xref: /linux/drivers/xen/swiotlb-xen.c (revision bd628c1bed7902ec1f24ba0fe70758949146abbe)
1 /*
2  *  Copyright 2010
3  *  by Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
4  *
5  * This code provides a IOMMU for Xen PV guests with PCI passthrough.
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License v2.0 as published by
9  * the Free Software Foundation
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  *
16  * PV guests under Xen are running in an non-contiguous memory architecture.
17  *
18  * When PCI pass-through is utilized, this necessitates an IOMMU for
19  * translating bus (DMA) to virtual and vice-versa and also providing a
20  * mechanism to have contiguous pages for device drivers operations (say DMA
21  * operations).
22  *
23  * Specifically, under Xen the Linux idea of pages is an illusion. It
24  * assumes that pages start at zero and go up to the available memory. To
25  * help with that, the Linux Xen MMU provides a lookup mechanism to
26  * translate the page frame numbers (PFN) to machine frame numbers (MFN)
27  * and vice-versa. The MFN are the "real" frame numbers. Furthermore
28  * memory is not contiguous. Xen hypervisor stitches memory for guests
29  * from different pools, which means there is no guarantee that PFN==MFN
30  * and PFN+1==MFN+1. Lastly with Xen 4.0, pages (in debug mode) are
31  * allocated in descending order (high to low), meaning the guest might
32  * never get any MFN's under the 4GB mark.
33  *
34  */
35 
36 #define pr_fmt(fmt) "xen:" KBUILD_MODNAME ": " fmt
37 
38 #include <linux/memblock.h>
39 #include <linux/dma-direct.h>
40 #include <linux/export.h>
41 #include <xen/swiotlb-xen.h>
42 #include <xen/page.h>
43 #include <xen/xen-ops.h>
44 #include <xen/hvc-console.h>
45 
46 #include <asm/dma-mapping.h>
47 #include <asm/xen/page-coherent.h>
48 
49 #include <trace/events/swiotlb.h>
50 /*
51  * Used to do a quick range check in swiotlb_tbl_unmap_single and
52  * swiotlb_tbl_sync_single_*, to see if the memory was in fact allocated by this
53  * API.
54  */
55 
56 static char *xen_io_tlb_start, *xen_io_tlb_end;
57 static unsigned long xen_io_tlb_nslabs;
58 /*
59  * Quick lookup value of the bus address of the IOTLB.
60  */
61 
62 static u64 start_dma_addr;
63 
64 /*
65  * Both of these functions should avoid XEN_PFN_PHYS because phys_addr_t
66  * can be 32bit when dma_addr_t is 64bit leading to a loss in
67  * information if the shift is done before casting to 64bit.
68  */
69 static inline dma_addr_t xen_phys_to_bus(phys_addr_t paddr)
70 {
71 	unsigned long bfn = pfn_to_bfn(XEN_PFN_DOWN(paddr));
72 	dma_addr_t dma = (dma_addr_t)bfn << XEN_PAGE_SHIFT;
73 
74 	dma |= paddr & ~XEN_PAGE_MASK;
75 
76 	return dma;
77 }
78 
79 static inline phys_addr_t xen_bus_to_phys(dma_addr_t baddr)
80 {
81 	unsigned long xen_pfn = bfn_to_pfn(XEN_PFN_DOWN(baddr));
82 	dma_addr_t dma = (dma_addr_t)xen_pfn << XEN_PAGE_SHIFT;
83 	phys_addr_t paddr = dma;
84 
85 	paddr |= baddr & ~XEN_PAGE_MASK;
86 
87 	return paddr;
88 }
89 
90 static inline dma_addr_t xen_virt_to_bus(void *address)
91 {
92 	return xen_phys_to_bus(virt_to_phys(address));
93 }
94 
95 static int check_pages_physically_contiguous(unsigned long xen_pfn,
96 					     unsigned int offset,
97 					     size_t length)
98 {
99 	unsigned long next_bfn;
100 	int i;
101 	int nr_pages;
102 
103 	next_bfn = pfn_to_bfn(xen_pfn);
104 	nr_pages = (offset + length + XEN_PAGE_SIZE-1) >> XEN_PAGE_SHIFT;
105 
106 	for (i = 1; i < nr_pages; i++) {
107 		if (pfn_to_bfn(++xen_pfn) != ++next_bfn)
108 			return 0;
109 	}
110 	return 1;
111 }
112 
113 static inline int range_straddles_page_boundary(phys_addr_t p, size_t size)
114 {
115 	unsigned long xen_pfn = XEN_PFN_DOWN(p);
116 	unsigned int offset = p & ~XEN_PAGE_MASK;
117 
118 	if (offset + size <= XEN_PAGE_SIZE)
119 		return 0;
120 	if (check_pages_physically_contiguous(xen_pfn, offset, size))
121 		return 0;
122 	return 1;
123 }
124 
125 static int is_xen_swiotlb_buffer(dma_addr_t dma_addr)
126 {
127 	unsigned long bfn = XEN_PFN_DOWN(dma_addr);
128 	unsigned long xen_pfn = bfn_to_local_pfn(bfn);
129 	phys_addr_t paddr = XEN_PFN_PHYS(xen_pfn);
130 
131 	/* If the address is outside our domain, it CAN
132 	 * have the same virtual address as another address
133 	 * in our domain. Therefore _only_ check address within our domain.
134 	 */
135 	if (pfn_valid(PFN_DOWN(paddr))) {
136 		return paddr >= virt_to_phys(xen_io_tlb_start) &&
137 		       paddr < virt_to_phys(xen_io_tlb_end);
138 	}
139 	return 0;
140 }
141 
142 static int max_dma_bits = 32;
143 
144 static int
145 xen_swiotlb_fixup(void *buf, size_t size, unsigned long nslabs)
146 {
147 	int i, rc;
148 	int dma_bits;
149 	dma_addr_t dma_handle;
150 	phys_addr_t p = virt_to_phys(buf);
151 
152 	dma_bits = get_order(IO_TLB_SEGSIZE << IO_TLB_SHIFT) + PAGE_SHIFT;
153 
154 	i = 0;
155 	do {
156 		int slabs = min(nslabs - i, (unsigned long)IO_TLB_SEGSIZE);
157 
158 		do {
159 			rc = xen_create_contiguous_region(
160 				p + (i << IO_TLB_SHIFT),
161 				get_order(slabs << IO_TLB_SHIFT),
162 				dma_bits, &dma_handle);
163 		} while (rc && dma_bits++ < max_dma_bits);
164 		if (rc)
165 			return rc;
166 
167 		i += slabs;
168 	} while (i < nslabs);
169 	return 0;
170 }
171 static unsigned long xen_set_nslabs(unsigned long nr_tbl)
172 {
173 	if (!nr_tbl) {
174 		xen_io_tlb_nslabs = (64 * 1024 * 1024 >> IO_TLB_SHIFT);
175 		xen_io_tlb_nslabs = ALIGN(xen_io_tlb_nslabs, IO_TLB_SEGSIZE);
176 	} else
177 		xen_io_tlb_nslabs = nr_tbl;
178 
179 	return xen_io_tlb_nslabs << IO_TLB_SHIFT;
180 }
181 
182 enum xen_swiotlb_err {
183 	XEN_SWIOTLB_UNKNOWN = 0,
184 	XEN_SWIOTLB_ENOMEM,
185 	XEN_SWIOTLB_EFIXUP
186 };
187 
188 static const char *xen_swiotlb_error(enum xen_swiotlb_err err)
189 {
190 	switch (err) {
191 	case XEN_SWIOTLB_ENOMEM:
192 		return "Cannot allocate Xen-SWIOTLB buffer\n";
193 	case XEN_SWIOTLB_EFIXUP:
194 		return "Failed to get contiguous memory for DMA from Xen!\n"\
195 		    "You either: don't have the permissions, do not have"\
196 		    " enough free memory under 4GB, or the hypervisor memory"\
197 		    " is too fragmented!";
198 	default:
199 		break;
200 	}
201 	return "";
202 }
203 int __ref xen_swiotlb_init(int verbose, bool early)
204 {
205 	unsigned long bytes, order;
206 	int rc = -ENOMEM;
207 	enum xen_swiotlb_err m_ret = XEN_SWIOTLB_UNKNOWN;
208 	unsigned int repeat = 3;
209 
210 	xen_io_tlb_nslabs = swiotlb_nr_tbl();
211 retry:
212 	bytes = xen_set_nslabs(xen_io_tlb_nslabs);
213 	order = get_order(xen_io_tlb_nslabs << IO_TLB_SHIFT);
214 	/*
215 	 * Get IO TLB memory from any location.
216 	 */
217 	if (early)
218 		xen_io_tlb_start = memblock_alloc(PAGE_ALIGN(bytes),
219 						  PAGE_SIZE);
220 	else {
221 #define SLABS_PER_PAGE (1 << (PAGE_SHIFT - IO_TLB_SHIFT))
222 #define IO_TLB_MIN_SLABS ((1<<20) >> IO_TLB_SHIFT)
223 		while ((SLABS_PER_PAGE << order) > IO_TLB_MIN_SLABS) {
224 			xen_io_tlb_start = (void *)xen_get_swiotlb_free_pages(order);
225 			if (xen_io_tlb_start)
226 				break;
227 			order--;
228 		}
229 		if (order != get_order(bytes)) {
230 			pr_warn("Warning: only able to allocate %ld MB for software IO TLB\n",
231 				(PAGE_SIZE << order) >> 20);
232 			xen_io_tlb_nslabs = SLABS_PER_PAGE << order;
233 			bytes = xen_io_tlb_nslabs << IO_TLB_SHIFT;
234 		}
235 	}
236 	if (!xen_io_tlb_start) {
237 		m_ret = XEN_SWIOTLB_ENOMEM;
238 		goto error;
239 	}
240 	xen_io_tlb_end = xen_io_tlb_start + bytes;
241 	/*
242 	 * And replace that memory with pages under 4GB.
243 	 */
244 	rc = xen_swiotlb_fixup(xen_io_tlb_start,
245 			       bytes,
246 			       xen_io_tlb_nslabs);
247 	if (rc) {
248 		if (early)
249 			memblock_free(__pa(xen_io_tlb_start),
250 				      PAGE_ALIGN(bytes));
251 		else {
252 			free_pages((unsigned long)xen_io_tlb_start, order);
253 			xen_io_tlb_start = NULL;
254 		}
255 		m_ret = XEN_SWIOTLB_EFIXUP;
256 		goto error;
257 	}
258 	start_dma_addr = xen_virt_to_bus(xen_io_tlb_start);
259 	if (early) {
260 		if (swiotlb_init_with_tbl(xen_io_tlb_start, xen_io_tlb_nslabs,
261 			 verbose))
262 			panic("Cannot allocate SWIOTLB buffer");
263 		rc = 0;
264 	} else
265 		rc = swiotlb_late_init_with_tbl(xen_io_tlb_start, xen_io_tlb_nslabs);
266 
267 	if (!rc)
268 		swiotlb_set_max_segment(PAGE_SIZE);
269 
270 	return rc;
271 error:
272 	if (repeat--) {
273 		xen_io_tlb_nslabs = max(1024UL, /* Min is 2MB */
274 					(xen_io_tlb_nslabs >> 1));
275 		pr_info("Lowering to %luMB\n",
276 			(xen_io_tlb_nslabs << IO_TLB_SHIFT) >> 20);
277 		goto retry;
278 	}
279 	pr_err("%s (rc:%d)\n", xen_swiotlb_error(m_ret), rc);
280 	if (early)
281 		panic("%s (rc:%d)", xen_swiotlb_error(m_ret), rc);
282 	else
283 		free_pages((unsigned long)xen_io_tlb_start, order);
284 	return rc;
285 }
286 
287 static void *
288 xen_swiotlb_alloc_coherent(struct device *hwdev, size_t size,
289 			   dma_addr_t *dma_handle, gfp_t flags,
290 			   unsigned long attrs)
291 {
292 	void *ret;
293 	int order = get_order(size);
294 	u64 dma_mask = DMA_BIT_MASK(32);
295 	phys_addr_t phys;
296 	dma_addr_t dev_addr;
297 
298 	/*
299 	* Ignore region specifiers - the kernel's ideas of
300 	* pseudo-phys memory layout has nothing to do with the
301 	* machine physical layout.  We can't allocate highmem
302 	* because we can't return a pointer to it.
303 	*/
304 	flags &= ~(__GFP_DMA | __GFP_HIGHMEM);
305 
306 	/* Convert the size to actually allocated. */
307 	size = 1UL << (order + XEN_PAGE_SHIFT);
308 
309 	/* On ARM this function returns an ioremap'ped virtual address for
310 	 * which virt_to_phys doesn't return the corresponding physical
311 	 * address. In fact on ARM virt_to_phys only works for kernel direct
312 	 * mapped RAM memory. Also see comment below.
313 	 */
314 	ret = xen_alloc_coherent_pages(hwdev, size, dma_handle, flags, attrs);
315 
316 	if (!ret)
317 		return ret;
318 
319 	if (hwdev && hwdev->coherent_dma_mask)
320 		dma_mask = hwdev->coherent_dma_mask;
321 
322 	/* At this point dma_handle is the physical address, next we are
323 	 * going to set it to the machine address.
324 	 * Do not use virt_to_phys(ret) because on ARM it doesn't correspond
325 	 * to *dma_handle. */
326 	phys = *dma_handle;
327 	dev_addr = xen_phys_to_bus(phys);
328 	if (((dev_addr + size - 1 <= dma_mask)) &&
329 	    !range_straddles_page_boundary(phys, size))
330 		*dma_handle = dev_addr;
331 	else {
332 		if (xen_create_contiguous_region(phys, order,
333 						 fls64(dma_mask), dma_handle) != 0) {
334 			xen_free_coherent_pages(hwdev, size, ret, (dma_addr_t)phys, attrs);
335 			return NULL;
336 		}
337 	}
338 	memset(ret, 0, size);
339 	return ret;
340 }
341 
342 static void
343 xen_swiotlb_free_coherent(struct device *hwdev, size_t size, void *vaddr,
344 			  dma_addr_t dev_addr, unsigned long attrs)
345 {
346 	int order = get_order(size);
347 	phys_addr_t phys;
348 	u64 dma_mask = DMA_BIT_MASK(32);
349 
350 	if (hwdev && hwdev->coherent_dma_mask)
351 		dma_mask = hwdev->coherent_dma_mask;
352 
353 	/* do not use virt_to_phys because on ARM it doesn't return you the
354 	 * physical address */
355 	phys = xen_bus_to_phys(dev_addr);
356 
357 	/* Convert the size to actually allocated. */
358 	size = 1UL << (order + XEN_PAGE_SHIFT);
359 
360 	if (((dev_addr + size - 1 <= dma_mask)) ||
361 	    range_straddles_page_boundary(phys, size))
362 		xen_destroy_contiguous_region(phys, order);
363 
364 	xen_free_coherent_pages(hwdev, size, vaddr, (dma_addr_t)phys, attrs);
365 }
366 
367 /*
368  * Map a single buffer of the indicated size for DMA in streaming mode.  The
369  * physical address to use is returned.
370  *
371  * Once the device is given the dma address, the device owns this memory until
372  * either xen_swiotlb_unmap_page or xen_swiotlb_dma_sync_single is performed.
373  */
374 static dma_addr_t xen_swiotlb_map_page(struct device *dev, struct page *page,
375 				unsigned long offset, size_t size,
376 				enum dma_data_direction dir,
377 				unsigned long attrs)
378 {
379 	phys_addr_t map, phys = page_to_phys(page) + offset;
380 	dma_addr_t dev_addr = xen_phys_to_bus(phys);
381 
382 	BUG_ON(dir == DMA_NONE);
383 	/*
384 	 * If the address happens to be in the device's DMA window,
385 	 * we can safely return the device addr and not worry about bounce
386 	 * buffering it.
387 	 */
388 	if (dma_capable(dev, dev_addr, size) &&
389 	    !range_straddles_page_boundary(phys, size) &&
390 		!xen_arch_need_swiotlb(dev, phys, dev_addr) &&
391 		(swiotlb_force != SWIOTLB_FORCE)) {
392 		/* we are not interested in the dma_addr returned by
393 		 * xen_dma_map_page, only in the potential cache flushes executed
394 		 * by the function. */
395 		xen_dma_map_page(dev, page, dev_addr, offset, size, dir, attrs);
396 		return dev_addr;
397 	}
398 
399 	/*
400 	 * Oh well, have to allocate and map a bounce buffer.
401 	 */
402 	trace_swiotlb_bounced(dev, dev_addr, size, swiotlb_force);
403 
404 	map = swiotlb_tbl_map_single(dev, start_dma_addr, phys, size, dir,
405 				     attrs);
406 	if (map == DMA_MAPPING_ERROR)
407 		return DMA_MAPPING_ERROR;
408 
409 	dev_addr = xen_phys_to_bus(map);
410 	xen_dma_map_page(dev, pfn_to_page(map >> PAGE_SHIFT),
411 					dev_addr, map & ~PAGE_MASK, size, dir, attrs);
412 
413 	/*
414 	 * Ensure that the address returned is DMA'ble
415 	 */
416 	if (dma_capable(dev, dev_addr, size))
417 		return dev_addr;
418 
419 	attrs |= DMA_ATTR_SKIP_CPU_SYNC;
420 	swiotlb_tbl_unmap_single(dev, map, size, dir, attrs);
421 
422 	return DMA_MAPPING_ERROR;
423 }
424 
425 /*
426  * Unmap a single streaming mode DMA translation.  The dma_addr and size must
427  * match what was provided for in a previous xen_swiotlb_map_page call.  All
428  * other usages are undefined.
429  *
430  * After this call, reads by the cpu to the buffer are guaranteed to see
431  * whatever the device wrote there.
432  */
433 static void xen_unmap_single(struct device *hwdev, dma_addr_t dev_addr,
434 			     size_t size, enum dma_data_direction dir,
435 			     unsigned long attrs)
436 {
437 	phys_addr_t paddr = xen_bus_to_phys(dev_addr);
438 
439 	BUG_ON(dir == DMA_NONE);
440 
441 	xen_dma_unmap_page(hwdev, dev_addr, size, dir, attrs);
442 
443 	/* NOTE: We use dev_addr here, not paddr! */
444 	if (is_xen_swiotlb_buffer(dev_addr))
445 		swiotlb_tbl_unmap_single(hwdev, paddr, size, dir, attrs);
446 }
447 
448 static void xen_swiotlb_unmap_page(struct device *hwdev, dma_addr_t dev_addr,
449 			    size_t size, enum dma_data_direction dir,
450 			    unsigned long attrs)
451 {
452 	xen_unmap_single(hwdev, dev_addr, size, dir, attrs);
453 }
454 
455 /*
456  * Make physical memory consistent for a single streaming mode DMA translation
457  * after a transfer.
458  *
459  * If you perform a xen_swiotlb_map_page() but wish to interrogate the buffer
460  * using the cpu, yet do not wish to teardown the dma mapping, you must
461  * call this function before doing so.  At the next point you give the dma
462  * address back to the card, you must first perform a
463  * xen_swiotlb_dma_sync_for_device, and then the device again owns the buffer
464  */
465 static void
466 xen_swiotlb_sync_single(struct device *hwdev, dma_addr_t dev_addr,
467 			size_t size, enum dma_data_direction dir,
468 			enum dma_sync_target target)
469 {
470 	phys_addr_t paddr = xen_bus_to_phys(dev_addr);
471 
472 	BUG_ON(dir == DMA_NONE);
473 
474 	if (target == SYNC_FOR_CPU)
475 		xen_dma_sync_single_for_cpu(hwdev, dev_addr, size, dir);
476 
477 	/* NOTE: We use dev_addr here, not paddr! */
478 	if (is_xen_swiotlb_buffer(dev_addr))
479 		swiotlb_tbl_sync_single(hwdev, paddr, size, dir, target);
480 
481 	if (target == SYNC_FOR_DEVICE)
482 		xen_dma_sync_single_for_device(hwdev, dev_addr, size, dir);
483 }
484 
485 void
486 xen_swiotlb_sync_single_for_cpu(struct device *hwdev, dma_addr_t dev_addr,
487 				size_t size, enum dma_data_direction dir)
488 {
489 	xen_swiotlb_sync_single(hwdev, dev_addr, size, dir, SYNC_FOR_CPU);
490 }
491 
492 void
493 xen_swiotlb_sync_single_for_device(struct device *hwdev, dma_addr_t dev_addr,
494 				   size_t size, enum dma_data_direction dir)
495 {
496 	xen_swiotlb_sync_single(hwdev, dev_addr, size, dir, SYNC_FOR_DEVICE);
497 }
498 
499 /*
500  * Unmap a set of streaming mode DMA translations.  Again, cpu read rules
501  * concerning calls here are the same as for swiotlb_unmap_page() above.
502  */
503 static void
504 xen_swiotlb_unmap_sg_attrs(struct device *hwdev, struct scatterlist *sgl,
505 			   int nelems, enum dma_data_direction dir,
506 			   unsigned long attrs)
507 {
508 	struct scatterlist *sg;
509 	int i;
510 
511 	BUG_ON(dir == DMA_NONE);
512 
513 	for_each_sg(sgl, sg, nelems, i)
514 		xen_unmap_single(hwdev, sg->dma_address, sg_dma_len(sg), dir, attrs);
515 
516 }
517 
518 /*
519  * Map a set of buffers described by scatterlist in streaming mode for DMA.
520  * This is the scatter-gather version of the above xen_swiotlb_map_page
521  * interface.  Here the scatter gather list elements are each tagged with the
522  * appropriate dma address and length.  They are obtained via
523  * sg_dma_{address,length}(SG).
524  *
525  * NOTE: An implementation may be able to use a smaller number of
526  *       DMA address/length pairs than there are SG table elements.
527  *       (for example via virtual mapping capabilities)
528  *       The routine returns the number of addr/length pairs actually
529  *       used, at most nents.
530  *
531  * Device ownership issues as mentioned above for xen_swiotlb_map_page are the
532  * same here.
533  */
534 static int
535 xen_swiotlb_map_sg_attrs(struct device *hwdev, struct scatterlist *sgl,
536 			 int nelems, enum dma_data_direction dir,
537 			 unsigned long attrs)
538 {
539 	struct scatterlist *sg;
540 	int i;
541 
542 	BUG_ON(dir == DMA_NONE);
543 
544 	for_each_sg(sgl, sg, nelems, i) {
545 		phys_addr_t paddr = sg_phys(sg);
546 		dma_addr_t dev_addr = xen_phys_to_bus(paddr);
547 
548 		if (swiotlb_force == SWIOTLB_FORCE ||
549 		    xen_arch_need_swiotlb(hwdev, paddr, dev_addr) ||
550 		    !dma_capable(hwdev, dev_addr, sg->length) ||
551 		    range_straddles_page_boundary(paddr, sg->length)) {
552 			phys_addr_t map = swiotlb_tbl_map_single(hwdev,
553 								 start_dma_addr,
554 								 sg_phys(sg),
555 								 sg->length,
556 								 dir, attrs);
557 			if (map == DMA_MAPPING_ERROR) {
558 				dev_warn(hwdev, "swiotlb buffer is full\n");
559 				/* Don't panic here, we expect map_sg users
560 				   to do proper error handling. */
561 				attrs |= DMA_ATTR_SKIP_CPU_SYNC;
562 				xen_swiotlb_unmap_sg_attrs(hwdev, sgl, i, dir,
563 							   attrs);
564 				sg_dma_len(sgl) = 0;
565 				return 0;
566 			}
567 			dev_addr = xen_phys_to_bus(map);
568 			xen_dma_map_page(hwdev, pfn_to_page(map >> PAGE_SHIFT),
569 						dev_addr,
570 						map & ~PAGE_MASK,
571 						sg->length,
572 						dir,
573 						attrs);
574 			sg->dma_address = dev_addr;
575 		} else {
576 			/* we are not interested in the dma_addr returned by
577 			 * xen_dma_map_page, only in the potential cache flushes executed
578 			 * by the function. */
579 			xen_dma_map_page(hwdev, pfn_to_page(paddr >> PAGE_SHIFT),
580 						dev_addr,
581 						paddr & ~PAGE_MASK,
582 						sg->length,
583 						dir,
584 						attrs);
585 			sg->dma_address = dev_addr;
586 		}
587 		sg_dma_len(sg) = sg->length;
588 	}
589 	return nelems;
590 }
591 
592 /*
593  * Make physical memory consistent for a set of streaming mode DMA translations
594  * after a transfer.
595  *
596  * The same as swiotlb_sync_single_* but for a scatter-gather list, same rules
597  * and usage.
598  */
599 static void
600 xen_swiotlb_sync_sg(struct device *hwdev, struct scatterlist *sgl,
601 		    int nelems, enum dma_data_direction dir,
602 		    enum dma_sync_target target)
603 {
604 	struct scatterlist *sg;
605 	int i;
606 
607 	for_each_sg(sgl, sg, nelems, i)
608 		xen_swiotlb_sync_single(hwdev, sg->dma_address,
609 					sg_dma_len(sg), dir, target);
610 }
611 
612 static void
613 xen_swiotlb_sync_sg_for_cpu(struct device *hwdev, struct scatterlist *sg,
614 			    int nelems, enum dma_data_direction dir)
615 {
616 	xen_swiotlb_sync_sg(hwdev, sg, nelems, dir, SYNC_FOR_CPU);
617 }
618 
619 static void
620 xen_swiotlb_sync_sg_for_device(struct device *hwdev, struct scatterlist *sg,
621 			       int nelems, enum dma_data_direction dir)
622 {
623 	xen_swiotlb_sync_sg(hwdev, sg, nelems, dir, SYNC_FOR_DEVICE);
624 }
625 
626 /*
627  * Return whether the given device DMA address mask can be supported
628  * properly.  For example, if your device can only drive the low 24-bits
629  * during bus mastering, then you would pass 0x00ffffff as the mask to
630  * this function.
631  */
632 static int
633 xen_swiotlb_dma_supported(struct device *hwdev, u64 mask)
634 {
635 	return xen_virt_to_bus(xen_io_tlb_end - 1) <= mask;
636 }
637 
638 /*
639  * Create userspace mapping for the DMA-coherent memory.
640  * This function should be called with the pages from the current domain only,
641  * passing pages mapped from other domains would lead to memory corruption.
642  */
643 static int
644 xen_swiotlb_dma_mmap(struct device *dev, struct vm_area_struct *vma,
645 		     void *cpu_addr, dma_addr_t dma_addr, size_t size,
646 		     unsigned long attrs)
647 {
648 #if defined(CONFIG_ARM) || defined(CONFIG_ARM64)
649 	if (xen_get_dma_ops(dev)->mmap)
650 		return xen_get_dma_ops(dev)->mmap(dev, vma, cpu_addr,
651 						    dma_addr, size, attrs);
652 #endif
653 	return dma_common_mmap(dev, vma, cpu_addr, dma_addr, size, attrs);
654 }
655 
656 /*
657  * This function should be called with the pages from the current domain only,
658  * passing pages mapped from other domains would lead to memory corruption.
659  */
660 static int
661 xen_swiotlb_get_sgtable(struct device *dev, struct sg_table *sgt,
662 			void *cpu_addr, dma_addr_t handle, size_t size,
663 			unsigned long attrs)
664 {
665 #if defined(CONFIG_ARM) || defined(CONFIG_ARM64)
666 	if (xen_get_dma_ops(dev)->get_sgtable) {
667 #if 0
668 	/*
669 	 * This check verifies that the page belongs to the current domain and
670 	 * is not one mapped from another domain.
671 	 * This check is for debug only, and should not go to production build
672 	 */
673 		unsigned long bfn = PHYS_PFN(dma_to_phys(dev, handle));
674 		BUG_ON (!page_is_ram(bfn));
675 #endif
676 		return xen_get_dma_ops(dev)->get_sgtable(dev, sgt, cpu_addr,
677 							   handle, size, attrs);
678 	}
679 #endif
680 	return dma_common_get_sgtable(dev, sgt, cpu_addr, handle, size, attrs);
681 }
682 
683 const struct dma_map_ops xen_swiotlb_dma_ops = {
684 	.alloc = xen_swiotlb_alloc_coherent,
685 	.free = xen_swiotlb_free_coherent,
686 	.sync_single_for_cpu = xen_swiotlb_sync_single_for_cpu,
687 	.sync_single_for_device = xen_swiotlb_sync_single_for_device,
688 	.sync_sg_for_cpu = xen_swiotlb_sync_sg_for_cpu,
689 	.sync_sg_for_device = xen_swiotlb_sync_sg_for_device,
690 	.map_sg = xen_swiotlb_map_sg_attrs,
691 	.unmap_sg = xen_swiotlb_unmap_sg_attrs,
692 	.map_page = xen_swiotlb_map_page,
693 	.unmap_page = xen_swiotlb_unmap_page,
694 	.dma_supported = xen_swiotlb_dma_supported,
695 	.mmap = xen_swiotlb_dma_mmap,
696 	.get_sgtable = xen_swiotlb_get_sgtable,
697 };
698