xref: /linux/drivers/xen/swiotlb-xen.c (revision d6869352cb3c3cf3450637a52349e2e87c1354aa)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  Copyright 2010
4  *  by Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
5  *
6  * This code provides a IOMMU for Xen PV guests with PCI passthrough.
7  *
8  * PV guests under Xen are running in an non-contiguous memory architecture.
9  *
10  * When PCI pass-through is utilized, this necessitates an IOMMU for
11  * translating bus (DMA) to virtual and vice-versa and also providing a
12  * mechanism to have contiguous pages for device drivers operations (say DMA
13  * operations).
14  *
15  * Specifically, under Xen the Linux idea of pages is an illusion. It
16  * assumes that pages start at zero and go up to the available memory. To
17  * help with that, the Linux Xen MMU provides a lookup mechanism to
18  * translate the page frame numbers (PFN) to machine frame numbers (MFN)
19  * and vice-versa. The MFN are the "real" frame numbers. Furthermore
20  * memory is not contiguous. Xen hypervisor stitches memory for guests
21  * from different pools, which means there is no guarantee that PFN==MFN
22  * and PFN+1==MFN+1. Lastly with Xen 4.0, pages (in debug mode) are
23  * allocated in descending order (high to low), meaning the guest might
24  * never get any MFN's under the 4GB mark.
25  */
26 
27 #define pr_fmt(fmt) "xen:" KBUILD_MODNAME ": " fmt
28 
29 #include <linux/memblock.h>
30 #include <linux/dma-direct.h>
31 #include <linux/export.h>
32 #include <xen/swiotlb-xen.h>
33 #include <xen/page.h>
34 #include <xen/xen-ops.h>
35 #include <xen/hvc-console.h>
36 
37 #include <asm/dma-mapping.h>
38 #include <asm/xen/page-coherent.h>
39 
40 #include <trace/events/swiotlb.h>
41 /*
42  * Used to do a quick range check in swiotlb_tbl_unmap_single and
43  * swiotlb_tbl_sync_single_*, to see if the memory was in fact allocated by this
44  * API.
45  */
46 
47 static char *xen_io_tlb_start, *xen_io_tlb_end;
48 static unsigned long xen_io_tlb_nslabs;
49 /*
50  * Quick lookup value of the bus address of the IOTLB.
51  */
52 
53 static u64 start_dma_addr;
54 
55 /*
56  * Both of these functions should avoid XEN_PFN_PHYS because phys_addr_t
57  * can be 32bit when dma_addr_t is 64bit leading to a loss in
58  * information if the shift is done before casting to 64bit.
59  */
60 static inline dma_addr_t xen_phys_to_bus(phys_addr_t paddr)
61 {
62 	unsigned long bfn = pfn_to_bfn(XEN_PFN_DOWN(paddr));
63 	dma_addr_t dma = (dma_addr_t)bfn << XEN_PAGE_SHIFT;
64 
65 	dma |= paddr & ~XEN_PAGE_MASK;
66 
67 	return dma;
68 }
69 
70 static inline phys_addr_t xen_bus_to_phys(dma_addr_t baddr)
71 {
72 	unsigned long xen_pfn = bfn_to_pfn(XEN_PFN_DOWN(baddr));
73 	dma_addr_t dma = (dma_addr_t)xen_pfn << XEN_PAGE_SHIFT;
74 	phys_addr_t paddr = dma;
75 
76 	paddr |= baddr & ~XEN_PAGE_MASK;
77 
78 	return paddr;
79 }
80 
81 static inline dma_addr_t xen_virt_to_bus(void *address)
82 {
83 	return xen_phys_to_bus(virt_to_phys(address));
84 }
85 
86 static int check_pages_physically_contiguous(unsigned long xen_pfn,
87 					     unsigned int offset,
88 					     size_t length)
89 {
90 	unsigned long next_bfn;
91 	int i;
92 	int nr_pages;
93 
94 	next_bfn = pfn_to_bfn(xen_pfn);
95 	nr_pages = (offset + length + XEN_PAGE_SIZE-1) >> XEN_PAGE_SHIFT;
96 
97 	for (i = 1; i < nr_pages; i++) {
98 		if (pfn_to_bfn(++xen_pfn) != ++next_bfn)
99 			return 0;
100 	}
101 	return 1;
102 }
103 
104 static inline int range_straddles_page_boundary(phys_addr_t p, size_t size)
105 {
106 	unsigned long xen_pfn = XEN_PFN_DOWN(p);
107 	unsigned int offset = p & ~XEN_PAGE_MASK;
108 
109 	if (offset + size <= XEN_PAGE_SIZE)
110 		return 0;
111 	if (check_pages_physically_contiguous(xen_pfn, offset, size))
112 		return 0;
113 	return 1;
114 }
115 
116 static int is_xen_swiotlb_buffer(dma_addr_t dma_addr)
117 {
118 	unsigned long bfn = XEN_PFN_DOWN(dma_addr);
119 	unsigned long xen_pfn = bfn_to_local_pfn(bfn);
120 	phys_addr_t paddr = XEN_PFN_PHYS(xen_pfn);
121 
122 	/* If the address is outside our domain, it CAN
123 	 * have the same virtual address as another address
124 	 * in our domain. Therefore _only_ check address within our domain.
125 	 */
126 	if (pfn_valid(PFN_DOWN(paddr))) {
127 		return paddr >= virt_to_phys(xen_io_tlb_start) &&
128 		       paddr < virt_to_phys(xen_io_tlb_end);
129 	}
130 	return 0;
131 }
132 
133 static int max_dma_bits = 32;
134 
135 static int
136 xen_swiotlb_fixup(void *buf, size_t size, unsigned long nslabs)
137 {
138 	int i, rc;
139 	int dma_bits;
140 	dma_addr_t dma_handle;
141 	phys_addr_t p = virt_to_phys(buf);
142 
143 	dma_bits = get_order(IO_TLB_SEGSIZE << IO_TLB_SHIFT) + PAGE_SHIFT;
144 
145 	i = 0;
146 	do {
147 		int slabs = min(nslabs - i, (unsigned long)IO_TLB_SEGSIZE);
148 
149 		do {
150 			rc = xen_create_contiguous_region(
151 				p + (i << IO_TLB_SHIFT),
152 				get_order(slabs << IO_TLB_SHIFT),
153 				dma_bits, &dma_handle);
154 		} while (rc && dma_bits++ < max_dma_bits);
155 		if (rc)
156 			return rc;
157 
158 		i += slabs;
159 	} while (i < nslabs);
160 	return 0;
161 }
162 static unsigned long xen_set_nslabs(unsigned long nr_tbl)
163 {
164 	if (!nr_tbl) {
165 		xen_io_tlb_nslabs = (64 * 1024 * 1024 >> IO_TLB_SHIFT);
166 		xen_io_tlb_nslabs = ALIGN(xen_io_tlb_nslabs, IO_TLB_SEGSIZE);
167 	} else
168 		xen_io_tlb_nslabs = nr_tbl;
169 
170 	return xen_io_tlb_nslabs << IO_TLB_SHIFT;
171 }
172 
173 enum xen_swiotlb_err {
174 	XEN_SWIOTLB_UNKNOWN = 0,
175 	XEN_SWIOTLB_ENOMEM,
176 	XEN_SWIOTLB_EFIXUP
177 };
178 
179 static const char *xen_swiotlb_error(enum xen_swiotlb_err err)
180 {
181 	switch (err) {
182 	case XEN_SWIOTLB_ENOMEM:
183 		return "Cannot allocate Xen-SWIOTLB buffer\n";
184 	case XEN_SWIOTLB_EFIXUP:
185 		return "Failed to get contiguous memory for DMA from Xen!\n"\
186 		    "You either: don't have the permissions, do not have"\
187 		    " enough free memory under 4GB, or the hypervisor memory"\
188 		    " is too fragmented!";
189 	default:
190 		break;
191 	}
192 	return "";
193 }
194 int __ref xen_swiotlb_init(int verbose, bool early)
195 {
196 	unsigned long bytes, order;
197 	int rc = -ENOMEM;
198 	enum xen_swiotlb_err m_ret = XEN_SWIOTLB_UNKNOWN;
199 	unsigned int repeat = 3;
200 
201 	xen_io_tlb_nslabs = swiotlb_nr_tbl();
202 retry:
203 	bytes = xen_set_nslabs(xen_io_tlb_nslabs);
204 	order = get_order(xen_io_tlb_nslabs << IO_TLB_SHIFT);
205 
206 	/*
207 	 * IO TLB memory already allocated. Just use it.
208 	 */
209 	if (io_tlb_start != 0) {
210 		xen_io_tlb_start = phys_to_virt(io_tlb_start);
211 		goto end;
212 	}
213 
214 	/*
215 	 * Get IO TLB memory from any location.
216 	 */
217 	if (early) {
218 		xen_io_tlb_start = memblock_alloc(PAGE_ALIGN(bytes),
219 						  PAGE_SIZE);
220 		if (!xen_io_tlb_start)
221 			panic("%s: Failed to allocate %lu bytes align=0x%lx\n",
222 			      __func__, PAGE_ALIGN(bytes), PAGE_SIZE);
223 	} else {
224 #define SLABS_PER_PAGE (1 << (PAGE_SHIFT - IO_TLB_SHIFT))
225 #define IO_TLB_MIN_SLABS ((1<<20) >> IO_TLB_SHIFT)
226 		while ((SLABS_PER_PAGE << order) > IO_TLB_MIN_SLABS) {
227 			xen_io_tlb_start = (void *)xen_get_swiotlb_free_pages(order);
228 			if (xen_io_tlb_start)
229 				break;
230 			order--;
231 		}
232 		if (order != get_order(bytes)) {
233 			pr_warn("Warning: only able to allocate %ld MB for software IO TLB\n",
234 				(PAGE_SIZE << order) >> 20);
235 			xen_io_tlb_nslabs = SLABS_PER_PAGE << order;
236 			bytes = xen_io_tlb_nslabs << IO_TLB_SHIFT;
237 		}
238 	}
239 	if (!xen_io_tlb_start) {
240 		m_ret = XEN_SWIOTLB_ENOMEM;
241 		goto error;
242 	}
243 	/*
244 	 * And replace that memory with pages under 4GB.
245 	 */
246 	rc = xen_swiotlb_fixup(xen_io_tlb_start,
247 			       bytes,
248 			       xen_io_tlb_nslabs);
249 	if (rc) {
250 		if (early)
251 			memblock_free(__pa(xen_io_tlb_start),
252 				      PAGE_ALIGN(bytes));
253 		else {
254 			free_pages((unsigned long)xen_io_tlb_start, order);
255 			xen_io_tlb_start = NULL;
256 		}
257 		m_ret = XEN_SWIOTLB_EFIXUP;
258 		goto error;
259 	}
260 	start_dma_addr = xen_virt_to_bus(xen_io_tlb_start);
261 	if (early) {
262 		if (swiotlb_init_with_tbl(xen_io_tlb_start, xen_io_tlb_nslabs,
263 			 verbose))
264 			panic("Cannot allocate SWIOTLB buffer");
265 		rc = 0;
266 	} else
267 		rc = swiotlb_late_init_with_tbl(xen_io_tlb_start, xen_io_tlb_nslabs);
268 
269 end:
270 	xen_io_tlb_end = xen_io_tlb_start + bytes;
271 	if (!rc)
272 		swiotlb_set_max_segment(PAGE_SIZE);
273 
274 	return rc;
275 error:
276 	if (repeat--) {
277 		xen_io_tlb_nslabs = max(1024UL, /* Min is 2MB */
278 					(xen_io_tlb_nslabs >> 1));
279 		pr_info("Lowering to %luMB\n",
280 			(xen_io_tlb_nslabs << IO_TLB_SHIFT) >> 20);
281 		goto retry;
282 	}
283 	pr_err("%s (rc:%d)\n", xen_swiotlb_error(m_ret), rc);
284 	if (early)
285 		panic("%s (rc:%d)", xen_swiotlb_error(m_ret), rc);
286 	else
287 		free_pages((unsigned long)xen_io_tlb_start, order);
288 	return rc;
289 }
290 
291 static void *
292 xen_swiotlb_alloc_coherent(struct device *hwdev, size_t size,
293 			   dma_addr_t *dma_handle, gfp_t flags,
294 			   unsigned long attrs)
295 {
296 	void *ret;
297 	int order = get_order(size);
298 	u64 dma_mask = DMA_BIT_MASK(32);
299 	phys_addr_t phys;
300 	dma_addr_t dev_addr;
301 
302 	/*
303 	* Ignore region specifiers - the kernel's ideas of
304 	* pseudo-phys memory layout has nothing to do with the
305 	* machine physical layout.  We can't allocate highmem
306 	* because we can't return a pointer to it.
307 	*/
308 	flags &= ~(__GFP_DMA | __GFP_HIGHMEM);
309 
310 	/* Convert the size to actually allocated. */
311 	size = 1UL << (order + XEN_PAGE_SHIFT);
312 
313 	/* On ARM this function returns an ioremap'ped virtual address for
314 	 * which virt_to_phys doesn't return the corresponding physical
315 	 * address. In fact on ARM virt_to_phys only works for kernel direct
316 	 * mapped RAM memory. Also see comment below.
317 	 */
318 	ret = xen_alloc_coherent_pages(hwdev, size, dma_handle, flags, attrs);
319 
320 	if (!ret)
321 		return ret;
322 
323 	if (hwdev && hwdev->coherent_dma_mask)
324 		dma_mask = hwdev->coherent_dma_mask;
325 
326 	/* At this point dma_handle is the physical address, next we are
327 	 * going to set it to the machine address.
328 	 * Do not use virt_to_phys(ret) because on ARM it doesn't correspond
329 	 * to *dma_handle. */
330 	phys = *dma_handle;
331 	dev_addr = xen_phys_to_bus(phys);
332 	if (((dev_addr + size - 1 <= dma_mask)) &&
333 	    !range_straddles_page_boundary(phys, size))
334 		*dma_handle = dev_addr;
335 	else {
336 		if (xen_create_contiguous_region(phys, order,
337 						 fls64(dma_mask), dma_handle) != 0) {
338 			xen_free_coherent_pages(hwdev, size, ret, (dma_addr_t)phys, attrs);
339 			return NULL;
340 		}
341 	}
342 	memset(ret, 0, size);
343 	return ret;
344 }
345 
346 static void
347 xen_swiotlb_free_coherent(struct device *hwdev, size_t size, void *vaddr,
348 			  dma_addr_t dev_addr, unsigned long attrs)
349 {
350 	int order = get_order(size);
351 	phys_addr_t phys;
352 	u64 dma_mask = DMA_BIT_MASK(32);
353 
354 	if (hwdev && hwdev->coherent_dma_mask)
355 		dma_mask = hwdev->coherent_dma_mask;
356 
357 	/* do not use virt_to_phys because on ARM it doesn't return you the
358 	 * physical address */
359 	phys = xen_bus_to_phys(dev_addr);
360 
361 	/* Convert the size to actually allocated. */
362 	size = 1UL << (order + XEN_PAGE_SHIFT);
363 
364 	if (((dev_addr + size - 1 <= dma_mask)) ||
365 	    range_straddles_page_boundary(phys, size))
366 		xen_destroy_contiguous_region(phys, order);
367 
368 	xen_free_coherent_pages(hwdev, size, vaddr, (dma_addr_t)phys, attrs);
369 }
370 
371 /*
372  * Map a single buffer of the indicated size for DMA in streaming mode.  The
373  * physical address to use is returned.
374  *
375  * Once the device is given the dma address, the device owns this memory until
376  * either xen_swiotlb_unmap_page or xen_swiotlb_dma_sync_single is performed.
377  */
378 static dma_addr_t xen_swiotlb_map_page(struct device *dev, struct page *page,
379 				unsigned long offset, size_t size,
380 				enum dma_data_direction dir,
381 				unsigned long attrs)
382 {
383 	phys_addr_t map, phys = page_to_phys(page) + offset;
384 	dma_addr_t dev_addr = xen_phys_to_bus(phys);
385 
386 	BUG_ON(dir == DMA_NONE);
387 	/*
388 	 * If the address happens to be in the device's DMA window,
389 	 * we can safely return the device addr and not worry about bounce
390 	 * buffering it.
391 	 */
392 	if (dma_capable(dev, dev_addr, size) &&
393 	    !range_straddles_page_boundary(phys, size) &&
394 		!xen_arch_need_swiotlb(dev, phys, dev_addr) &&
395 		swiotlb_force != SWIOTLB_FORCE)
396 		goto done;
397 
398 	/*
399 	 * Oh well, have to allocate and map a bounce buffer.
400 	 */
401 	trace_swiotlb_bounced(dev, dev_addr, size, swiotlb_force);
402 
403 	map = swiotlb_tbl_map_single(dev, start_dma_addr, phys, size, dir,
404 				     attrs);
405 	if (map == DMA_MAPPING_ERROR)
406 		return DMA_MAPPING_ERROR;
407 
408 	dev_addr = xen_phys_to_bus(map);
409 
410 	/*
411 	 * Ensure that the address returned is DMA'ble
412 	 */
413 	if (unlikely(!dma_capable(dev, dev_addr, size))) {
414 		swiotlb_tbl_unmap_single(dev, map, size, dir,
415 				attrs | DMA_ATTR_SKIP_CPU_SYNC);
416 		return DMA_MAPPING_ERROR;
417 	}
418 
419 	page = pfn_to_page(map >> PAGE_SHIFT);
420 	offset = map & ~PAGE_MASK;
421 done:
422 	/*
423 	 * we are not interested in the dma_addr returned by xen_dma_map_page,
424 	 * only in the potential cache flushes executed by the function.
425 	 */
426 	xen_dma_map_page(dev, page, dev_addr, offset, size, dir, attrs);
427 	return dev_addr;
428 }
429 
430 /*
431  * Unmap a single streaming mode DMA translation.  The dma_addr and size must
432  * match what was provided for in a previous xen_swiotlb_map_page call.  All
433  * other usages are undefined.
434  *
435  * After this call, reads by the cpu to the buffer are guaranteed to see
436  * whatever the device wrote there.
437  */
438 static void xen_unmap_single(struct device *hwdev, dma_addr_t dev_addr,
439 			     size_t size, enum dma_data_direction dir,
440 			     unsigned long attrs)
441 {
442 	phys_addr_t paddr = xen_bus_to_phys(dev_addr);
443 
444 	BUG_ON(dir == DMA_NONE);
445 
446 	xen_dma_unmap_page(hwdev, dev_addr, size, dir, attrs);
447 
448 	/* NOTE: We use dev_addr here, not paddr! */
449 	if (is_xen_swiotlb_buffer(dev_addr))
450 		swiotlb_tbl_unmap_single(hwdev, paddr, size, dir, attrs);
451 }
452 
453 static void xen_swiotlb_unmap_page(struct device *hwdev, dma_addr_t dev_addr,
454 			    size_t size, enum dma_data_direction dir,
455 			    unsigned long attrs)
456 {
457 	xen_unmap_single(hwdev, dev_addr, size, dir, attrs);
458 }
459 
460 static void
461 xen_swiotlb_sync_single_for_cpu(struct device *dev, dma_addr_t dma_addr,
462 		size_t size, enum dma_data_direction dir)
463 {
464 	phys_addr_t paddr = xen_bus_to_phys(dma_addr);
465 
466 	xen_dma_sync_single_for_cpu(dev, dma_addr, size, dir);
467 
468 	if (is_xen_swiotlb_buffer(dma_addr))
469 		swiotlb_tbl_sync_single(dev, paddr, size, dir, SYNC_FOR_CPU);
470 }
471 
472 static void
473 xen_swiotlb_sync_single_for_device(struct device *dev, dma_addr_t dma_addr,
474 		size_t size, enum dma_data_direction dir)
475 {
476 	phys_addr_t paddr = xen_bus_to_phys(dma_addr);
477 
478 	if (is_xen_swiotlb_buffer(dma_addr))
479 		swiotlb_tbl_sync_single(dev, paddr, size, dir, SYNC_FOR_DEVICE);
480 
481 	xen_dma_sync_single_for_device(dev, dma_addr, size, dir);
482 }
483 
484 /*
485  * Unmap a set of streaming mode DMA translations.  Again, cpu read rules
486  * concerning calls here are the same as for swiotlb_unmap_page() above.
487  */
488 static void
489 xen_swiotlb_unmap_sg(struct device *hwdev, struct scatterlist *sgl, int nelems,
490 		enum dma_data_direction dir, unsigned long attrs)
491 {
492 	struct scatterlist *sg;
493 	int i;
494 
495 	BUG_ON(dir == DMA_NONE);
496 
497 	for_each_sg(sgl, sg, nelems, i)
498 		xen_unmap_single(hwdev, sg->dma_address, sg_dma_len(sg), dir, attrs);
499 
500 }
501 
502 static int
503 xen_swiotlb_map_sg(struct device *dev, struct scatterlist *sgl, int nelems,
504 		enum dma_data_direction dir, unsigned long attrs)
505 {
506 	struct scatterlist *sg;
507 	int i;
508 
509 	BUG_ON(dir == DMA_NONE);
510 
511 	for_each_sg(sgl, sg, nelems, i) {
512 		sg->dma_address = xen_swiotlb_map_page(dev, sg_page(sg),
513 				sg->offset, sg->length, dir, attrs);
514 		if (sg->dma_address == DMA_MAPPING_ERROR)
515 			goto out_unmap;
516 		sg_dma_len(sg) = sg->length;
517 	}
518 
519 	return nelems;
520 out_unmap:
521 	xen_swiotlb_unmap_sg(dev, sgl, i, dir, attrs | DMA_ATTR_SKIP_CPU_SYNC);
522 	sg_dma_len(sgl) = 0;
523 	return 0;
524 }
525 
526 static void
527 xen_swiotlb_sync_sg_for_cpu(struct device *dev, struct scatterlist *sgl,
528 			    int nelems, enum dma_data_direction dir)
529 {
530 	struct scatterlist *sg;
531 	int i;
532 
533 	for_each_sg(sgl, sg, nelems, i) {
534 		xen_swiotlb_sync_single_for_cpu(dev, sg->dma_address,
535 				sg->length, dir);
536 	}
537 }
538 
539 static void
540 xen_swiotlb_sync_sg_for_device(struct device *dev, struct scatterlist *sgl,
541 			       int nelems, enum dma_data_direction dir)
542 {
543 	struct scatterlist *sg;
544 	int i;
545 
546 	for_each_sg(sgl, sg, nelems, i) {
547 		xen_swiotlb_sync_single_for_device(dev, sg->dma_address,
548 				sg->length, dir);
549 	}
550 }
551 
552 /*
553  * Return whether the given device DMA address mask can be supported
554  * properly.  For example, if your device can only drive the low 24-bits
555  * during bus mastering, then you would pass 0x00ffffff as the mask to
556  * this function.
557  */
558 static int
559 xen_swiotlb_dma_supported(struct device *hwdev, u64 mask)
560 {
561 	return xen_virt_to_bus(xen_io_tlb_end - 1) <= mask;
562 }
563 
564 /*
565  * Create userspace mapping for the DMA-coherent memory.
566  * This function should be called with the pages from the current domain only,
567  * passing pages mapped from other domains would lead to memory corruption.
568  */
569 static int
570 xen_swiotlb_dma_mmap(struct device *dev, struct vm_area_struct *vma,
571 		     void *cpu_addr, dma_addr_t dma_addr, size_t size,
572 		     unsigned long attrs)
573 {
574 #ifdef CONFIG_ARM
575 	if (xen_get_dma_ops(dev)->mmap)
576 		return xen_get_dma_ops(dev)->mmap(dev, vma, cpu_addr,
577 						    dma_addr, size, attrs);
578 #endif
579 	return dma_common_mmap(dev, vma, cpu_addr, dma_addr, size, attrs);
580 }
581 
582 /*
583  * This function should be called with the pages from the current domain only,
584  * passing pages mapped from other domains would lead to memory corruption.
585  */
586 static int
587 xen_swiotlb_get_sgtable(struct device *dev, struct sg_table *sgt,
588 			void *cpu_addr, dma_addr_t handle, size_t size,
589 			unsigned long attrs)
590 {
591 #ifdef CONFIG_ARM
592 	if (xen_get_dma_ops(dev)->get_sgtable) {
593 #if 0
594 	/*
595 	 * This check verifies that the page belongs to the current domain and
596 	 * is not one mapped from another domain.
597 	 * This check is for debug only, and should not go to production build
598 	 */
599 		unsigned long bfn = PHYS_PFN(dma_to_phys(dev, handle));
600 		BUG_ON (!page_is_ram(bfn));
601 #endif
602 		return xen_get_dma_ops(dev)->get_sgtable(dev, sgt, cpu_addr,
603 							   handle, size, attrs);
604 	}
605 #endif
606 	return dma_common_get_sgtable(dev, sgt, cpu_addr, handle, size, attrs);
607 }
608 
609 const struct dma_map_ops xen_swiotlb_dma_ops = {
610 	.alloc = xen_swiotlb_alloc_coherent,
611 	.free = xen_swiotlb_free_coherent,
612 	.sync_single_for_cpu = xen_swiotlb_sync_single_for_cpu,
613 	.sync_single_for_device = xen_swiotlb_sync_single_for_device,
614 	.sync_sg_for_cpu = xen_swiotlb_sync_sg_for_cpu,
615 	.sync_sg_for_device = xen_swiotlb_sync_sg_for_device,
616 	.map_sg = xen_swiotlb_map_sg,
617 	.unmap_sg = xen_swiotlb_unmap_sg,
618 	.map_page = xen_swiotlb_map_page,
619 	.unmap_page = xen_swiotlb_unmap_page,
620 	.dma_supported = xen_swiotlb_dma_supported,
621 	.mmap = xen_swiotlb_dma_mmap,
622 	.get_sgtable = xen_swiotlb_get_sgtable,
623 };
624