFS: %s(%lx): bad magic %d/%d is %04hx\n",
134 			       __func__, dvnode->vfs_inode.i_ino, tmp, qty,
135 			       ntohs(dbuf->blocks[tmp].hdr.magic));
136 			trace_afs_dir_check_failed(dvnode, off, i_size);
137 			kunmap(page);
138 			trace_afs_file_error(dvnode, -EIO, afs_file_error_dir_bad_magic);
139 			goto error;
140 		}
141 
142 		/* Make sure each block is NUL terminated so we can reasonably
143 		 * use string functions on it.  The filenames in the page
144 		 * *should* be NUL-terminated anyway.
145 		 */
146 		((u8 *)&dbuf->blocks[tmp])[AFS_DIR_BLOCK_SIZE - 1] = 0;
147 	}
148 
149 	kunmap(page);
150 
151 checked:
152 	afs_stat_v(dvnode, n_read_dir);
153 	return true;
154 
155 error:
156 	return false;
157 }
158 
159 /*
160  * Check the contents of a directory that we've just read.
161  */
162 static bool afs_dir_check_pages(struct afs_vnode *dvnode, struct afs_read *req)
163 {
164 	struct afs_xdr_dir_page *dbuf;
165 	unsigned int i, j, qty = PAGE_SIZE / sizeof(union afs_xdr_dir_block);
166 
167 	for (i = 0; i < req->nr_pages; i++)
168 		if (!afs_dir_check_page(dvnode, req->pages[i], req->actual_len))
169 			goto bad;
170 	return true;
171 
172 bad:
173 	pr_warn("DIR %llx:%llx f=%llx l=%llx al=%llx r=%llx\n",
174 		dvnode->fid.vid, dvnode->fid.vnode,
175 		req->file_size, req->len, req->actual_len, req->remain);
176 	pr_warn("DIR %llx %x %x %x\n",
177 		req->pos, req->index, req->nr_pages, req->offset);
178 
179 	for (i = 0; i < req->nr_pages; i++) {
180 		dbuf = kmap(req->pages[i]);
181 		for (j = 0; j < qty; j++) {
182 			union afs_xdr_dir_block *block = &dbuf->blocks[j];
183 
184 			pr_warn("[%02x] %32phN\n", i * qty + j, block);
185 		}
186 		kunmap(req->pages[i]);
187 	}
188 	return false;
189 }
190 
191 /*
192  * open an AFS directory file
193  */
194 static int afs_dir_open(struct inode *inode, struct file *file)
195 {
196 	_enter("{%lu}", inode->i_ino);
197 
198 	BUILD_BUG_ON(sizeof(union afs_xdr_dir_block) != 2048);
199 	BUILD_BUG_ON(sizeof(union afs_xdr_dirent) != 32);
200 
201 	if (test_bit(AFS_VNODE_DELETED, &AFS_FS_I(inode)->flags))
202 		return -ENOENT;
203 
204 	return afs_open(inode, file);
205 }
206 
207 /*
208  * Read the directory into the pagecache in one go, scrubbing the previous
209  * contents.  The list of pages is returned, pinning them so that they don't
210  * get reclaimed during the iteration.
211  */
212 static struct afs_read *afs_read_dir(struct afs_vnode *dvnode, struct key *key)
213 	__acquires(&dvnode->validate_lock)
214 {
215 	struct afs_read *req;
216 	loff_t i_size;
217 	int nr_pages, nr_inline, i, n;
218 	int ret = -ENOMEM;
219 
220 retry:
221 	i_size = i_size_read(&dvnode->vfs_inode);
222 	if (i_size < 2048)
223 		return ERR_PTR(afs_bad(dvnode, afs_file_error_dir_small));
224 	if (i_size > 2048 * 1024) {
225 		trace_afs_file_error(dvnode, -EFBIG, afs_file_error_dir_big);
226 		return ERR_PTR(-EFBIG);
227 	}
228 
229 	_enter("%llu", i_size);
230 
231 	/* Get a request record to hold the page list.  We want to hold it
232 	 * inline if we can, but we don't want to make an order 1 allocation.
233 	 */
234 	nr_pages = (i_size + PAGE_SIZE - 1) / PAGE_SIZE;
235 	nr_inline = nr_pages;
236 	if (nr_inline > (PAGE_SIZE - sizeof(*req)) / sizeof(struct page *))
237 		nr_inline = 0;
238 
239 	req = kzalloc(struct_size(req, array, nr_inline), GFP_KERNEL);
240 	if (!req)
241 		return ERR_PTR(-ENOMEM);
242 
243 	refcount_set(&req->usage, 1);
244 	req->nr_pages = nr_pages;
245 	req->actual_len = i_size; /* May change */
246 	req->len = nr_pages * PAGE_SIZE; /* We can ask for more than there is */
247 	req->data_version = dvnode->status.data_version; /* May change */
248 	if (nr_inline > 0) {
249 		req->pages = req->array;
250 	} else {
251 		req->pages = kcalloc(nr_pages, sizeof(struct page *),
252 				     GFP_KERNEL);
253 		if (!req->pages)
254 			goto error;
255 	}
256 
257 	/* Get a list of all the pages that hold or will hold the directory
258 	 * content.  We need to fill in any gaps that we might find where the
259 	 * memory reclaimer has been at work.  If there are any gaps, we will
260 	 * need to reread the entire directory contents.
261 	 */
262 	i = 0;
263 	do {
264 		n = find_get_pages_contig(dvnode->vfs_inode.i_mapping, i,
265 					  req->nr_pages - i,
266 					  req->pages + i);
267 		_debug("find %u at %u/%u", n, i, req->nr_pages);
268 		if (n == 0) {
269 			gfp_t gfp = dvnode->vfs_inode.i_mapping->gfp_mask;
270 
271 			if (test_and_clear_bit(AFS_VNODE_DIR_VALID, &dvnode->flags))
272 				afs_stat_v(dvnode, n_inval);
273 
274 			ret = -ENOMEM;
275 			req->pages[i] = __page_cache_alloc(gfp);
276 			if (!req->pages[i])
277 				goto error;
278 			ret = add_to_page_cache_lru(req->pages[i],
279 						    dvnode->vfs_inode.i_mapping,
280 						    i, gfp);
281 			if (ret < 0)
282 				goto error;
283 
284 			attach_page_private(req->pages[i], (void *)1);
285 			unlock_page(req->pages[i]);
286 			i++;
287 		} else {
288 			i += n;
289 		}
290 	} while (i < req->nr_pages);
291 
292 	/* If we're going to reload, we need to lock all the pages to prevent
293 	 * races.
294 	 */
295 	ret = -ERESTARTSYS;
296 	if (down_read_killable(&dvnode->validate_lock) < 0)
297 		goto error;
298 
299 	if (test_bit(AFS_VNODE_DIR_VALID, &dvnode->flags))
300 		goto success;
301 
302 	up_read(&dvnode->validate_lock);
303 	if (down_write_killable(&dvnode->validate_lock) < 0)
304 		goto error;
305 
306 	if (!test_bit(AFS_VNODE_DIR_VALID, &dvnode->flags)) {
307 		trace_afs_reload_dir(dvnode);
308 		ret = afs_fetch_data(dvnode, key, req);
309 		if (ret < 0)
310 			goto error_unlock;
311 
312 		task_io_account_read(PAGE_SIZE * req->nr_pages);
313 
314 		if (req->len < req->file_size)
315 			goto content_has_grown;
316 
317 		/* Validate the data we just read. */
318 		ret = -EIO;
319 		if (!afs_dir_check_pages(dvnode, req))
320 			goto error_unlock;
321 
322 		// TODO: Trim excess pages
323 
324 		set_bit(AFS_VNODE_DIR_VALID, &dvnode->flags);
325 	}
326 
327 	downgrade_write(&dvnode->validate_lock);
328 success:
329 	return req;
330 
331 error_unlock:
332 	up_write(&dvnode->validate_lock);
333 error:
334 	afs_put_read(req);
335 	_leave(" = %d", ret);
336 	return ERR_PTR(ret);
337 
338 content_has_grown:
339 	up_write(&dvnode->validate_lock);
340 	afs_put_read(req);
341 	goto retry;
342 }
343 
344 /*
345  * deal with one block in an AFS directory
346  */
347 static int afs_dir_iterate_block(struct afs_vnode *dvnode,
348 				 struct dir_context *ctx,
349 				 union afs_xdr_dir_block *block,
350 				 unsigned blkoff)
351 {
352 	union afs_xdr_dirent *dire;
353 	unsigned offset, next, curr, nr_slots;
354 	size_t nlen;
355 	int tmp;
356 
357 	_enter("%u,%x,%p,,",(unsigned)ctx->pos,blkoff,block);
358 
359 	curr = (ctx->pos - blkoff) / sizeof(union afs_xdr_dirent);
360 
361 	/* walk through the block, an entry at a time */
362 	for (offset = (blkoff == 0 ? AFS_DIR_RESV_BLOCKS0 : AFS_DIR_RESV_BLOCKS);
363 	     offset < AFS_DIR_SLOTS_PER_BLOCK;
364 	     offset = next
365 	     ) {
366 		/* skip entries marked unused in the bitmap */
367 		if (!(block->hdr.bitmap[offset / 8] &
368 		      (1 << (offset % 8)))) {
369 			_debug("ENT[%zu.%u]: unused",
370 			       blkoff / sizeof(union afs_xdr_dir_block), offset);
371 			next = offset + 1;
372 			if (offset >= curr)
373 				ctx->pos = blkoff +
374 					next * sizeof(union afs_xdr_dirent);
375 			continue;
376 		}
377 
378 		/* got a valid entry */
379 		dire = &block->dirents[offset];
380 		nlen = strnlen(dire->u.name,
381 			       sizeof(*block) -
382 			       offset * sizeof(union afs_xdr_dirent));
383 		if (nlen > AFSNAMEMAX - 1) {
384 			_debug("ENT[%zu]: name too long (len %u/%zu)",
385 			       blkoff / sizeof(union afs_xdr_dir_block),
386 			       offset, nlen);
387 			return afs_bad(dvnode, afs_file_error_dir_name_too_long);
388 		}
389 
390 		_debug("ENT[%zu.%u]: %s %zu \"%s\"",
391 		       blkoff / sizeof(union afs_xdr_dir_block), offset,
392 		       (offset < curr ? "skip" : "fill"),
393 		       nlen, dire->u.name);
394 
395 		nr_slots = afs_dir_calc_slots(nlen);
396 		next = offset + nr_slots;
397 		if (next > AFS_DIR_SLOTS_PER_BLOCK) {
398 			_debug("ENT[%zu.%u]:"
399 			       " %u extends beyond end dir block"
400 			       " (len %zu)",
401 			       blkoff / sizeof(union afs_xdr_dir_block),
402 			       offset, next, nlen);
403 			return afs_bad(dvnode, afs_file_error_dir_over_end);
404 		}
405 
406 		/* Check that the name-extension dirents are all allocated */
407 		for (tmp = 1; tmp < nr_slots; tmp++) {
408 			unsigned int ix = offset + tmp;
409 			if (!(block->hdr.bitmap[ix / 8] & (1 << (ix % 8)))) {
410 				_debug("ENT[%zu.u]:"
411 				       " %u unmarked extension (%u/%u)",
412 				       blkoff / sizeof(union afs_xdr_dir_block),
413 				       offset, tmp, nr_slots);
414 				return afs_bad(dvnode, afs_file_error_dir_unmarked_ext);
415 			}
416 		}
417 
418 		/* skip if starts before the current position */
419 		if (offset < curr)
420 			continue;
421 
422 		/* found the next entry */
423 		if (!dir_emit(ctx, dire->u.name, nlen,
424 			      ntohl(dire->u.vnode),
425 			      (ctx->actor == afs_lookup_filldir ||
426 			       ctx->actor == afs_lookup_one_filldir)?
427 			      ntohl(dire->u.unique) : DT_UNKNOWN)) {
428 			_leave(" = 0 [full]");
429 			return 0;
430 		}
431 
432 		ctx->pos = blkoff + next * sizeof(union afs_xdr_dirent);
433 	}
434 
435 	_leave(" = 1 [more]");
436 	return 1;
437 }
438 
439 /*
440  * iterate through the data blob that lists the contents of an AFS directory
441  */
442 static int afs_dir_iterate(struct inode *dir, struct dir_context *ctx,
443 			   struct key *key, afs_dataversion_t *_dir_version)
444 {
445 	struct afs_vnode *dvnode = AFS_FS_I(dir);
446 	struct afs_xdr_dir_page *dbuf;
447 	union afs_xdr_dir_block *dblock;
448 	struct afs_read *req;
449 	struct page *page;
450 	unsigned blkoff, limit;
451 	int ret;
452 
453 	_enter("{%lu},%u,,", dir->i_ino, (unsigned)ctx->pos);
454 
455 	if (test_bit(AFS_VNODE_DELETED, &AFS_FS_I(dir)->flags)) {
456 		_leave(" = -ESTALE");
457 		return -ESTALE;
458 	}
459 
460 	req = afs_read_dir(dvnode, key);
461 	if (IS_ERR(req))
462 		return PTR_ERR(req);
463 	*_dir_version = req->data_version;
464 
465 	/* round the file position up to the next entry boundary */
466 	ctx->pos += sizeof(union afs_xdr_dirent) - 1;
467 	ctx->pos &= ~(sizeof(union afs_xdr_dirent) - 1);
468 
469 	/* walk through the blocks in sequence */
470 	ret = 0;
471 	while (ctx->pos < req->actual_len) {
472 		blkoff = ctx->pos & ~(sizeof(union afs_xdr_dir_block) - 1);
473 
474 		/* Fetch the appropriate page from the directory and re-add it
475 		 * to the LRU.
476 		 */
477 		page = req->pages[blkoff / PAGE_SIZE];
478 		if (!page) {
479 			ret = afs_bad(dvnode, afs_file_error_dir_missing_page);
480 			break;
481 		}
482 		mark_page_accessed(page);
483 
484 		limit = blkoff & ~(PAGE_SIZE - 1);
485 
486 		dbuf = kmap(page);
487 
488 		/* deal with the individual blocks stashed on this page */
489 		do {
490 			dblock = &dbuf->blocks[(blkoff % PAGE_SIZE) /
491 					       sizeof(union afs_xdr_dir_block)];
492 			ret = afs_dir_iterate_block(dvnode, ctx, dblock, blkoff);
493 			if (ret != 1) {
494 				kunmap(page);
495 				goto out;
496 			}
497 
498 			blkoff += sizeof(union afs_xdr_dir_block);
499 
500 		} while (ctx->pos < dir->i_size && blkoff < limit);
501 
502 		kunmap(page);
503 		ret = 0;
504 	}
505 
506 out:
507 	up_read(&dvnode->validate_lock);
508 	afs_put_read(req);
509 	_leave(" = %d", ret);
510 	return ret;
511 }
512 
513 /*
514  * read an AFS directory
515  */
516 static int afs_readdir(struct file *file, struct dir_context *ctx)
517 {
518 	afs_dataversion_t dir_version;
519 
520 	return afs_dir_iterate(file_inode(file), ctx, afs_file_key(file),
521 			       &dir_version);
522 }
523 
524 /*
525  * Search the directory for a single name
526  * - if afs_dir_iterate_block() spots this function, it'll pass the FID
527  *   uniquifier through dtype
528  */
529 static int afs_lookup_one_filldir(struct dir_context *ctx, const char *name,
530 				  int nlen, loff_t fpos, u64 ino, unsigned dtype)
531 {
532 	struct afs_lookup_one_cookie *cookie =
533 		container_of(ctx, struct afs_lookup_one_cookie, ctx);
534 
535 	_enter("{%s,%u},%s,%u,,%llu,%u",
536 	       cookie->name.name, cookie->name.len, name, nlen,
537 	       (unsigned long long) ino, dtype);
538 
539 	/* insanity checks first */
540 	BUILD_BUG_ON(sizeof(union afs_xdr_dir_block) != 2048);
541 	BUILD_BUG_ON(sizeof(union afs_xdr_dirent) != 32);
542 
543 	if (cookie->name.len != nlen ||
544 	    memcmp(cookie->name.name, name, nlen) != 0) {
545 		_leave(" = 0 [no]");
546 		return 0;
547 	}
548 
549 	cookie->fid.vnode = ino;
550 	cookie->fid.unique = dtype;
551 	cookie->found = 1;
552 
553 	_leave(" = -1 [found]");
554 	return -1;
555 }
556 
557 /*
558  * Do a lookup of a single name in a directory
559  * - just returns the FID the dentry name maps to if found
560  */
561 static int afs_do_lookup_one(struct inode *dir, struct dentry *dentry,
562 			     struct afs_fid *fid, struct key *key,
563 			     afs_dataversion_t *_dir_version)
564 {
565 	struct afs_super_info *as = dir->i_sb->s_fs_info;
566 	struct afs_lookup_one_cookie cookie = {
567 		.ctx.actor = afs_lookup_one_filldir,
568 		.name = dentry->d_name,
569 		.fid.vid = as->volume->vid
570 	};
571 	int ret;
572 
573 	_enter("{%lu},%p{%pd},", dir->i_ino, dentry, dentry);
574 
575 	/* search the directory */
576 	ret = afs_dir_iterate(dir, &cookie.ctx, key, _dir_version);
577 	if (ret < 0) {
578 		_leave(" = %d [iter]", ret);
579 		return ret;
580 	}
581 
582 	ret = -ENOENT;
583 	if (!cookie.found) {
584 		_leave(" = -ENOENT [not found]");
585 		return -ENOENT;
586 	}
587 
588 	*fid = cookie.fid;
589 	_leave(" = 0 { vn=%llu u=%u }", fid->vnode, fid->unique);
590 	return 0;
591 }
592 
593 /*
594  * search the directory for a name
595  * - if afs_dir_iterate_block() spots this function, it'll pass the FID
596  *   uniquifier through dtype
597  */
598 static int afs_lookup_filldir(struct dir_context *ctx, const char *name,
599 			      int nlen, loff_t fpos, u64 ino, unsigned dtype)
600 {
601 	struct afs_lookup_cookie *cookie =
602 		container_of(ctx, struct afs_lookup_cookie, ctx);
603 	int ret;
604 
605 	_enter("{%s,%u},%s,%u,,%llu,%u",
606 	       cookie->name.name, cookie->name.len, name, nlen,
607 	       (unsigned long long) ino, dtype);
608 
609 	/* insanity checks first */
610 	BUILD_BUG_ON(sizeof(union afs_xdr_dir_block) != 2048);
611 	BUILD_BUG_ON(sizeof(union afs_xdr_dirent) != 32);
612 
613 	if (cookie->found) {
614 		if (cookie->nr_fids < 50) {
615 			cookie->fids[cookie->nr_fids].vnode	= ino;
616 			cookie->fids[cookie->nr_fids].unique	= dtype;
617 			cookie->nr_fids++;
618 		}
619 	} else if (cookie->name.len == nlen &&
620 		   memcmp(cookie->name.name, name, nlen) == 0) {
621 		cookie->fids[1].vnode	= ino;
622 		cookie->fids[1].unique	= dtype;
623 		cookie->found = 1;
624 		if (cookie->one_only)
625 			return -1;
626 	}
627 
628 	ret = cookie->nr_fids >= 50 ? -1 : 0;
629 	_leave(" = %d", ret);
630 	return ret;
631 }
632 
633 /*
634  * Deal with the result of a successful lookup operation.  Turn all the files
635  * into inodes and save the first one - which is the one we actually want.
636  */
637 static void afs_do_lookup_success(struct afs_operation *op)
638 {
639 	struct afs_vnode_param *vp;
640 	struct afs_vnode *vnode;
641 	struct inode *inode;
642 	u32 abort_code;
643 	int i;
644 
645 	_enter("");
646 
647 	for (i = 0; i < op->nr_files; i++) {
648 		switch (i) {
649 		case 0:
650 			vp = &op->file[0];
651 			abort_code = vp->scb.status.abort_code;
652 			if (abort_code != 0) {
653 				op->ac.abort_code = abort_code;
654 				op->error = afs_abort_to_error(abort_code);
655 			}
656 			break;
657 
658 		case 1:
659 			vp = &op->file[1];
660 			break;
661 
662 		default:
663 			vp = &op->more_files[i - 2];
664 			break;
665 		}
666 
667 		if (!vp->scb.have_status && !vp->scb.have_error)
668 			continue;
669 
670 		_debug("do [%u]", i);
671 		if (vp->vnode) {
672 			if (!test_bit(AFS_VNODE_UNSET, &vp->vnode->flags))
673 				afs_vnode_commit_status(op, vp);
674 		} else if (vp->scb.status.abort_code == 0) {
675 			inode = afs_iget(op, vp);
676 			if (!IS_ERR(inode)) {
677 				vnode = AFS_FS_I(inode);
678 				afs_cache_permit(vnode, op->key,
679 						 0 /* Assume vnode->cb_break is 0 */ +
680 						 op->cb_v_break,
681 						 &vp->scb);
682 				vp->vnode = vnode;
683 				vp->put_vnode = true;
684 			}
685 		} else {
686 			_debug("- abort %d %llx:%llx.%x",
687 			       vp->scb.status.abort_code,
688 			       vp->fid.vid, vp->fid.vnode, vp->fid.unique);
689 		}
690 	}
691 
692 	_leave("");
693 }
694 
695 static const struct afs_operation_ops afs_inline_bulk_status_operation = {
696 	.issue_afs_rpc	= afs_fs_inline_bulk_status,
697 	.issue_yfs_rpc	= yfs_fs_inline_bulk_status,
698 	.success	= afs_do_lookup_success,
699 };
700 
701 static const struct afs_operation_ops afs_lookup_fetch_status_operation = {
702 	.issue_afs_rpc	= afs_fs_fetch_status,
703 	.issue_yfs_rpc	= yfs_fs_fetch_status,
704 	.success	= afs_do_lookup_success,
705 	.aborted	= afs_check_for_remote_deletion,
706 };
707 
708 /*
709  * See if we know that the server we expect to use doesn't support
710  * FS.InlineBulkStatus.
711  */
712 static bool afs_server_supports_ibulk(struct afs_vnode *dvnode)
713 {
714 	struct afs_server_list *slist;
715 	struct afs_volume *volume = dvnode->volume;
716 	struct afs_server *server;
717 	bool ret = true;
718 	int i;
719 
720 	if (!test_bit(AFS_VOLUME_MAYBE_NO_IBULK, &volume->flags))
721 		return true;
722 
723 	rcu_read_lock();
724 	slist = rcu_dereference(volume->servers);
725 
726 	for (i = 0; i < slist->nr_servers; i++) {
727 		server = slist->servers[i].server;
728 		if (server == dvnode->cb_server) {
729 			if (test_bit(AFS_SERVER_FL_NO_IBULK, &server->flags))
730 				ret = false;
731 			break;
732 		}
733 	}
734 
735 	rcu_read_unlock();
736 	return ret;
737 }
738 
739 /*
740  * Do a lookup in a directory.  We make use of bulk lookup to query a slew of
741  * files in one go and create inodes for them.  The inode of the file we were
742  * asked for is returned.
743  */
744 static struct inode *afs_do_lookup(struct inode *dir, struct dentry *dentry,
745 				   struct key *key)
746 {
747 	struct afs_lookup_cookie *cookie;
748 	struct afs_vnode_param *vp;
749 	struct afs_operation *op;
750 	struct afs_vnode *dvnode = AFS_FS_I(dir), *vnode;
751 	struct inode *inode = NULL, *ti;
752 	afs_dataversion_t data_version = READ_ONCE(dvnode->status.data_version);
753 	long ret;
754 	int i;
755 
756 	_enter("{%lu},%p{%pd},", dir->i_ino, dentry, dentry);
757 
758 	cookie = kzalloc(sizeof(struct afs_lookup_cookie), GFP_KERNEL);
759 	if (!cookie)
760 		return ERR_PTR(-ENOMEM);
761 
762 	for (i = 0; i < ARRAY_SIZE(cookie->fids); i++)
763 		cookie->fids[i].vid = dvnode->fid.vid;
764 	cookie->ctx.actor = afs_lookup_filldir;
765 	cookie->name = dentry->d_name;
766 	cookie->nr_fids = 2; /* slot 0 is saved for the fid we actually want
767 			      * and slot 1 for the directory */
768 
769 	if (!afs_server_supports_ibulk(dvnode))
770 		cookie->one_only = true;
771 
772 	/* search the directory */
773 	ret = afs_dir_iterate(dir, &cookie->ctx, key, &data_version);
774 	if (ret < 0)
775 		goto out;
776 
777 	dentry->d_fsdata = (void *)(unsigned long)data_version;
778 
779 	ret = -ENOENT;
780 	if (!cookie->found)
781 		goto out;
782 
783 	/* Check to see if we already have an inode for the primary fid. */
784 	inode = ilookup5(dir->i_sb, cookie->fids[1].vnode,
785 			 afs_ilookup5_test_by_fid, &cookie->fids[1]);
786 	if (inode)
787 		goto out; /* We do */
788 
789 	/* Okay, we didn't find it.  We need to query the server - and whilst
790 	 * we're doing that, we're going to attempt to look up a bunch of other
791 	 * vnodes also.
792 	 */
793 	op = afs_alloc_operation(NULL, dvnode->volume);
794 	if (IS_ERR(op)) {
795 		ret = PTR_ERR(op);
796 		goto out;
797 	}
798 
799 	afs_op_set_vnode(op, 0, dvnode);
800 	afs_op_set_fid(op, 1, &cookie->fids[1]);
801 
802 	op->nr_files = cookie->nr_fids;
803 	_debug("nr_files %u", op->nr_files);
804 
805 	/* Need space for examining all the selected files */
806 	op->error = -ENOMEM;
807 	if (op->nr_files > 2) {
808 		op->more_files = kvcalloc(op->nr_files - 2,
809 					  sizeof(struct afs_vnode_param),
810 					  GFP_KERNEL);
811 		if (!op->more_files)
812 			goto out_op;
813 
814 		for (i = 2; i < op->nr_files; i++) {
815 			vp = &op->more_files[i - 2];
816 			vp->fid = cookie->fids[i];
817 
818 			/* Find any inodes that already exist and get their
819 			 * callback counters.
820 			 */
821 			ti = ilookup5_nowait(dir->i_sb, vp->fid.vnode,
822 					     afs_ilookup5_test_by_fid, &vp->fid);
823 			if (!IS_ERR_OR_NULL(ti)) {
824 				vnode = AFS_FS_I(ti);
825 				vp->dv_before = vnode->status.data_version;
826 				vp->cb_break_before = afs_calc_vnode_cb_break(vnode);
827 				vp->vnode = vnode;
828 				vp->put_vnode = true;
829 				vp->speculative = true; /* vnode not locked */
830 			}
831 		}
832 	}
833 
834 	/* Try FS.InlineBulkStatus first.  Abort codes for the individual
835 	 * lookups contained therein are stored in the reply without aborting
836 	 * the whole operation.
837 	 */
838 	op->error = -ENOTSUPP;
839 	if (!cookie->one_only) {
840 		op->ops = &afs_inline_bulk_status_operation;
841 		afs_begin_vnode_operation(op);
842 		afs_wait_for_operation(op);
843 	}
844 
845 	if (op->error == -ENOTSUPP) {
846 		/* We could try FS.BulkStatus next, but this aborts the entire
847 		 * op if any of the lookups fails - so, for the moment, revert
848 		 * to FS.FetchStatus for op->file[1].
849 		 */
850 		op->fetch_status.which = 1;
851 		op->ops = &afs_lookup_fetch_status_operation;
852 		afs_begin_vnode_operation(op);
853 		afs_wait_for_operation(op);
854 	}
855 	inode = ERR_PTR(op->error);
856 
857 out_op:
858 	if (op->error == 0) {
859 		inode = &op->file[1].vnode->vfs_inode;
860 		op->file[1].vnode = NULL;
861 	}
862 
863 	if (op->file[0].scb.have_status)
864 		dentry->d_fsdata = (void *)(unsigned long)op->file[0].scb.status.data_version;
865 	else
866 		dentry->d_fsdata = (void *)(unsigned long)op->file[0].dv_before;
867 	ret = afs_put_operation(op);
868 out:
869 	kfree(cookie);
870 	_leave("");
871 	return inode ?: ERR_PTR(ret);
872 }
873 
874 /*
875  * Look up an entry in a directory with @sys substitution.
876  */
877 static struct dentry *afs_lookup_atsys(struct inode *dir, struct dentry *dentry,
878 				       struct key *key)
879 {
880 	struct afs_sysnames *subs;
881 	struct afs_net *net = afs_i2net(dir);
882 	struct dentry *ret;
883 	char *buf, *p, *name;
884 	int len, i;
885 
886 	_enter("");
887 
888 	ret = ERR_PTR(-ENOMEM);
889 	p = buf = kmalloc(AFSNAMEMAX, GFP_KERNEL);
890 	if (!buf)
891 		goto out_p;
892 	if (dentry->d_name.len > 4) {
893 		memcpy(p, dentry->d_name.name, dentry->d_name.len - 4);
894 		p += dentry->d_name.len - 4;
895 	}
896 
897 	/* There is an ordered list of substitutes that we have to try. */
898 	read_lock(&net->sysnames_lock);
899 	subs = net->sysnames;
900 	refcount_inc(&subs->usage);
901 	read_unlock(&net->sysnames_lock);
902 
903 	for (i = 0; i < subs->nr; i++) {
904 		name = subs->subs[i];
905 		len = dentry->d_name.len - 4 + strlen(name);
906 		if (len >= AFSNAMEMAX) {
907 			ret = ERR_PTR(-ENAMETOOLONG);
908 			goto out_s;
909 		}
910 
911 		strcpy(p, name);
912 		ret = lookup_one_len(buf, dentry->d_parent, len);
913 		if (IS_ERR(ret) || d_is_positive(ret))
914 			goto out_s;
915 		dput(ret);
916 	}
917 
918 	/* We don't want to d_add() the @sys dentry here as we don't want to
919 	 * the cached dentry to hide changes to the sysnames list.
920 	 */
921 	ret = NULL;
922 out_s:
923 	afs_put_sysnames(subs);
924 	kfree(buf);
925 out_p:
926 	key_put(key);
927 	return ret;
928 }
929 
930 /*
931  * look up an entry in a directory
932  */
933 static struct dentry *afs_lookup(struct inode *dir, struct dentry *dentry,
934 				 unsigned int flags)
935 {
936 	struct afs_vnode *dvnode = AFS_FS_I(dir);
937 	struct afs_fid fid = {};
938 	struct inode *inode;
939 	struct dentry *d;
940 	struct key *key;
941 	int ret;
942 
943 	_enter("{%llx:%llu},%p{%pd},",
944 	       dvnode->fid.vid, dvnode->fid.vnode, dentry, dentry);
945 
946 	ASSERTCMP(d_inode(dentry), ==, NULL);
947 
948 	if (dentry->d_name.len >= AFSNAMEMAX) {
949 		_leave(" = -ENAMETOOLONG");
950 		return ERR_PTR(-ENAMETOOLONG);
951 	}
952 
953 	if (test_bit(AFS_VNODE_DELETED, &dvnode->flags)) {
954 		_leave(" = -ESTALE");
955 		return ERR_PTR(-ESTALE);
956 	}
957 
958 	key = afs_request_key(dvnode->volume->cell);
959 	if (IS_ERR(key)) {
960 		_leave(" = %ld [key]", PTR_ERR(key));
961 		return ERR_CAST(key);
962 	}
963 
964 	ret = afs_validate(dvnode, key);
965 	if (ret < 0) {
966 		key_put(key);
967 		_leave(" = %d [val]", ret);
968 		return ERR_PTR(ret);
969 	}
970 
971 	if (dentry->d_name.len >= 4 &&
972 	    dentry->d_name.name[dentry->d_name.len - 4] == '@' &&
973 	    dentry->d_name.name[dentry->d_name.len - 3] == 's' &&
974 	    dentry->d_name.name[dentry->d_name.len - 2] == 'y' &&
975 	    dentry->d_name.name[dentry->d_name.len - 1] == 's')
976 		return afs_lookup_atsys(dir, dentry, key);
977 
978 	afs_stat_v(dvnode, n_lookup);
979 	inode = afs_do_lookup(dir, dentry, key);
980 	key_put(key);
981 	if (inode == ERR_PTR(-ENOENT))
982 		inode = afs_try_auto_mntpt(dentry, dir);
983 
984 	if (!IS_ERR_OR_NULL(inode))
985 		fid = AFS_FS_I(inode)->fid;
986 
987 	_debug("splice %p", dentry->d_inode);
988 	d = d_splice_alias(inode, dentry);
989 	if (!IS_ERR_OR_NULL(d)) {
990 		d->d_fsdata = dentry->d_fsdata;
991 		trace_afs_lookup(dvnode, &d->d_name, &fid);
992 	} else {
993 		trace_afs_lookup(dvnode, &dentry->d_name, &fid);
994 	}
995 	_leave("");
996 	return d;
997 }
998 
999 /*
1000  * Check the validity of a dentry under RCU conditions.
1001  */
1002 static int afs_d_revalidate_rcu(struct dentry *dentry)
1003 {
1004 	struct afs_vnode *dvnode, *vnode;
1005 	struct dentry *parent;
1006 	struct inode *dir, *inode;
1007 	long dir_version, de_version;
1008 
1009 	_enter("%p", dentry);
1010 
1011 	/* Check the parent directory is still valid first. */
1012 	parent = READ_ONCE(dentry->d_parent);
1013 	dir = d_inode_rcu(parent);
1014 	if (!dir)
1015 		return -ECHILD;
1016 	dvnode = AFS_FS_I(dir);
1017 	if (test_bit(AFS_VNODE_DELETED, &dvnode->flags))
1018 		return -ECHILD;
1019 
1020 	if (!afs_check_validity(dvnode))
1021 		return -ECHILD;
1022 
1023 	/* We only need to invalidate a dentry if the server's copy changed
1024 	 * behind our back.  If we made the change, it's no problem.  Note that
1025 	 * on a 32-bit system, we only have 32 bits in the dentry to store the
1026 	 * version.
1027 	 */
1028 	dir_version = (long)READ_ONCE(dvnode->status.data_version);
1029 	de_version = (long)READ_ONCE(dentry->d_fsdata);
1030 	if (de_version != dir_version) {
1031 		dir_version = (long)READ_ONCE(dvnode->invalid_before);
1032 		if (de_version - dir_version < 0)
1033 			return -ECHILD;
1034 	}
1035 
1036 	/* Check to see if the vnode referred to by the dentry still
1037 	 * has a callback.
1038 	 */
1039 	if (d_really_is_positive(dentry)) {
1040 		inode = d_inode_rcu(dentry);
1041 		if (inode) {
1042 			vnode = AFS_FS_I(inode);
1043 			if (!afs_check_validity(vnode))
1044 				return -ECHILD;
1045 		}
1046 	}
1047 
1048 	return 1; /* Still valid */
1049 }
1050 
1051 /*
1052  * check that a dentry lookup hit has found a valid entry
1053  * - NOTE! the hit can be a negative hit too, so we can't assume we have an
1054  *   inode
1055  */
1056 static int afs_d_revalidate(struct dentry *dentry, unsigned int flags)
1057 {
1058 	struct afs_vnode *vnode, *dir;
1059 	struct afs_fid fid;
1060 	struct dentry *parent;
1061 	struct inode *inode;
1062 	struct key *key;
1063 	afs_dataversion_t dir_version, invalid_before;
1064 	long de_version;
1065 	int ret;
1066 
1067 	if (flags & LOOKUP_RCU)
1068 		return afs_d_revalidate_rcu(dentry);
1069 
1070 	if (d_really_is_positive(dentry)) {
1071 		vnode = AFS_FS_I(d_inode(dentry));
1072 		_enter("{v={%llx:%llu} n=%pd fl=%lx},",
1073 		       vnode->fid.vid, vnode->fid.vnode, dentry,
1074 		       vnode->flags);
1075 	} else {
1076 		_enter("{neg n=%pd}", dentry);
1077 	}
1078 
1079 	key = afs_request_key(AFS_FS_S(dentry->d_sb)->volume->cell);
1080 	if (IS_ERR(key))
1081 		key = NULL;
1082 
1083 	if (d_really_is_positive(dentry)) {
1084 		inode = d_inode(dentry);
1085 		if (inode) {
1086 			vnode = AFS_FS_I(inode);
1087 			afs_validate(vnode, key);
1088 			if (test_bit(AFS_VNODE_DELETED, &vnode->flags))
1089 				goto out_bad;
1090 		}
1091 	}
1092 
1093 	/* lock down the parent dentry so we can peer at it */
1094 	parent = dget_parent(dentry);
1095 	dir = AFS_FS_I(d_inode(parent));
1096 
1097 	/* validate the parent directory */
1098 	afs_validate(dir, key);
1099 
1100 	if (test_bit(AFS_VNODE_DELETED, &dir->flags)) {
1101 		_debug("%pd: parent dir deleted", dentry);
1102 		goto out_bad_parent;
1103 	}
1104 
1105 	/* We only need to invalidate a dentry if the server's copy changed
1106 	 * behind our back.  If we made the change, it's no problem.  Note that
1107 	 * on a 32-bit system, we only have 32 bits in the dentry to store the
1108 	 * version.
1109 	 */
1110 	dir_version = dir->status.data_version;
1111 	de_version = (long)dentry->d_fsdata;
1112 	if (de_version == (long)dir_version)
1113 		goto out_valid_noupdate;
1114 
1115 	invalid_before = dir->invalid_before;
1116 	if (de_version - (long)invalid_before >= 0)
1117 		goto out_valid;
1118 
1119 	_debug("dir modified");
1120 	afs_stat_v(dir, n_reval);
1121 
1122 	/* search the directory for this vnode */
1123 	ret = afs_do_lookup_one(&dir->vfs_inode, dentry, &fid, key, &dir_version);
1124 	switch (ret) {
1125 	case 0:
1126 		/* the filename maps to something */
1127 		if (d_really_is_negative(dentry))
1128 			goto out_bad_parent;
1129 		inode = d_inode(dentry);
1130 		if (is_bad_inode(inode)) {
1131 			printk("kAFS: afs_d_revalidate: %pd2 has bad inode\n",
1132 			       dentry);
1133 			goto out_bad_parent;
1134 		}
1135 
1136 		vnode = AFS_FS_I(inode);
1137 
1138 		/* if the vnode ID has changed, then the dirent points to a
1139 		 * different file */
1140 		if (fid.vnode != vnode->fid.vnode) {
1141 			_debug("%pd: dirent changed [%llu != %llu]",
1142 			       dentry, fid.vnode,
1143 			       vnode->fid.vnode);
1144 			goto not_found;
1145 		}
1146 
1147 		/* if the vnode ID uniqifier has changed, then the file has
1148 		 * been deleted and replaced, and the original vnode ID has
1149 		 * been reused */
1150 		if (fid.unique != vnode->fid.unique) {
1151 			_debug("%pd: file deleted (uq %u -> %u I:%u)",
1152 			       dentry, fid.unique,
1153 			       vnode->fid.unique,
1154 			       vnode->vfs_inode.i_generation);
1155 			write_seqlock(&vnode->cb_lock);
1156 			set_bit(AFS_VNODE_DELETED, &vnode->flags);
1157 			write_sequnlock(&vnode->cb_lock);
1158 			goto not_found;
1159 		}
1160 		goto out_valid;
1161 
1162 	case -ENOENT:
1163 		/* the filename is unknown */
1164 		_debug("%pd: dirent not found", dentry);
1165 		if (d_really_is_positive(dentry))
1166 			goto not_found;
1167 		goto out_valid;
1168 
1169 	default:
1170 		_debug("failed to iterate dir %pd: %d",
1171 		       parent, ret);
1172 		goto out_bad_parent;
1173 	}
1174 
1175 out_valid:
1176 	dentry->d_fsdata = (void *)(unsigned long)dir_version;
1177 out_valid_noupdate:
1178 	dput(parent);
1179 	key_put(key);
1180 	_leave(" = 1 [valid]");
1181 	return 1;
1182 
1183 	/* the dirent, if it exists, now points to a different vnode */
1184 not_found:
1185 	spin_lock(&dentry->d_lock);
1186 	dentry->d_flags |= DCACHE_NFSFS_RENAMED;
1187 	spin_unlock(&dentry->d_lock);
1188 
1189 out_bad_parent:
1190 	_debug("dropping dentry %pd2", dentry);
1191 	dput(parent);
1192 out_bad:
1193 	key_put(key);
1194 
1195 	_leave(" = 0 [bad]");
1196 	return 0;
1197 }
1198 
1199 /*
1200  * allow the VFS to enquire as to whether a dentry should be unhashed (mustn't
1201  * sleep)
1202  * - called from dput() when d_count is going to 0.
1203  * - return 1 to request dentry be unhashed, 0 otherwise
1204  */
1205 static int afs_d_delete(const struct dentry *dentry)
1206 {
1207 	_enter("%pd", dentry);
1208 
1209 	if (dentry->d_flags & DCACHE_NFSFS_RENAMED)
1210 		goto zap;
1211 
1212 	if (d_really_is_positive(dentry) &&
1213 	    (test_bit(AFS_VNODE_DELETED,   &AFS_FS_I(d_inode(dentry))->flags) ||
1214 	     test_bit(AFS_VNODE_PSEUDODIR, &AFS_FS_I(d_inode(dentry))->flags)))
1215 		goto zap;
1216 
1217 	_leave(" = 0 [keep]");
1218 	return 0;
1219 
1220 zap:
1221 	_leave(" = 1 [zap]");
1222 	return 1;
1223 }
1224 
1225 /*
1226  * Clean up sillyrename files on dentry removal.
1227  */
1228 static void afs_d_iput(struct dentry *dentry, struct inode *inode)
1229 {
1230 	if (dentry->d_flags & DCACHE_NFSFS_RENAMED)
1231 		afs_silly_iput(dentry, inode);
1232 	iput(inode);
1233 }
1234 
1235 /*
1236  * handle dentry release
1237  */
1238 void afs_d_release(struct dentry *dentry)
1239 {
1240 	_enter("%pd", dentry);
1241 }
1242 
1243 void afs_check_for_remote_deletion(struct afs_operation *op)
1244 {
1245 	struct afs_vnode *vnode = op->file[0].vnode;
1246 
1247 	switch (op->ac.abort_code) {
1248 	case VNOVNODE:
1249 		set_bit(AFS_VNODE_DELETED, &vnode->flags);
1250 		afs_break_callback(vnode, afs_cb_break_for_deleted);
1251 	}
1252 }
1253 
1254 /*
1255  * Create a new inode for create/mkdir/symlink
1256  */
1257 static void afs_vnode_new_inode(struct afs_operation *op)
1258 {
1259 	struct afs_vnode_param *vp = &op->file[1];
1260 	struct afs_vnode *vnode;
1261 	struct inode *inode;
1262 
1263 	_enter("");
1264 
1265 	ASSERTCMP(op->error, ==, 0);
1266 
1267 	inode = afs_iget(op, vp);
1268 	if (IS_ERR(inode)) {
1269 		/* ENOMEM or EINTR at a really inconvenient time - just abandon
1270 		 * the new directory on the server.
1271 		 */
1272 		op->error = PTR_ERR(inode);
1273 		return;
1274 	}
1275 
1276 	vnode = AFS_FS_I(inode);
1277 	set_bit(AFS_VNODE_NEW_CONTENT, &vnode->flags);
1278 	if (!op->error)
1279 		afs_cache_permit(vnode, op->key, vnode->cb_break, &vp->scb);
1280 	d_instantiate(op->dentry, inode);
1281 }
1282 
1283 static void afs_create_success(struct afs_operation *op)
1284 {
1285 	_enter("op=%08x", op->debug_id);
1286 	op->ctime = op->file[0].scb.status.mtime_client;
1287 	afs_vnode_commit_status(op, &op->file[0]);
1288 	afs_update_dentry_version(op, &op->file[0], op->dentry);
1289 	afs_vnode_new_inode(op);
1290 }
1291 
1292 static void afs_create_edit_dir(struct afs_operation *op)
1293 {
1294 	struct afs_vnode_param *dvp = &op->file[0];
1295 	struct afs_vnode_param *vp = &op->file[1];
1296 	struct afs_vnode *dvnode = dvp->vnode;
1297 
1298 	_enter("op=%08x", op->debug_id);
1299 
1300 	down_write(&dvnode->validate_lock);
1301 	if (test_bit(AFS_VNODE_DIR_VALID, &dvnode->flags) &&
1302 	    dvnode->status.data_version == dvp->dv_before + dvp->dv_delta)
1303 		afs_edit_dir_add(dvnode, &op->dentry->d_name, &vp->fid,
1304 				 op->create.reason);
1305 	up_write(&dvnode->validate_lock);
1306 }
1307 
1308 static void afs_create_put(struct afs_operation *op)
1309 {
1310 	_enter("op=%08x", op->debug_id);
1311 
1312 	if (op->error)
1313 		d_drop(op->dentry);
1314 }
1315 
1316 static const struct afs_operation_ops afs_mkdir_operation = {
1317 	.issue_afs_rpc	= afs_fs_make_dir,
1318 	.issue_yfs_rpc	= yfs_fs_make_dir,
1319 	.success	= afs_create_success,
1320 	.aborted	= afs_check_for_remote_deletion,
1321 	.edit_dir	= afs_create_edit_dir,
1322 	.put		= afs_create_put,
1323 };
1324 
1325 /*
1326  * create a directory on an AFS filesystem
1327  */
1328 static int afs_mkdir(struct user_namespace *mnt_userns, struct inode *dir,
1329 		     struct dentry *dentry, umode_t mode)
1330 {
1331 	struct afs_operation *op;
1332 	struct afs_vnode *dvnode = AFS_FS_I(dir);
1333 
1334 	_enter("{%llx:%llu},{%pd},%ho",
1335 	       dvnode->fid.vid, dvnode->fid.vnode, dentry, mode);
1336 
1337 	op = afs_alloc_operation(NULL, dvnode->volume);
1338 	if (IS_ERR(op)) {
1339 		d_drop(dentry);
1340 		return PTR_ERR(op);
1341 	}
1342 
1343 	afs_op_set_vnode(op, 0, dvnode);
1344 	op->file[0].dv_delta = 1;
1345 	op->file[0].update_ctime = true;
1346 	op->dentry	= dentry;
1347 	op->create.mode	= S_IFDIR | mode;
1348 	op->create.reason = afs_edit_dir_for_mkdir;
1349 	op->ops		= &afs_mkdir_operation;
1350 	return afs_do_sync_operation(op);
1351 }
1352 
1353 /*
1354  * Remove a subdir from a directory.
1355  */
1356 static void afs_dir_remove_subdir(struct dentry *dentry)
1357 {
1358 	if (d_really_is_positive(dentry)) {
1359 		struct afs_vnode *vnode = AFS_FS_I(d_inode(dentry));
1360 
1361 		clear_nlink(&vnode->vfs_inode);
1362 		set_bit(AFS_VNODE_DELETED, &vnode->flags);
1363 		clear_bit(AFS_VNODE_CB_PROMISED, &vnode->flags);
1364 		clear_bit(AFS_VNODE_DIR_VALID, &vnode->flags);
1365 	}
1366 }
1367 
1368 static void afs_rmdir_success(struct afs_operation *op)
1369 {
1370 	_enter("op=%08x", op->debug_id);
1371 	op->ctime = op->file[0].scb.status.mtime_client;
1372 	afs_vnode_commit_status(op, &op->file[0]);
1373 	afs_update_dentry_version(op, &op->file[0], op->dentry);
1374 }
1375 
1376 static void afs_rmdir_edit_dir(struct afs_operation *op)
1377 {
1378 	struct afs_vnode_param *dvp = &op->file[0];
1379 	struct afs_vnode *dvnode = dvp->vnode;
1380 
1381 	_enter("op=%08x", op->debug_id);
1382 	afs_dir_remove_subdir(op->dentry);
1383 
1384 	down_write(&dvnode->validate_lock);
1385 	if (test_bit(AFS_VNODE_DIR_VALID, &dvnode->flags) &&
1386 	    dvnode->status.data_version == dvp->dv_before + dvp->dv_delta)
1387 		afs_edit_dir_remove(dvnode, &op->dentry->d_name,
1388 				    afs_edit_dir_for_rmdir);
1389 	up_write(&dvnode->validate_lock);
1390 }
1391 
1392 static void afs_rmdir_put(struct afs_operation *op)
1393 {
1394 	_enter("op=%08x", op->debug_id);
1395 	if (op->file[1].vnode)
1396 		up_write(&op->file[1].vnode->rmdir_lock);
1397 }
1398 
1399 static const struct afs_operation_ops afs_rmdir_operation = {
1400 	.issue_afs_rpc	= afs_fs_remove_dir,
1401 	.issue_yfs_rpc	= yfs_fs_remove_dir,
1402 	.success	= afs_rmdir_success,
1403 	.aborted	= afs_check_for_remote_deletion,
1404 	.edit_dir	= afs_rmdir_edit_dir,
1405 	.put		= afs_rmdir_put,
1406 };
1407 
1408 /*
1409  * remove a directory from an AFS filesystem
1410  */
1411 static int afs_rmdir(struct inode *dir, struct dentry *dentry)
1412 {
1413 	struct afs_operation *op;
1414 	struct afs_vnode *dvnode = AFS_FS_I(dir), *vnode = NULL;
1415 	int ret;
1416 
1417 	_enter("{%llx:%llu},{%pd}",
1418 	       dvnode->fid.vid, dvnode->fid.vnode, dentry);
1419 
1420 	op = afs_alloc_operation(NULL, dvnode->volume);
1421 	if (IS_ERR(op))
1422 		return PTR_ERR(op);
1423 
1424 	afs_op_set_vnode(op, 0, dvnode);
1425 	op->file[0].dv_delta = 1;
1426 	op->file[0].update_ctime = true;
1427 
1428 	op->dentry	= dentry;
1429 	op->ops		= &afs_rmdir_operation;
1430 
1431 	/* Try to make sure we have a callback promise on the victim. */
1432 	if (d_really_is_positive(dentry)) {
1433 		vnode = AFS_FS_I(d_inode(dentry));
1434 		ret = afs_validate(vnode, op->key);
1435 		if (ret < 0)
1436 			goto error;
1437 	}
1438 
1439 	if (vnode) {
1440 		ret = down_write_killable(&vnode->rmdir_lock);
1441 		if (ret < 0)
1442 			goto error;
1443 		op->file[1].vnode = vnode;
1444 	}
1445 
1446 	return afs_do_sync_operation(op);
1447 
1448 error:
1449 	return afs_put_operation(op);
1450 }
1451 
1452 /*
1453  * Remove a link to a file or symlink from a directory.
1454  *
1455  * If the file was not deleted due to excess hard links, the fileserver will
1456  * break the callback promise on the file - if it had one - before it returns
1457  * to us, and if it was deleted, it won't
1458  *
1459  * However, if we didn't have a callback promise outstanding, or it was
1460  * outstanding on a different server, then it won't break it either...
1461  */
1462 static void afs_dir_remove_link(struct afs_operation *op)
1463 {
1464 	struct afs_vnode *dvnode = op->file[0].vnode;
1465 	struct afs_vnode *vnode = op->file[1].vnode;
1466 	struct dentry *dentry = op->dentry;
1467 	int ret;
1468 
1469 	if (op->error != 0 ||
1470 	    (op->file[1].scb.have_status && op->file[1].scb.have_error))
1471 		return;
1472 	if (d_really_is_positive(dentry))
1473 		return;
1474 
1475 	if (test_bit(AFS_VNODE_DELETED, &vnode->flags)) {
1476 		/* Already done */
1477 	} else if (test_bit(AFS_VNODE_DIR_VALID, &dvnode->flags)) {
1478 		write_seqlock(&vnode->cb_lock);
1479 		drop_nlink(&vnode->vfs_inode);
1480 		if (vnode->vfs_inode.i_nlink == 0) {
1481 			set_bit(AFS_VNODE_DELETED, &vnode->flags);
1482 			__afs_break_callback(vnode, afs_cb_break_for_unlink);
1483 		}
1484 		write_sequnlock(&vnode->cb_lock);
1485 	} else {
1486 		afs_break_callback(vnode, afs_cb_break_for_unlink);
1487 
1488 		if (test_bit(AFS_VNODE_DELETED, &vnode->flags))
1489 			_debug("AFS_VNODE_DELETED");
1490 
1491 		ret = afs_validate(vnode, op->key);
1492 		if (ret != -ESTALE)
1493 			op->error = ret;
1494 	}
1495 
1496 	_debug("nlink %d [val %d]", vnode->vfs_inode.i_nlink, op->error);
1497 }
1498 
1499 static void afs_unlink_success(struct afs_operation *op)
1500 {
1501 	_enter("op=%08x", op->debug_id);
1502 	op->ctime = op->file[0].scb.status.mtime_client;
1503 	afs_check_dir_conflict(op, &op->file[0]);
1504 	afs_vnode_commit_status(op, &op->file[0]);
1505 	afs_vnode_commit_status(op, &op->file[1]);
1506 	afs_update_dentry_version(op, &op->file[0], op->dentry);
1507 	afs_dir_remove_link(op);
1508 }
1509 
1510 static void afs_unlink_edit_dir(struct afs_operation *op)
1511 {
1512 	struct afs_vnode_param *dvp = &op->file[0];
1513 	struct afs_vnode *dvnode = dvp->vnode;
1514 
1515 	_enter("op=%08x", op->debug_id);
1516 	down_write(&dvnode->validate_lock);
1517 	if (test_bit(AFS_VNODE_DIR_VALID, &dvnode->flags) &&
1518 	    dvnode->status.data_version == dvp->dv_before + dvp->dv_delta)
1519 		afs_edit_dir_remove(dvnode, &op->dentry->d_name,
1520 				    afs_edit_dir_for_unlink);
1521 	up_write(&dvnode->validate_lock);
1522 }
1523 
1524 static void afs_unlink_put(struct afs_operation *op)
1525 {
1526 	_enter("op=%08x", op->debug_id);
1527 	if (op->unlink.need_rehash && op->error < 0 && op->error != -ENOENT)
1528 		d_rehash(op->dentry);
1529 }
1530 
1531 static const struct afs_operation_ops afs_unlink_operation = {
1532 	.issue_afs_rpc	= afs_fs_remove_file,
1533 	.issue_yfs_rpc	= yfs_fs_remove_file,
1534 	.success	= afs_unlink_success,
1535 	.aborted	= afs_check_for_remote_deletion,
1536 	.edit_dir	= afs_unlink_edit_dir,
1537 	.put		= afs_unlink_put,
1538 };
1539 
1540 /*
1541  * Remove a file or symlink from an AFS filesystem.
1542  */
1543 static int afs_unlink(struct inode *dir, struct dentry *dentry)
1544 {
1545 	struct afs_operation *op;
1546 	struct afs_vnode *dvnode = AFS_FS_I(dir);
1547 	struct afs_vnode *vnode = AFS_FS_I(d_inode(dentry));
1548 	int ret;
1549 
1550 	_enter("{%llx:%llu},{%pd}",
1551 	       dvnode->fid.vid, dvnode->fid.vnode, dentry);
1552 
1553 	if (dentry->d_name.len >= AFSNAMEMAX)
1554 		return -ENAMETOOLONG;
1555 
1556 	op = afs_alloc_operation(NULL, dvnode->volume);
1557 	if (IS_ERR(op))
1558 		return PTR_ERR(op);
1559 
1560 	afs_op_set_vnode(op, 0, dvnode);
1561 	op->file[0].dv_delta = 1;
1562 	op->file[0].update_ctime = true;
1563 
1564 	/* Try to make sure we have a callback promise on the victim. */
1565 	ret = afs_validate(vnode, op->key);
1566 	if (ret < 0) {
1567 		op->error = ret;
1568 		goto error;
1569 	}
1570 
1571 	spin_lock(&dentry->d_lock);
1572 	if (d_count(dentry) > 1) {
1573 		spin_unlock(&dentry->d_lock);
1574 		/* Start asynchronous writeout of the inode */
1575 		write_inode_now(d_inode(dentry), 0);
1576 		op->error = afs_sillyrename(dvnode, vnode, dentry, op->key);
1577 		goto error;
1578 	}
1579 	if (!d_unhashed(dentry)) {
1580 		/* Prevent a race with RCU lookup. */
1581 		__d_drop(dentry);
1582 		op->unlink.need_rehash = true;
1583 	}
1584 	spin_unlock(&dentry->d_lock);
1585 
1586 	op->file[1].vnode = vnode;
1587 	op->file[1].update_ctime = true;
1588 	op->file[1].op_unlinked = true;
1589 	op->dentry	= dentry;
1590 	op->ops		= &afs_unlink_operation;
1591 	afs_begin_vnode_operation(op);
1592 	afs_wait_for_operation(op);
1593 
1594 	/* If there was a conflict with a third party, check the status of the
1595 	 * unlinked vnode.
1596 	 */
1597 	if (op->error == 0 && (op->flags & AFS_OPERATION_DIR_CONFLICT)) {
1598 		op->file[1].update_ctime = false;
1599 		op->fetch_status.which = 1;
1600 		op->ops = &afs_fetch_status_operation;
1601 		afs_begin_vnode_operation(op);
1602 		afs_wait_for_operation(op);
1603 	}
1604 
1605 	return afs_put_operation(op);
1606 
1607 error:
1608 	return afs_put_operation(op);
1609 }
1610 
1611 static const struct afs_operation_ops afs_create_operation = {
1612 	.issue_afs_rpc	= afs_fs_create_file,
1613 	.issue_yfs_rpc	= yfs_fs_create_file,
1614 	.success	= afs_create_success,
1615 	.aborted	= afs_check_for_remote_deletion,
1616 	.edit_dir	= afs_create_edit_dir,
1617 	.put		= afs_create_put,
1618 };
1619 
1620 /*
1621  * create a regular file on an AFS filesystem
1622  */
1623 static int afs_create(struct user_namespace *mnt_userns, struct inode *dir,
1624 		      struct dentry *dentry, umode_t mode, bool excl)
1625 {
1626 	struct afs_operation *op;
1627 	struct afs_vnode *dvnode = AFS_FS_I(dir);
1628 	int ret = -ENAMETOOLONG;
1629 
1630 	_enter("{%llx:%llu},{%pd},%ho",
1631 	       dvnode->fid.vid, dvnode->fid.vnode, dentry, mode);
1632 
1633 	if (dentry->d_name.len >= AFSNAMEMAX)
1634 		goto error;
1635 
1636 	op = afs_alloc_operation(NULL, dvnode->volume);
1637 	if (IS_ERR(op)) {
1638 		ret = PTR_ERR(op);
1639 		goto error;
1640 	}
1641 
1642 	afs_op_set_vnode(op, 0, dvnode);
1643 	op->file[0].dv_delta = 1;
1644 	op->file[0].update_ctime = true;
1645 
1646 	op->dentry	= dentry;
1647 	op->create.mode	= S_IFREG | mode;
1648 	op->create.reason = afs_edit_dir_for_create;
1649 	op->ops		= &afs_create_operation;
1650 	return afs_do_sync_operation(op);
1651 
1652 error:
1653 	d_drop(dentry);
1654 	_leave(" = %d", ret);
1655 	return ret;
1656 }
1657 
1658 static void afs_link_success(struct afs_operation *op)
1659 {
1660 	struct afs_vnode_param *dvp = &op->file[0];
1661 	struct afs_vnode_param *vp = &op->file[1];
1662 
1663 	_enter("op=%08x", op->debug_id);
1664 	op->ctime = dvp->scb.status.mtime_client;
1665 	afs_vnode_commit_status(op, dvp);
1666 	afs_vnode_commit_status(op, vp);
1667 	afs_update_dentry_version(op, dvp, op->dentry);
1668 	if (op->dentry_2->d_parent == op->dentry->d_parent)
1669 		afs_update_dentry_version(op, dvp, op->dentry_2);
1670 	ihold(&vp->vnode->vfs_inode);
1671 	d_instantiate(op->dentry, &vp->vnode->vfs_inode);
1672 }
1673 
1674 static void afs_link_put(struct afs_operation *op)
1675 {
1676 	_enter("op=%08x", op->debug_id);
1677 	if (op->error)
1678 		d_drop(op->dentry);
1679 }
1680 
1681 static const struct afs_operation_ops afs_link_operation = {
1682 	.issue_afs_rpc	= afs_fs_link,
1683 	.issue_yfs_rpc	= yfs_fs_link,
1684 	.success	= afs_link_success,
1685 	.aborted	= afs_check_for_remote_deletion,
1686 	.edit_dir	= afs_create_edit_dir,
1687 	.put		= afs_link_put,
1688 };
1689 
1690 /*
1691  * create a hard link between files in an AFS filesystem
1692  */
1693 static int afs_link(struct dentry *from, struct inode *dir,
1694 		    struct dentry *dentry)
1695 {
1696 	struct afs_operation *op;
1697 	struct afs_vnode *dvnode = AFS_FS_I(dir);
1698 	struct afs_vnode *vnode = AFS_FS_I(d_inode(from));
1699 	int ret = -ENAMETOOLONG;
1700 
1701 	_enter("{%llx:%llu},{%llx:%llu},{%pd}",
1702 	       vnode->fid.vid, vnode->fid.vnode,
1703 	       dvnode->fid.vid, dvnode->fid.vnode,
1704 	       dentry);
1705 
1706 	if (dentry->d_name.len >= AFSNAMEMAX)
1707 		goto error;
1708 
1709 	op = afs_alloc_operation(NULL, dvnode->volume);
1710 	if (IS_ERR(op)) {
1711 		ret = PTR_ERR(op);
1712 		goto error;
1713 	}
1714 
1715 	afs_op_set_vnode(op, 0, dvnode);
1716 	afs_op_set_vnode(op, 1, vnode);
1717 	op->file[0].dv_delta = 1;
1718 	op->file[0].update_ctime = true;
1719 	op->file[1].update_ctime = true;
1720 
1721 	op->dentry		= dentry;
1722 	op->dentry_2		= from;
1723 	op->ops			= &afs_link_operation;
1724 	op->create.reason	= afs_edit_dir_for_link;
1725 	return afs_do_sync_operation(op);
1726 
1727 error:
1728 	d_drop(dentry);
1729 	_leave(" = %d", ret);
1730 	return ret;
1731 }
1732 
1733 static const struct afs_operation_ops afs_symlink_operation = {
1734 	.issue_afs_rpc	= afs_fs_symlink,
1735 	.issue_yfs_rpc	= yfs_fs_symlink,
1736 	.success	= afs_create_success,
1737 	.aborted	= afs_check_for_remote_deletion,
1738 	.edit_dir	= afs_create_edit_dir,
1739 	.put		= afs_create_put,
1740 };
1741 
1742 /*
1743  * create a symlink in an AFS filesystem
1744  */
1745 static int afs_symlink(struct user_namespace *mnt_userns, struct inode *dir,
1746 		       struct dentry *dentry, const char *content)
1747 {
1748 	struct afs_operation *op;
1749 	struct afs_vnode *dvnode = AFS_FS_I(dir);
1750 	int ret;
1751 
1752 	_enter("{%llx:%llu},{%pd},%s",
1753 	       dvnode->fid.vid, dvnode->fid.vnode, dentry,
1754 	       content);
1755 
1756 	ret = -ENAMETOOLONG;
1757 	if (dentry->d_name.len >= AFSNAMEMAX)
1758 		goto error;
1759 
1760 	ret = -EINVAL;
1761 	if (strlen(content) >= AFSPATHMAX)
1762 		goto error;
1763 
1764 	op = afs_alloc_operation(NULL, dvnode->volume);
1765 	if (IS_ERR(op)) {
1766 		ret = PTR_ERR(op);
1767 		goto error;
1768 	}
1769 
1770 	afs_op_set_vnode(op, 0, dvnode);
1771 	op->file[0].dv_delta = 1;
1772 
1773 	op->dentry		= dentry;
1774 	op->ops			= &afs_symlink_operation;
1775 	op->create.reason	= afs_edit_dir_for_symlink;
1776 	op->create.symlink	= content;
1777 	return afs_do_sync_operation(op);
1778 
1779 error:
1780 	d_drop(dentry);
1781 	_leave(" = %d", ret);
1782 	return ret;
1783 }
1784 
1785 static void afs_rename_success(struct afs_operation *op)
1786 {
1787 	_enter("op=%08x", op->debug_id);
1788 
1789 	op->ctime = op->file[0].scb.status.mtime_client;
1790 	afs_check_dir_conflict(op, &op->file[1]);
1791 	afs_vnode_commit_status(op, &op->file[0]);
1792 	if (op->file[1].vnode != op->file[0].vnode) {
1793 		op->ctime = op->file[1].scb.status.mtime_client;
1794 		afs_vnode_commit_status(op, &op->file[1]);
1795 	}
1796 }
1797 
1798 static void afs_rename_edit_dir(struct afs_operation *op)
1799 {
1800 	struct afs_vnode_param *orig_dvp = &op->file[0];
1801 	struct afs_vnode_param *new_dvp = &op->file[1];
1802 	struct afs_vnode *orig_dvnode = orig_dvp->vnode;
1803 	struct afs_vnode *new_dvnode = new_dvp->vnode;
1804 	struct afs_vnode *vnode = AFS_FS_I(d_inode(op->dentry));
1805 	struct dentry *old_dentry = op->dentry;
1806 	struct dentry *new_dentry = op->dentry_2;
1807 	struct inode *new_inode;
1808 
1809 	_enter("op=%08x", op->debug_id);
1810 
1811 	if (op->rename.rehash) {
1812 		d_rehash(op->rename.rehash);
1813 		op->rename.rehash = NULL;
1814 	}
1815 
1816 	down_write(&orig_dvnode->validate_lock);
1817 	if (test_bit(AFS_VNODE_DIR_VALID, &orig_dvnode->flags) &&
1818 	    orig_dvnode->status.data_version == orig_dvp->dv_before + orig_dvp->dv_delta)
1819 		afs_edit_dir_remove(orig_dvnode, &old_dentry->d_name,
1820 				    afs_edit_dir_for_rename_0);
1821 
1822 	if (new_dvnode != orig_dvnode) {
1823 		up_write(&orig_dvnode->validate_lock);
1824 		down_write(&new_dvnode->validate_lock);
1825 	}
1826 
1827 	if (test_bit(AFS_VNODE_DIR_VALID, &new_dvnode->flags) &&
1828 	    new_dvnode->status.data_version == new_dvp->dv_before + new_dvp->dv_delta) {
1829 		if (!op->rename.new_negative)
1830 			afs_edit_dir_remove(new_dvnode, &new_dentry->d_name,
1831 					    afs_edit_dir_for_rename_1);
1832 
1833 		afs_edit_dir_add(new_dvnode, &new_dentry->d_name,
1834 				 &vnode->fid, afs_edit_dir_for_rename_2);
1835 	}
1836 
1837 	new_inode = d_inode(new_dentry);
1838 	if (new_inode) {
1839 		spin_lock(&new_inode->i_lock);
1840 		if (new_inode->i_nlink > 0)
1841 			drop_nlink(new_inode);
1842 		spin_unlock(&new_inode->i_lock);
1843 	}
1844 
1845 	/* Now we can update d_fsdata on the dentries to reflect their
1846 	 * new parent's data_version.
1847 	 *
1848 	 * Note that if we ever implement RENAME_EXCHANGE, we'll have
1849 	 * to update both dentries with opposing dir versions.
1850 	 */
1851 	afs_update_dentry_version(op, new_dvp, op->dentry);
1852 	afs_update_dentry_version(op, new_dvp, op->dentry_2);
1853 
1854 	d_move(old_dentry, new_dentry);
1855 
1856 	up_write(&new_dvnode->validate_lock);
1857 }
1858 
1859 static void afs_rename_put(struct afs_operation *op)
1860 {
1861 	_enter("op=%08x", op->debug_id);
1862 	if (op->rename.rehash)
1863 		d_rehash(op->rename.rehash);
1864 	dput(op->rename.tmp);
1865 	if (op->error)
1866 		d_rehash(op->dentry);
1867 }
1868 
1869 static const struct afs_operation_ops afs_rename_operation = {
1870 	.issue_afs_rpc	= afs_fs_rename,
1871 	.issue_yfs_rpc	= yfs_fs_rename,
1872 	.success	= afs_rename_success,
1873 	.edit_dir	= afs_rename_edit_dir,
1874 	.put		= afs_rename_put,
1875 };
1876 
1877 /*
1878  * rename a file in an AFS filesystem and/or move it between directories
1879  */
1880 static int afs_rename(struct user_namespace *mnt_userns, struct inode *old_dir,
1881 		      struct dentry *old_dentry, struct inode *new_dir,
1882 		      struct dentry *new_dentry, unsigned int flags)
1883 {
1884 	struct afs_operation *op;
1885 	struct afs_vnode *orig_dvnode, *new_dvnode, *vnode;
1886 	int ret;
1887 
1888 	if (flags)
1889 		return -EINVAL;
1890 
1891 	/* Don't allow silly-rename files be moved around. */
1892 	if (old_dentry->d_flags & DCACHE_NFSFS_RENAMED)
1893 		return -EINVAL;
1894 
1895 	vnode = AFS_FS_I(d_inode(old_dentry));
1896 	orig_dvnode = AFS_FS_I(old_dir);
1897 	new_dvnode = AFS_FS_I(new_dir);
1898 
1899 	_enter("{%llx:%llu},{%llx:%llu},{%llx:%llu},{%pd}",
1900 	       orig_dvnode->fid.vid, orig_dvnode->fid.vnode,
1901 	       vnode->fid.vid, vnode->fid.vnode,
1902 	       new_dvnode->fid.vid, new_dvnode->fid.vnode,
1903 	       new_dentry);
1904 
1905 	op = afs_alloc_operation(NULL, orig_dvnode->volume);
1906 	if (IS_ERR(op))
1907 		return PTR_ERR(op);
1908 
1909 	afs_op_set_vnode(op, 0, orig_dvnode);
1910 	afs_op_set_vnode(op, 1, new_dvnode); /* May be same as orig_dvnode */
1911 	op->file[0].dv_delta = 1;
1912 	op->file[1].dv_delta = 1;
1913 	op->file[0].update_ctime = true;
1914 	op->file[1].update_ctime = true;
1915 
1916 	op->dentry		= old_dentry;
1917 	op->dentry_2		= new_dentry;
1918 	op->rename.new_negative	= d_is_negative(new_dentry);
1919 	op->ops			= &afs_rename_operation;
1920 
1921 	/* For non-directories, check whether the target is busy and if so,
1922 	 * make a copy of the dentry and then do a silly-rename.  If the
1923 	 * silly-rename succeeds, the copied dentry is hashed and becomes the
1924 	 * new target.
1925 	 */
1926 	if (d_is_positive(new_dentry) && !d_is_dir(new_dentry)) {
1927 		/* To prevent any new references to the target during the
1928 		 * rename, we unhash the dentry in advance.
1929 		 */
1930 		if (!d_unhashed(new_dentry)) {
1931 			d_drop(new_dentry);
1932 			op->rename.rehash = new_dentry;
1933 		}
1934 
1935 		if (d_count(new_dentry) > 2) {
1936 			/* copy the target dentry's name */
1937 			ret = -ENOMEM;
1938 			op->rename.tmp = d_alloc(new_dentry->d_parent,
1939 						 &new_dentry->d_name);
1940 			if (!op->rename.tmp)
1941 				goto error;
1942 
1943 			ret = afs_sillyrename(new_dvnode,
1944 					      AFS_FS_I(d_inode(new_dentry)),
1945 					      new_dentry, op->key);
1946 			if (ret)
1947 				goto error;
1948 
1949 			op->dentry_2 = op->rename.tmp;
1950 			op->rename.rehash = NULL;
1951 			op->rename.new_negative = true;
1952 		}
1953 	}
1954 
1955 	/* This bit is potentially nasty as there's a potential race with
1956 	 * afs_d_revalidate{,_rcu}().  We have to change d_fsdata on the dentry
1957 	 * to reflect it's new parent's new data_version after the op, but
1958 	 * d_revalidate may see old_dentry between the op having taken place
1959 	 * and the version being updated.
1960 	 *
1961 	 * So drop the old_dentry for now to make other threads go through
1962 	 * lookup instead - which we hold a lock against.
1963 	 */
1964 	d_drop(old_dentry);
1965 
1966 	return afs_do_sync_operation(op);
1967 
1968 error:
1969 	return afs_put_operation(op);
1970 }
1971 
1972 /*
1973  * Release a directory page and clean up its private state if it's not busy
1974  * - return true if the page can now be released, false if not
1975  */
1976 static int afs_dir_releasepage(struct page *page, gfp_t gfp_flags)
1977 {
1978 	struct afs_vnode *dvnode = AFS_FS_I(page->mapping->host);
1979 
1980 	_enter("{{%llx:%llu}[%lu]}", dvnode->fid.vid, dvnode->fid.vnode, page->index);
1981 
1982 	detach_page_private(page);
1983 
1984 	/* The directory will need reloading. */
1985 	if (test_and_clear_bit(AFS_VNODE_DIR_VALID, &dvnode->flags))
1986 		afs_stat_v(dvnode, n_relpg);
1987 	return 1;
1988 }
1989 
1990 /*
1991  * invalidate part or all of a page
1992  * - release a page and clean up its private data if offset is 0 (indicating
1993  *   the entire page)
1994  */
1995 static void afs_dir_invalidatepage(struct page *page, unsigned int offset,
1996 				   unsigned int length)
1997 {
1998 	struct afs_vnode *dvnode = AFS_FS_I(page->mapping->host);
1999 
2000 	_enter("{%lu},%u,%u", page->index, offset, length);
2001 
2002 	BUG_ON(!PageLocked(page));
2003 
2004 	/* The directory will need reloading. */
2005 	if (test_and_clear_bit(AFS_VNODE_DIR_VALID, &dvnode->flags))
2006 		afs_stat_v(dvnode, n_inval);
2007 
2008 	/* we clean up only if the entire page is being invalidated */
2009 	if (offset == 0 && length == PAGE_SIZE)
2010 		detach_page_private(page);
2011 }
2012