xref: /linux/drivers/xen/swiotlb-xen.c (revision d53b8e36925256097a08d7cb749198d85cbf9b2b)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  Copyright 2010
4  *  by Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
5  *
6  * This code provides a IOMMU for Xen PV guests with PCI passthrough.
7  *
8  * PV guests under Xen are running in an non-contiguous memory architecture.
9  *
10  * When PCI pass-through is utilized, this necessitates an IOMMU for
11  * translating bus (DMA) to virtual and vice-versa and also providing a
12  * mechanism to have contiguous pages for device drivers operations (say DMA
13  * operations).
14  *
15  * Specifically, under Xen the Linux idea of pages is an illusion. It
16  * assumes that pages start at zero and go up to the available memory. To
17  * help with that, the Linux Xen MMU provides a lookup mechanism to
18  * translate the page frame numbers (PFN) to machine frame numbers (MFN)
19  * and vice-versa. The MFN are the "real" frame numbers. Furthermore
20  * memory is not contiguous. Xen hypervisor stitches memory for guests
21  * from different pools, which means there is no guarantee that PFN==MFN
22  * and PFN+1==MFN+1. Lastly with Xen 4.0, pages (in debug mode) are
23  * allocated in descending order (high to low), meaning the guest might
24  * never get any MFN's under the 4GB mark.
25  */
26 
27 #define pr_fmt(fmt) "xen:" KBUILD_MODNAME ": " fmt
28 
29 #include <linux/memblock.h>
30 #include <linux/dma-direct.h>
31 #include <linux/dma-map-ops.h>
32 #include <linux/export.h>
33 #include <xen/swiotlb-xen.h>
34 #include <xen/page.h>
35 #include <xen/xen-ops.h>
36 #include <xen/hvc-console.h>
37 
38 #include <asm/dma-mapping.h>
39 
40 #include <trace/events/swiotlb.h>
41 #define MAX_DMA_BITS 32
42 
43 /*
44  * Quick lookup value of the bus address of the IOTLB.
45  */
46 
47 static inline phys_addr_t xen_phys_to_bus(struct device *dev, phys_addr_t paddr)
48 {
49 	unsigned long bfn = pfn_to_bfn(XEN_PFN_DOWN(paddr));
50 	phys_addr_t baddr = (phys_addr_t)bfn << XEN_PAGE_SHIFT;
51 
52 	baddr |= paddr & ~XEN_PAGE_MASK;
53 	return baddr;
54 }
55 
56 static inline dma_addr_t xen_phys_to_dma(struct device *dev, phys_addr_t paddr)
57 {
58 	return phys_to_dma(dev, xen_phys_to_bus(dev, paddr));
59 }
60 
61 static inline phys_addr_t xen_bus_to_phys(struct device *dev,
62 					  phys_addr_t baddr)
63 {
64 	unsigned long xen_pfn = bfn_to_pfn(XEN_PFN_DOWN(baddr));
65 	phys_addr_t paddr = (xen_pfn << XEN_PAGE_SHIFT) |
66 			    (baddr & ~XEN_PAGE_MASK);
67 
68 	return paddr;
69 }
70 
71 static inline phys_addr_t xen_dma_to_phys(struct device *dev,
72 					  dma_addr_t dma_addr)
73 {
74 	return xen_bus_to_phys(dev, dma_to_phys(dev, dma_addr));
75 }
76 
77 static inline int range_straddles_page_boundary(phys_addr_t p, size_t size)
78 {
79 	unsigned long next_bfn, xen_pfn = XEN_PFN_DOWN(p);
80 	unsigned int i, nr_pages = XEN_PFN_UP(xen_offset_in_page(p) + size);
81 
82 	next_bfn = pfn_to_bfn(xen_pfn);
83 
84 	for (i = 1; i < nr_pages; i++)
85 		if (pfn_to_bfn(++xen_pfn) != ++next_bfn)
86 			return 1;
87 
88 	return 0;
89 }
90 
91 static struct io_tlb_pool *xen_swiotlb_find_pool(struct device *dev,
92 						 dma_addr_t dma_addr)
93 {
94 	unsigned long bfn = XEN_PFN_DOWN(dma_to_phys(dev, dma_addr));
95 	unsigned long xen_pfn = bfn_to_local_pfn(bfn);
96 	phys_addr_t paddr = (phys_addr_t)xen_pfn << XEN_PAGE_SHIFT;
97 
98 	/* If the address is outside our domain, it CAN
99 	 * have the same virtual address as another address
100 	 * in our domain. Therefore _only_ check address within our domain.
101 	 */
102 	if (pfn_valid(PFN_DOWN(paddr)))
103 		return swiotlb_find_pool(dev, paddr);
104 	return NULL;
105 }
106 
107 #ifdef CONFIG_X86
108 int xen_swiotlb_fixup(void *buf, unsigned long nslabs)
109 {
110 	int rc;
111 	unsigned int order = get_order(IO_TLB_SEGSIZE << IO_TLB_SHIFT);
112 	unsigned int i, dma_bits = order + PAGE_SHIFT;
113 	dma_addr_t dma_handle;
114 	phys_addr_t p = virt_to_phys(buf);
115 
116 	BUILD_BUG_ON(IO_TLB_SEGSIZE & (IO_TLB_SEGSIZE - 1));
117 	BUG_ON(nslabs % IO_TLB_SEGSIZE);
118 
119 	i = 0;
120 	do {
121 		do {
122 			rc = xen_create_contiguous_region(
123 				p + (i << IO_TLB_SHIFT), order,
124 				dma_bits, &dma_handle);
125 		} while (rc && dma_bits++ < MAX_DMA_BITS);
126 		if (rc)
127 			return rc;
128 
129 		i += IO_TLB_SEGSIZE;
130 	} while (i < nslabs);
131 	return 0;
132 }
133 
134 static void *
135 xen_swiotlb_alloc_coherent(struct device *dev, size_t size,
136 		dma_addr_t *dma_handle, gfp_t flags, unsigned long attrs)
137 {
138 	u64 dma_mask = dev->coherent_dma_mask;
139 	int order = get_order(size);
140 	phys_addr_t phys;
141 	void *ret;
142 
143 	/* Align the allocation to the Xen page size */
144 	size = 1UL << (order + XEN_PAGE_SHIFT);
145 
146 	ret = (void *)__get_free_pages(flags, get_order(size));
147 	if (!ret)
148 		return ret;
149 	phys = virt_to_phys(ret);
150 
151 	*dma_handle = xen_phys_to_dma(dev, phys);
152 	if (*dma_handle + size - 1 > dma_mask ||
153 	    range_straddles_page_boundary(phys, size)) {
154 		if (xen_create_contiguous_region(phys, order, fls64(dma_mask),
155 				dma_handle) != 0)
156 			goto out_free_pages;
157 		SetPageXenRemapped(virt_to_page(ret));
158 	}
159 
160 	memset(ret, 0, size);
161 	return ret;
162 
163 out_free_pages:
164 	free_pages((unsigned long)ret, get_order(size));
165 	return NULL;
166 }
167 
168 static void
169 xen_swiotlb_free_coherent(struct device *dev, size_t size, void *vaddr,
170 		dma_addr_t dma_handle, unsigned long attrs)
171 {
172 	phys_addr_t phys = virt_to_phys(vaddr);
173 	int order = get_order(size);
174 
175 	/* Convert the size to actually allocated. */
176 	size = 1UL << (order + XEN_PAGE_SHIFT);
177 
178 	if (WARN_ON_ONCE(dma_handle + size - 1 > dev->coherent_dma_mask) ||
179 	    WARN_ON_ONCE(range_straddles_page_boundary(phys, size)))
180 	    	return;
181 
182 	if (TestClearPageXenRemapped(virt_to_page(vaddr)))
183 		xen_destroy_contiguous_region(phys, order);
184 	free_pages((unsigned long)vaddr, get_order(size));
185 }
186 #endif /* CONFIG_X86 */
187 
188 /*
189  * Map a single buffer of the indicated size for DMA in streaming mode.  The
190  * physical address to use is returned.
191  *
192  * Once the device is given the dma address, the device owns this memory until
193  * either xen_swiotlb_unmap_page or xen_swiotlb_dma_sync_single is performed.
194  */
195 static dma_addr_t xen_swiotlb_map_page(struct device *dev, struct page *page,
196 				unsigned long offset, size_t size,
197 				enum dma_data_direction dir,
198 				unsigned long attrs)
199 {
200 	phys_addr_t map, phys = page_to_phys(page) + offset;
201 	dma_addr_t dev_addr = xen_phys_to_dma(dev, phys);
202 
203 	BUG_ON(dir == DMA_NONE);
204 	/*
205 	 * If the address happens to be in the device's DMA window,
206 	 * we can safely return the device addr and not worry about bounce
207 	 * buffering it.
208 	 */
209 	if (dma_capable(dev, dev_addr, size, true) &&
210 	    !range_straddles_page_boundary(phys, size) &&
211 		!xen_arch_need_swiotlb(dev, phys, dev_addr) &&
212 		!is_swiotlb_force_bounce(dev))
213 		goto done;
214 
215 	/*
216 	 * Oh well, have to allocate and map a bounce buffer.
217 	 */
218 	trace_swiotlb_bounced(dev, dev_addr, size);
219 
220 	map = swiotlb_tbl_map_single(dev, phys, size, 0, dir, attrs);
221 	if (map == (phys_addr_t)DMA_MAPPING_ERROR)
222 		return DMA_MAPPING_ERROR;
223 
224 	phys = map;
225 	dev_addr = xen_phys_to_dma(dev, map);
226 
227 	/*
228 	 * Ensure that the address returned is DMA'ble
229 	 */
230 	if (unlikely(!dma_capable(dev, dev_addr, size, true))) {
231 		__swiotlb_tbl_unmap_single(dev, map, size, dir,
232 				attrs | DMA_ATTR_SKIP_CPU_SYNC,
233 				swiotlb_find_pool(dev, map));
234 		return DMA_MAPPING_ERROR;
235 	}
236 
237 done:
238 	if (!dev_is_dma_coherent(dev) && !(attrs & DMA_ATTR_SKIP_CPU_SYNC)) {
239 		if (pfn_valid(PFN_DOWN(dma_to_phys(dev, dev_addr))))
240 			arch_sync_dma_for_device(phys, size, dir);
241 		else
242 			xen_dma_sync_for_device(dev, dev_addr, size, dir);
243 	}
244 	return dev_addr;
245 }
246 
247 /*
248  * Unmap a single streaming mode DMA translation.  The dma_addr and size must
249  * match what was provided for in a previous xen_swiotlb_map_page call.  All
250  * other usages are undefined.
251  *
252  * After this call, reads by the cpu to the buffer are guaranteed to see
253  * whatever the device wrote there.
254  */
255 static void xen_swiotlb_unmap_page(struct device *hwdev, dma_addr_t dev_addr,
256 		size_t size, enum dma_data_direction dir, unsigned long attrs)
257 {
258 	phys_addr_t paddr = xen_dma_to_phys(hwdev, dev_addr);
259 	struct io_tlb_pool *pool;
260 
261 	BUG_ON(dir == DMA_NONE);
262 
263 	if (!dev_is_dma_coherent(hwdev) && !(attrs & DMA_ATTR_SKIP_CPU_SYNC)) {
264 		if (pfn_valid(PFN_DOWN(dma_to_phys(hwdev, dev_addr))))
265 			arch_sync_dma_for_cpu(paddr, size, dir);
266 		else
267 			xen_dma_sync_for_cpu(hwdev, dev_addr, size, dir);
268 	}
269 
270 	/* NOTE: We use dev_addr here, not paddr! */
271 	pool = xen_swiotlb_find_pool(hwdev, dev_addr);
272 	if (pool)
273 		__swiotlb_tbl_unmap_single(hwdev, paddr, size, dir,
274 					   attrs, pool);
275 }
276 
277 static void
278 xen_swiotlb_sync_single_for_cpu(struct device *dev, dma_addr_t dma_addr,
279 		size_t size, enum dma_data_direction dir)
280 {
281 	phys_addr_t paddr = xen_dma_to_phys(dev, dma_addr);
282 	struct io_tlb_pool *pool;
283 
284 	if (!dev_is_dma_coherent(dev)) {
285 		if (pfn_valid(PFN_DOWN(dma_to_phys(dev, dma_addr))))
286 			arch_sync_dma_for_cpu(paddr, size, dir);
287 		else
288 			xen_dma_sync_for_cpu(dev, dma_addr, size, dir);
289 	}
290 
291 	pool = xen_swiotlb_find_pool(dev, dma_addr);
292 	if (pool)
293 		__swiotlb_sync_single_for_cpu(dev, paddr, size, dir, pool);
294 }
295 
296 static void
297 xen_swiotlb_sync_single_for_device(struct device *dev, dma_addr_t dma_addr,
298 		size_t size, enum dma_data_direction dir)
299 {
300 	phys_addr_t paddr = xen_dma_to_phys(dev, dma_addr);
301 	struct io_tlb_pool *pool;
302 
303 	pool = xen_swiotlb_find_pool(dev, dma_addr);
304 	if (pool)
305 		__swiotlb_sync_single_for_device(dev, paddr, size, dir, pool);
306 
307 	if (!dev_is_dma_coherent(dev)) {
308 		if (pfn_valid(PFN_DOWN(dma_to_phys(dev, dma_addr))))
309 			arch_sync_dma_for_device(paddr, size, dir);
310 		else
311 			xen_dma_sync_for_device(dev, dma_addr, size, dir);
312 	}
313 }
314 
315 /*
316  * Unmap a set of streaming mode DMA translations.  Again, cpu read rules
317  * concerning calls here are the same as for swiotlb_unmap_page() above.
318  */
319 static void
320 xen_swiotlb_unmap_sg(struct device *hwdev, struct scatterlist *sgl, int nelems,
321 		enum dma_data_direction dir, unsigned long attrs)
322 {
323 	struct scatterlist *sg;
324 	int i;
325 
326 	BUG_ON(dir == DMA_NONE);
327 
328 	for_each_sg(sgl, sg, nelems, i)
329 		xen_swiotlb_unmap_page(hwdev, sg->dma_address, sg_dma_len(sg),
330 				dir, attrs);
331 
332 }
333 
334 static int
335 xen_swiotlb_map_sg(struct device *dev, struct scatterlist *sgl, int nelems,
336 		enum dma_data_direction dir, unsigned long attrs)
337 {
338 	struct scatterlist *sg;
339 	int i;
340 
341 	BUG_ON(dir == DMA_NONE);
342 
343 	for_each_sg(sgl, sg, nelems, i) {
344 		sg->dma_address = xen_swiotlb_map_page(dev, sg_page(sg),
345 				sg->offset, sg->length, dir, attrs);
346 		if (sg->dma_address == DMA_MAPPING_ERROR)
347 			goto out_unmap;
348 		sg_dma_len(sg) = sg->length;
349 	}
350 
351 	return nelems;
352 out_unmap:
353 	xen_swiotlb_unmap_sg(dev, sgl, i, dir, attrs | DMA_ATTR_SKIP_CPU_SYNC);
354 	sg_dma_len(sgl) = 0;
355 	return -EIO;
356 }
357 
358 static void
359 xen_swiotlb_sync_sg_for_cpu(struct device *dev, struct scatterlist *sgl,
360 			    int nelems, enum dma_data_direction dir)
361 {
362 	struct scatterlist *sg;
363 	int i;
364 
365 	for_each_sg(sgl, sg, nelems, i) {
366 		xen_swiotlb_sync_single_for_cpu(dev, sg->dma_address,
367 				sg->length, dir);
368 	}
369 }
370 
371 static void
372 xen_swiotlb_sync_sg_for_device(struct device *dev, struct scatterlist *sgl,
373 			       int nelems, enum dma_data_direction dir)
374 {
375 	struct scatterlist *sg;
376 	int i;
377 
378 	for_each_sg(sgl, sg, nelems, i) {
379 		xen_swiotlb_sync_single_for_device(dev, sg->dma_address,
380 				sg->length, dir);
381 	}
382 }
383 
384 /*
385  * Return whether the given device DMA address mask can be supported
386  * properly.  For example, if your device can only drive the low 24-bits
387  * during bus mastering, then you would pass 0x00ffffff as the mask to
388  * this function.
389  */
390 static int
391 xen_swiotlb_dma_supported(struct device *hwdev, u64 mask)
392 {
393 	return xen_phys_to_dma(hwdev, default_swiotlb_limit()) <= mask;
394 }
395 
396 const struct dma_map_ops xen_swiotlb_dma_ops = {
397 #ifdef CONFIG_X86
398 	.alloc = xen_swiotlb_alloc_coherent,
399 	.free = xen_swiotlb_free_coherent,
400 #else
401 	.alloc = dma_direct_alloc,
402 	.free = dma_direct_free,
403 #endif
404 	.sync_single_for_cpu = xen_swiotlb_sync_single_for_cpu,
405 	.sync_single_for_device = xen_swiotlb_sync_single_for_device,
406 	.sync_sg_for_cpu = xen_swiotlb_sync_sg_for_cpu,
407 	.sync_sg_for_device = xen_swiotlb_sync_sg_for_device,
408 	.map_sg = xen_swiotlb_map_sg,
409 	.unmap_sg = xen_swiotlb_unmap_sg,
410 	.map_page = xen_swiotlb_map_page,
411 	.unmap_page = xen_swiotlb_unmap_page,
412 	.dma_supported = xen_swiotlb_dma_supported,
413 	.mmap = dma_common_mmap,
414 	.get_sgtable = dma_common_get_sgtable,
415 	.alloc_pages_op = dma_common_alloc_pages,
416 	.free_pages = dma_common_free_pages,
417 	.max_mapping_size = swiotlb_max_mapping_size,
418 };
419