1 /* 2 * Copyright 2010 3 * by Konrad Rzeszutek Wilk <konrad.wilk@oracle.com> 4 * 5 * This code provides a IOMMU for Xen PV guests with PCI passthrough. 6 * 7 * This program is free software; you can redistribute it and/or modify 8 * it under the terms of the GNU General Public License v2.0 as published by 9 * the Free Software Foundation 10 * 11 * This program is distributed in the hope that it will be useful, 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 14 * GNU General Public License for more details. 15 * 16 * PV guests under Xen are running in an non-contiguous memory architecture. 17 * 18 * When PCI pass-through is utilized, this necessitates an IOMMU for 19 * translating bus (DMA) to virtual and vice-versa and also providing a 20 * mechanism to have contiguous pages for device drivers operations (say DMA 21 * operations). 22 * 23 * Specifically, under Xen the Linux idea of pages is an illusion. It 24 * assumes that pages start at zero and go up to the available memory. To 25 * help with that, the Linux Xen MMU provides a lookup mechanism to 26 * translate the page frame numbers (PFN) to machine frame numbers (MFN) 27 * and vice-versa. The MFN are the "real" frame numbers. Furthermore 28 * memory is not contiguous. Xen hypervisor stitches memory for guests 29 * from different pools, which means there is no guarantee that PFN==MFN 30 * and PFN+1==MFN+1. Lastly with Xen 4.0, pages (in debug mode) are 31 * allocated in descending order (high to low), meaning the guest might 32 * never get any MFN's under the 4GB mark. 33 * 34 */ 35 36 #include <linux/bootmem.h> 37 #include <linux/dma-mapping.h> 38 #include <linux/export.h> 39 #include <xen/swiotlb-xen.h> 40 #include <xen/page.h> 41 #include <xen/xen-ops.h> 42 #include <xen/hvc-console.h> 43 /* 44 * Used to do a quick range check in swiotlb_tbl_unmap_single and 45 * swiotlb_tbl_sync_single_*, to see if the memory was in fact allocated by this 46 * API. 47 */ 48 49 static char *xen_io_tlb_start, *xen_io_tlb_end; 50 static unsigned long xen_io_tlb_nslabs; 51 /* 52 * Quick lookup value of the bus address of the IOTLB. 53 */ 54 55 u64 start_dma_addr; 56 57 static dma_addr_t xen_phys_to_bus(phys_addr_t paddr) 58 { 59 return phys_to_machine(XPADDR(paddr)).maddr; 60 } 61 62 static phys_addr_t xen_bus_to_phys(dma_addr_t baddr) 63 { 64 return machine_to_phys(XMADDR(baddr)).paddr; 65 } 66 67 static dma_addr_t xen_virt_to_bus(void *address) 68 { 69 return xen_phys_to_bus(virt_to_phys(address)); 70 } 71 72 static int check_pages_physically_contiguous(unsigned long pfn, 73 unsigned int offset, 74 size_t length) 75 { 76 unsigned long next_mfn; 77 int i; 78 int nr_pages; 79 80 next_mfn = pfn_to_mfn(pfn); 81 nr_pages = (offset + length + PAGE_SIZE-1) >> PAGE_SHIFT; 82 83 for (i = 1; i < nr_pages; i++) { 84 if (pfn_to_mfn(++pfn) != ++next_mfn) 85 return 0; 86 } 87 return 1; 88 } 89 90 static int range_straddles_page_boundary(phys_addr_t p, size_t size) 91 { 92 unsigned long pfn = PFN_DOWN(p); 93 unsigned int offset = p & ~PAGE_MASK; 94 95 if (offset + size <= PAGE_SIZE) 96 return 0; 97 if (check_pages_physically_contiguous(pfn, offset, size)) 98 return 0; 99 return 1; 100 } 101 102 static int is_xen_swiotlb_buffer(dma_addr_t dma_addr) 103 { 104 unsigned long mfn = PFN_DOWN(dma_addr); 105 unsigned long pfn = mfn_to_local_pfn(mfn); 106 phys_addr_t paddr; 107 108 /* If the address is outside our domain, it CAN 109 * have the same virtual address as another address 110 * in our domain. Therefore _only_ check address within our domain. 111 */ 112 if (pfn_valid(pfn)) { 113 paddr = PFN_PHYS(pfn); 114 return paddr >= virt_to_phys(xen_io_tlb_start) && 115 paddr < virt_to_phys(xen_io_tlb_end); 116 } 117 return 0; 118 } 119 120 static int max_dma_bits = 32; 121 122 static int 123 xen_swiotlb_fixup(void *buf, size_t size, unsigned long nslabs) 124 { 125 int i, rc; 126 int dma_bits; 127 128 dma_bits = get_order(IO_TLB_SEGSIZE << IO_TLB_SHIFT) + PAGE_SHIFT; 129 130 i = 0; 131 do { 132 int slabs = min(nslabs - i, (unsigned long)IO_TLB_SEGSIZE); 133 134 do { 135 rc = xen_create_contiguous_region( 136 (unsigned long)buf + (i << IO_TLB_SHIFT), 137 get_order(slabs << IO_TLB_SHIFT), 138 dma_bits); 139 } while (rc && dma_bits++ < max_dma_bits); 140 if (rc) 141 return rc; 142 143 i += slabs; 144 } while (i < nslabs); 145 return 0; 146 } 147 148 void __init xen_swiotlb_init(int verbose) 149 { 150 unsigned long bytes; 151 int rc = -ENOMEM; 152 unsigned long nr_tbl; 153 char *m = NULL; 154 unsigned int repeat = 3; 155 156 nr_tbl = swiotlb_nr_tbl(); 157 if (nr_tbl) 158 xen_io_tlb_nslabs = nr_tbl; 159 else { 160 xen_io_tlb_nslabs = (64 * 1024 * 1024 >> IO_TLB_SHIFT); 161 xen_io_tlb_nslabs = ALIGN(xen_io_tlb_nslabs, IO_TLB_SEGSIZE); 162 } 163 retry: 164 bytes = xen_io_tlb_nslabs << IO_TLB_SHIFT; 165 166 /* 167 * Get IO TLB memory from any location. 168 */ 169 xen_io_tlb_start = alloc_bootmem_pages(PAGE_ALIGN(bytes)); 170 if (!xen_io_tlb_start) { 171 m = "Cannot allocate Xen-SWIOTLB buffer!\n"; 172 goto error; 173 } 174 xen_io_tlb_end = xen_io_tlb_start + bytes; 175 /* 176 * And replace that memory with pages under 4GB. 177 */ 178 rc = xen_swiotlb_fixup(xen_io_tlb_start, 179 bytes, 180 xen_io_tlb_nslabs); 181 if (rc) { 182 free_bootmem(__pa(xen_io_tlb_start), PAGE_ALIGN(bytes)); 183 m = "Failed to get contiguous memory for DMA from Xen!\n"\ 184 "You either: don't have the permissions, do not have"\ 185 " enough free memory under 4GB, or the hypervisor memory"\ 186 "is too fragmented!"; 187 goto error; 188 } 189 start_dma_addr = xen_virt_to_bus(xen_io_tlb_start); 190 swiotlb_init_with_tbl(xen_io_tlb_start, xen_io_tlb_nslabs, verbose); 191 192 return; 193 error: 194 if (repeat--) { 195 xen_io_tlb_nslabs = max(1024UL, /* Min is 2MB */ 196 (xen_io_tlb_nslabs >> 1)); 197 printk(KERN_INFO "Xen-SWIOTLB: Lowering to %luMB\n", 198 (xen_io_tlb_nslabs << IO_TLB_SHIFT) >> 20); 199 goto retry; 200 } 201 xen_raw_printk("%s (rc:%d)", m, rc); 202 panic("%s (rc:%d)", m, rc); 203 } 204 205 void * 206 xen_swiotlb_alloc_coherent(struct device *hwdev, size_t size, 207 dma_addr_t *dma_handle, gfp_t flags) 208 { 209 void *ret; 210 int order = get_order(size); 211 u64 dma_mask = DMA_BIT_MASK(32); 212 unsigned long vstart; 213 phys_addr_t phys; 214 dma_addr_t dev_addr; 215 216 /* 217 * Ignore region specifiers - the kernel's ideas of 218 * pseudo-phys memory layout has nothing to do with the 219 * machine physical layout. We can't allocate highmem 220 * because we can't return a pointer to it. 221 */ 222 flags &= ~(__GFP_DMA | __GFP_HIGHMEM); 223 224 if (dma_alloc_from_coherent(hwdev, size, dma_handle, &ret)) 225 return ret; 226 227 vstart = __get_free_pages(flags, order); 228 ret = (void *)vstart; 229 230 if (!ret) 231 return ret; 232 233 if (hwdev && hwdev->coherent_dma_mask) 234 dma_mask = hwdev->coherent_dma_mask; 235 236 phys = virt_to_phys(ret); 237 dev_addr = xen_phys_to_bus(phys); 238 if (((dev_addr + size - 1 <= dma_mask)) && 239 !range_straddles_page_boundary(phys, size)) 240 *dma_handle = dev_addr; 241 else { 242 if (xen_create_contiguous_region(vstart, order, 243 fls64(dma_mask)) != 0) { 244 free_pages(vstart, order); 245 return NULL; 246 } 247 *dma_handle = virt_to_machine(ret).maddr; 248 } 249 memset(ret, 0, size); 250 return ret; 251 } 252 EXPORT_SYMBOL_GPL(xen_swiotlb_alloc_coherent); 253 254 void 255 xen_swiotlb_free_coherent(struct device *hwdev, size_t size, void *vaddr, 256 dma_addr_t dev_addr) 257 { 258 int order = get_order(size); 259 phys_addr_t phys; 260 u64 dma_mask = DMA_BIT_MASK(32); 261 262 if (dma_release_from_coherent(hwdev, order, vaddr)) 263 return; 264 265 if (hwdev && hwdev->coherent_dma_mask) 266 dma_mask = hwdev->coherent_dma_mask; 267 268 phys = virt_to_phys(vaddr); 269 270 if (((dev_addr + size - 1 > dma_mask)) || 271 range_straddles_page_boundary(phys, size)) 272 xen_destroy_contiguous_region((unsigned long)vaddr, order); 273 274 free_pages((unsigned long)vaddr, order); 275 } 276 EXPORT_SYMBOL_GPL(xen_swiotlb_free_coherent); 277 278 279 /* 280 * Map a single buffer of the indicated size for DMA in streaming mode. The 281 * physical address to use is returned. 282 * 283 * Once the device is given the dma address, the device owns this memory until 284 * either xen_swiotlb_unmap_page or xen_swiotlb_dma_sync_single is performed. 285 */ 286 dma_addr_t xen_swiotlb_map_page(struct device *dev, struct page *page, 287 unsigned long offset, size_t size, 288 enum dma_data_direction dir, 289 struct dma_attrs *attrs) 290 { 291 phys_addr_t phys = page_to_phys(page) + offset; 292 dma_addr_t dev_addr = xen_phys_to_bus(phys); 293 void *map; 294 295 BUG_ON(dir == DMA_NONE); 296 /* 297 * If the address happens to be in the device's DMA window, 298 * we can safely return the device addr and not worry about bounce 299 * buffering it. 300 */ 301 if (dma_capable(dev, dev_addr, size) && 302 !range_straddles_page_boundary(phys, size) && !swiotlb_force) 303 return dev_addr; 304 305 /* 306 * Oh well, have to allocate and map a bounce buffer. 307 */ 308 map = swiotlb_tbl_map_single(dev, start_dma_addr, phys, size, dir); 309 if (!map) 310 return DMA_ERROR_CODE; 311 312 dev_addr = xen_virt_to_bus(map); 313 314 /* 315 * Ensure that the address returned is DMA'ble 316 */ 317 if (!dma_capable(dev, dev_addr, size)) { 318 swiotlb_tbl_unmap_single(dev, map, size, dir); 319 dev_addr = 0; 320 } 321 return dev_addr; 322 } 323 EXPORT_SYMBOL_GPL(xen_swiotlb_map_page); 324 325 /* 326 * Unmap a single streaming mode DMA translation. The dma_addr and size must 327 * match what was provided for in a previous xen_swiotlb_map_page call. All 328 * other usages are undefined. 329 * 330 * After this call, reads by the cpu to the buffer are guaranteed to see 331 * whatever the device wrote there. 332 */ 333 static void xen_unmap_single(struct device *hwdev, dma_addr_t dev_addr, 334 size_t size, enum dma_data_direction dir) 335 { 336 phys_addr_t paddr = xen_bus_to_phys(dev_addr); 337 338 BUG_ON(dir == DMA_NONE); 339 340 /* NOTE: We use dev_addr here, not paddr! */ 341 if (is_xen_swiotlb_buffer(dev_addr)) { 342 swiotlb_tbl_unmap_single(hwdev, phys_to_virt(paddr), size, dir); 343 return; 344 } 345 346 if (dir != DMA_FROM_DEVICE) 347 return; 348 349 /* 350 * phys_to_virt doesn't work with hihgmem page but we could 351 * call dma_mark_clean() with hihgmem page here. However, we 352 * are fine since dma_mark_clean() is null on POWERPC. We can 353 * make dma_mark_clean() take a physical address if necessary. 354 */ 355 dma_mark_clean(phys_to_virt(paddr), size); 356 } 357 358 void xen_swiotlb_unmap_page(struct device *hwdev, dma_addr_t dev_addr, 359 size_t size, enum dma_data_direction dir, 360 struct dma_attrs *attrs) 361 { 362 xen_unmap_single(hwdev, dev_addr, size, dir); 363 } 364 EXPORT_SYMBOL_GPL(xen_swiotlb_unmap_page); 365 366 /* 367 * Make physical memory consistent for a single streaming mode DMA translation 368 * after a transfer. 369 * 370 * If you perform a xen_swiotlb_map_page() but wish to interrogate the buffer 371 * using the cpu, yet do not wish to teardown the dma mapping, you must 372 * call this function before doing so. At the next point you give the dma 373 * address back to the card, you must first perform a 374 * xen_swiotlb_dma_sync_for_device, and then the device again owns the buffer 375 */ 376 static void 377 xen_swiotlb_sync_single(struct device *hwdev, dma_addr_t dev_addr, 378 size_t size, enum dma_data_direction dir, 379 enum dma_sync_target target) 380 { 381 phys_addr_t paddr = xen_bus_to_phys(dev_addr); 382 383 BUG_ON(dir == DMA_NONE); 384 385 /* NOTE: We use dev_addr here, not paddr! */ 386 if (is_xen_swiotlb_buffer(dev_addr)) { 387 swiotlb_tbl_sync_single(hwdev, phys_to_virt(paddr), size, dir, 388 target); 389 return; 390 } 391 392 if (dir != DMA_FROM_DEVICE) 393 return; 394 395 dma_mark_clean(phys_to_virt(paddr), size); 396 } 397 398 void 399 xen_swiotlb_sync_single_for_cpu(struct device *hwdev, dma_addr_t dev_addr, 400 size_t size, enum dma_data_direction dir) 401 { 402 xen_swiotlb_sync_single(hwdev, dev_addr, size, dir, SYNC_FOR_CPU); 403 } 404 EXPORT_SYMBOL_GPL(xen_swiotlb_sync_single_for_cpu); 405 406 void 407 xen_swiotlb_sync_single_for_device(struct device *hwdev, dma_addr_t dev_addr, 408 size_t size, enum dma_data_direction dir) 409 { 410 xen_swiotlb_sync_single(hwdev, dev_addr, size, dir, SYNC_FOR_DEVICE); 411 } 412 EXPORT_SYMBOL_GPL(xen_swiotlb_sync_single_for_device); 413 414 /* 415 * Map a set of buffers described by scatterlist in streaming mode for DMA. 416 * This is the scatter-gather version of the above xen_swiotlb_map_page 417 * interface. Here the scatter gather list elements are each tagged with the 418 * appropriate dma address and length. They are obtained via 419 * sg_dma_{address,length}(SG). 420 * 421 * NOTE: An implementation may be able to use a smaller number of 422 * DMA address/length pairs than there are SG table elements. 423 * (for example via virtual mapping capabilities) 424 * The routine returns the number of addr/length pairs actually 425 * used, at most nents. 426 * 427 * Device ownership issues as mentioned above for xen_swiotlb_map_page are the 428 * same here. 429 */ 430 int 431 xen_swiotlb_map_sg_attrs(struct device *hwdev, struct scatterlist *sgl, 432 int nelems, enum dma_data_direction dir, 433 struct dma_attrs *attrs) 434 { 435 struct scatterlist *sg; 436 int i; 437 438 BUG_ON(dir == DMA_NONE); 439 440 for_each_sg(sgl, sg, nelems, i) { 441 phys_addr_t paddr = sg_phys(sg); 442 dma_addr_t dev_addr = xen_phys_to_bus(paddr); 443 444 if (swiotlb_force || 445 !dma_capable(hwdev, dev_addr, sg->length) || 446 range_straddles_page_boundary(paddr, sg->length)) { 447 void *map = swiotlb_tbl_map_single(hwdev, 448 start_dma_addr, 449 sg_phys(sg), 450 sg->length, dir); 451 if (!map) { 452 /* Don't panic here, we expect map_sg users 453 to do proper error handling. */ 454 xen_swiotlb_unmap_sg_attrs(hwdev, sgl, i, dir, 455 attrs); 456 sgl[0].dma_length = 0; 457 return DMA_ERROR_CODE; 458 } 459 sg->dma_address = xen_virt_to_bus(map); 460 } else 461 sg->dma_address = dev_addr; 462 sg->dma_length = sg->length; 463 } 464 return nelems; 465 } 466 EXPORT_SYMBOL_GPL(xen_swiotlb_map_sg_attrs); 467 468 int 469 xen_swiotlb_map_sg(struct device *hwdev, struct scatterlist *sgl, int nelems, 470 enum dma_data_direction dir) 471 { 472 return xen_swiotlb_map_sg_attrs(hwdev, sgl, nelems, dir, NULL); 473 } 474 EXPORT_SYMBOL_GPL(xen_swiotlb_map_sg); 475 476 /* 477 * Unmap a set of streaming mode DMA translations. Again, cpu read rules 478 * concerning calls here are the same as for swiotlb_unmap_page() above. 479 */ 480 void 481 xen_swiotlb_unmap_sg_attrs(struct device *hwdev, struct scatterlist *sgl, 482 int nelems, enum dma_data_direction dir, 483 struct dma_attrs *attrs) 484 { 485 struct scatterlist *sg; 486 int i; 487 488 BUG_ON(dir == DMA_NONE); 489 490 for_each_sg(sgl, sg, nelems, i) 491 xen_unmap_single(hwdev, sg->dma_address, sg->dma_length, dir); 492 493 } 494 EXPORT_SYMBOL_GPL(xen_swiotlb_unmap_sg_attrs); 495 496 void 497 xen_swiotlb_unmap_sg(struct device *hwdev, struct scatterlist *sgl, int nelems, 498 enum dma_data_direction dir) 499 { 500 return xen_swiotlb_unmap_sg_attrs(hwdev, sgl, nelems, dir, NULL); 501 } 502 EXPORT_SYMBOL_GPL(xen_swiotlb_unmap_sg); 503 504 /* 505 * Make physical memory consistent for a set of streaming mode DMA translations 506 * after a transfer. 507 * 508 * The same as swiotlb_sync_single_* but for a scatter-gather list, same rules 509 * and usage. 510 */ 511 static void 512 xen_swiotlb_sync_sg(struct device *hwdev, struct scatterlist *sgl, 513 int nelems, enum dma_data_direction dir, 514 enum dma_sync_target target) 515 { 516 struct scatterlist *sg; 517 int i; 518 519 for_each_sg(sgl, sg, nelems, i) 520 xen_swiotlb_sync_single(hwdev, sg->dma_address, 521 sg->dma_length, dir, target); 522 } 523 524 void 525 xen_swiotlb_sync_sg_for_cpu(struct device *hwdev, struct scatterlist *sg, 526 int nelems, enum dma_data_direction dir) 527 { 528 xen_swiotlb_sync_sg(hwdev, sg, nelems, dir, SYNC_FOR_CPU); 529 } 530 EXPORT_SYMBOL_GPL(xen_swiotlb_sync_sg_for_cpu); 531 532 void 533 xen_swiotlb_sync_sg_for_device(struct device *hwdev, struct scatterlist *sg, 534 int nelems, enum dma_data_direction dir) 535 { 536 xen_swiotlb_sync_sg(hwdev, sg, nelems, dir, SYNC_FOR_DEVICE); 537 } 538 EXPORT_SYMBOL_GPL(xen_swiotlb_sync_sg_for_device); 539 540 int 541 xen_swiotlb_dma_mapping_error(struct device *hwdev, dma_addr_t dma_addr) 542 { 543 return !dma_addr; 544 } 545 EXPORT_SYMBOL_GPL(xen_swiotlb_dma_mapping_error); 546 547 /* 548 * Return whether the given device DMA address mask can be supported 549 * properly. For example, if your device can only drive the low 24-bits 550 * during bus mastering, then you would pass 0x00ffffff as the mask to 551 * this function. 552 */ 553 int 554 xen_swiotlb_dma_supported(struct device *hwdev, u64 mask) 555 { 556 return xen_virt_to_bus(xen_io_tlb_end - 1) <= mask; 557 } 558 EXPORT_SYMBOL_GPL(xen_swiotlb_dma_supported); 559