xref: /linux/drivers/xen/swiotlb-xen.c (revision b43ab901d671e3e3cad425ea5e9a3c74e266dcdd)
1 /*
2  *  Copyright 2010
3  *  by Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
4  *
5  * This code provides a IOMMU for Xen PV guests with PCI passthrough.
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License v2.0 as published by
9  * the Free Software Foundation
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  *
16  * PV guests under Xen are running in an non-contiguous memory architecture.
17  *
18  * When PCI pass-through is utilized, this necessitates an IOMMU for
19  * translating bus (DMA) to virtual and vice-versa and also providing a
20  * mechanism to have contiguous pages for device drivers operations (say DMA
21  * operations).
22  *
23  * Specifically, under Xen the Linux idea of pages is an illusion. It
24  * assumes that pages start at zero and go up to the available memory. To
25  * help with that, the Linux Xen MMU provides a lookup mechanism to
26  * translate the page frame numbers (PFN) to machine frame numbers (MFN)
27  * and vice-versa. The MFN are the "real" frame numbers. Furthermore
28  * memory is not contiguous. Xen hypervisor stitches memory for guests
29  * from different pools, which means there is no guarantee that PFN==MFN
30  * and PFN+1==MFN+1. Lastly with Xen 4.0, pages (in debug mode) are
31  * allocated in descending order (high to low), meaning the guest might
32  * never get any MFN's under the 4GB mark.
33  *
34  */
35 
36 #include <linux/bootmem.h>
37 #include <linux/dma-mapping.h>
38 #include <linux/export.h>
39 #include <xen/swiotlb-xen.h>
40 #include <xen/page.h>
41 #include <xen/xen-ops.h>
42 #include <xen/hvc-console.h>
43 /*
44  * Used to do a quick range check in swiotlb_tbl_unmap_single and
45  * swiotlb_tbl_sync_single_*, to see if the memory was in fact allocated by this
46  * API.
47  */
48 
49 static char *xen_io_tlb_start, *xen_io_tlb_end;
50 static unsigned long xen_io_tlb_nslabs;
51 /*
52  * Quick lookup value of the bus address of the IOTLB.
53  */
54 
55 u64 start_dma_addr;
56 
57 static dma_addr_t xen_phys_to_bus(phys_addr_t paddr)
58 {
59 	return phys_to_machine(XPADDR(paddr)).maddr;
60 }
61 
62 static phys_addr_t xen_bus_to_phys(dma_addr_t baddr)
63 {
64 	return machine_to_phys(XMADDR(baddr)).paddr;
65 }
66 
67 static dma_addr_t xen_virt_to_bus(void *address)
68 {
69 	return xen_phys_to_bus(virt_to_phys(address));
70 }
71 
72 static int check_pages_physically_contiguous(unsigned long pfn,
73 					     unsigned int offset,
74 					     size_t length)
75 {
76 	unsigned long next_mfn;
77 	int i;
78 	int nr_pages;
79 
80 	next_mfn = pfn_to_mfn(pfn);
81 	nr_pages = (offset + length + PAGE_SIZE-1) >> PAGE_SHIFT;
82 
83 	for (i = 1; i < nr_pages; i++) {
84 		if (pfn_to_mfn(++pfn) != ++next_mfn)
85 			return 0;
86 	}
87 	return 1;
88 }
89 
90 static int range_straddles_page_boundary(phys_addr_t p, size_t size)
91 {
92 	unsigned long pfn = PFN_DOWN(p);
93 	unsigned int offset = p & ~PAGE_MASK;
94 
95 	if (offset + size <= PAGE_SIZE)
96 		return 0;
97 	if (check_pages_physically_contiguous(pfn, offset, size))
98 		return 0;
99 	return 1;
100 }
101 
102 static int is_xen_swiotlb_buffer(dma_addr_t dma_addr)
103 {
104 	unsigned long mfn = PFN_DOWN(dma_addr);
105 	unsigned long pfn = mfn_to_local_pfn(mfn);
106 	phys_addr_t paddr;
107 
108 	/* If the address is outside our domain, it CAN
109 	 * have the same virtual address as another address
110 	 * in our domain. Therefore _only_ check address within our domain.
111 	 */
112 	if (pfn_valid(pfn)) {
113 		paddr = PFN_PHYS(pfn);
114 		return paddr >= virt_to_phys(xen_io_tlb_start) &&
115 		       paddr < virt_to_phys(xen_io_tlb_end);
116 	}
117 	return 0;
118 }
119 
120 static int max_dma_bits = 32;
121 
122 static int
123 xen_swiotlb_fixup(void *buf, size_t size, unsigned long nslabs)
124 {
125 	int i, rc;
126 	int dma_bits;
127 
128 	dma_bits = get_order(IO_TLB_SEGSIZE << IO_TLB_SHIFT) + PAGE_SHIFT;
129 
130 	i = 0;
131 	do {
132 		int slabs = min(nslabs - i, (unsigned long)IO_TLB_SEGSIZE);
133 
134 		do {
135 			rc = xen_create_contiguous_region(
136 				(unsigned long)buf + (i << IO_TLB_SHIFT),
137 				get_order(slabs << IO_TLB_SHIFT),
138 				dma_bits);
139 		} while (rc && dma_bits++ < max_dma_bits);
140 		if (rc)
141 			return rc;
142 
143 		i += slabs;
144 	} while (i < nslabs);
145 	return 0;
146 }
147 
148 void __init xen_swiotlb_init(int verbose)
149 {
150 	unsigned long bytes;
151 	int rc = -ENOMEM;
152 	unsigned long nr_tbl;
153 	char *m = NULL;
154 	unsigned int repeat = 3;
155 
156 	nr_tbl = swiotlb_nr_tbl();
157 	if (nr_tbl)
158 		xen_io_tlb_nslabs = nr_tbl;
159 	else {
160 		xen_io_tlb_nslabs = (64 * 1024 * 1024 >> IO_TLB_SHIFT);
161 		xen_io_tlb_nslabs = ALIGN(xen_io_tlb_nslabs, IO_TLB_SEGSIZE);
162 	}
163 retry:
164 	bytes = xen_io_tlb_nslabs << IO_TLB_SHIFT;
165 
166 	/*
167 	 * Get IO TLB memory from any location.
168 	 */
169 	xen_io_tlb_start = alloc_bootmem_pages(PAGE_ALIGN(bytes));
170 	if (!xen_io_tlb_start) {
171 		m = "Cannot allocate Xen-SWIOTLB buffer!\n";
172 		goto error;
173 	}
174 	xen_io_tlb_end = xen_io_tlb_start + bytes;
175 	/*
176 	 * And replace that memory with pages under 4GB.
177 	 */
178 	rc = xen_swiotlb_fixup(xen_io_tlb_start,
179 			       bytes,
180 			       xen_io_tlb_nslabs);
181 	if (rc) {
182 		free_bootmem(__pa(xen_io_tlb_start), PAGE_ALIGN(bytes));
183 		m = "Failed to get contiguous memory for DMA from Xen!\n"\
184 		    "You either: don't have the permissions, do not have"\
185 		    " enough free memory under 4GB, or the hypervisor memory"\
186 		    "is too fragmented!";
187 		goto error;
188 	}
189 	start_dma_addr = xen_virt_to_bus(xen_io_tlb_start);
190 	swiotlb_init_with_tbl(xen_io_tlb_start, xen_io_tlb_nslabs, verbose);
191 
192 	return;
193 error:
194 	if (repeat--) {
195 		xen_io_tlb_nslabs = max(1024UL, /* Min is 2MB */
196 					(xen_io_tlb_nslabs >> 1));
197 		printk(KERN_INFO "Xen-SWIOTLB: Lowering to %luMB\n",
198 		      (xen_io_tlb_nslabs << IO_TLB_SHIFT) >> 20);
199 		goto retry;
200 	}
201 	xen_raw_printk("%s (rc:%d)", m, rc);
202 	panic("%s (rc:%d)", m, rc);
203 }
204 
205 void *
206 xen_swiotlb_alloc_coherent(struct device *hwdev, size_t size,
207 			   dma_addr_t *dma_handle, gfp_t flags)
208 {
209 	void *ret;
210 	int order = get_order(size);
211 	u64 dma_mask = DMA_BIT_MASK(32);
212 	unsigned long vstart;
213 	phys_addr_t phys;
214 	dma_addr_t dev_addr;
215 
216 	/*
217 	* Ignore region specifiers - the kernel's ideas of
218 	* pseudo-phys memory layout has nothing to do with the
219 	* machine physical layout.  We can't allocate highmem
220 	* because we can't return a pointer to it.
221 	*/
222 	flags &= ~(__GFP_DMA | __GFP_HIGHMEM);
223 
224 	if (dma_alloc_from_coherent(hwdev, size, dma_handle, &ret))
225 		return ret;
226 
227 	vstart = __get_free_pages(flags, order);
228 	ret = (void *)vstart;
229 
230 	if (!ret)
231 		return ret;
232 
233 	if (hwdev && hwdev->coherent_dma_mask)
234 		dma_mask = hwdev->coherent_dma_mask;
235 
236 	phys = virt_to_phys(ret);
237 	dev_addr = xen_phys_to_bus(phys);
238 	if (((dev_addr + size - 1 <= dma_mask)) &&
239 	    !range_straddles_page_boundary(phys, size))
240 		*dma_handle = dev_addr;
241 	else {
242 		if (xen_create_contiguous_region(vstart, order,
243 						 fls64(dma_mask)) != 0) {
244 			free_pages(vstart, order);
245 			return NULL;
246 		}
247 		*dma_handle = virt_to_machine(ret).maddr;
248 	}
249 	memset(ret, 0, size);
250 	return ret;
251 }
252 EXPORT_SYMBOL_GPL(xen_swiotlb_alloc_coherent);
253 
254 void
255 xen_swiotlb_free_coherent(struct device *hwdev, size_t size, void *vaddr,
256 			  dma_addr_t dev_addr)
257 {
258 	int order = get_order(size);
259 	phys_addr_t phys;
260 	u64 dma_mask = DMA_BIT_MASK(32);
261 
262 	if (dma_release_from_coherent(hwdev, order, vaddr))
263 		return;
264 
265 	if (hwdev && hwdev->coherent_dma_mask)
266 		dma_mask = hwdev->coherent_dma_mask;
267 
268 	phys = virt_to_phys(vaddr);
269 
270 	if (((dev_addr + size - 1 > dma_mask)) ||
271 	    range_straddles_page_boundary(phys, size))
272 		xen_destroy_contiguous_region((unsigned long)vaddr, order);
273 
274 	free_pages((unsigned long)vaddr, order);
275 }
276 EXPORT_SYMBOL_GPL(xen_swiotlb_free_coherent);
277 
278 
279 /*
280  * Map a single buffer of the indicated size for DMA in streaming mode.  The
281  * physical address to use is returned.
282  *
283  * Once the device is given the dma address, the device owns this memory until
284  * either xen_swiotlb_unmap_page or xen_swiotlb_dma_sync_single is performed.
285  */
286 dma_addr_t xen_swiotlb_map_page(struct device *dev, struct page *page,
287 				unsigned long offset, size_t size,
288 				enum dma_data_direction dir,
289 				struct dma_attrs *attrs)
290 {
291 	phys_addr_t phys = page_to_phys(page) + offset;
292 	dma_addr_t dev_addr = xen_phys_to_bus(phys);
293 	void *map;
294 
295 	BUG_ON(dir == DMA_NONE);
296 	/*
297 	 * If the address happens to be in the device's DMA window,
298 	 * we can safely return the device addr and not worry about bounce
299 	 * buffering it.
300 	 */
301 	if (dma_capable(dev, dev_addr, size) &&
302 	    !range_straddles_page_boundary(phys, size) && !swiotlb_force)
303 		return dev_addr;
304 
305 	/*
306 	 * Oh well, have to allocate and map a bounce buffer.
307 	 */
308 	map = swiotlb_tbl_map_single(dev, start_dma_addr, phys, size, dir);
309 	if (!map)
310 		return DMA_ERROR_CODE;
311 
312 	dev_addr = xen_virt_to_bus(map);
313 
314 	/*
315 	 * Ensure that the address returned is DMA'ble
316 	 */
317 	if (!dma_capable(dev, dev_addr, size)) {
318 		swiotlb_tbl_unmap_single(dev, map, size, dir);
319 		dev_addr = 0;
320 	}
321 	return dev_addr;
322 }
323 EXPORT_SYMBOL_GPL(xen_swiotlb_map_page);
324 
325 /*
326  * Unmap a single streaming mode DMA translation.  The dma_addr and size must
327  * match what was provided for in a previous xen_swiotlb_map_page call.  All
328  * other usages are undefined.
329  *
330  * After this call, reads by the cpu to the buffer are guaranteed to see
331  * whatever the device wrote there.
332  */
333 static void xen_unmap_single(struct device *hwdev, dma_addr_t dev_addr,
334 			     size_t size, enum dma_data_direction dir)
335 {
336 	phys_addr_t paddr = xen_bus_to_phys(dev_addr);
337 
338 	BUG_ON(dir == DMA_NONE);
339 
340 	/* NOTE: We use dev_addr here, not paddr! */
341 	if (is_xen_swiotlb_buffer(dev_addr)) {
342 		swiotlb_tbl_unmap_single(hwdev, phys_to_virt(paddr), size, dir);
343 		return;
344 	}
345 
346 	if (dir != DMA_FROM_DEVICE)
347 		return;
348 
349 	/*
350 	 * phys_to_virt doesn't work with hihgmem page but we could
351 	 * call dma_mark_clean() with hihgmem page here. However, we
352 	 * are fine since dma_mark_clean() is null on POWERPC. We can
353 	 * make dma_mark_clean() take a physical address if necessary.
354 	 */
355 	dma_mark_clean(phys_to_virt(paddr), size);
356 }
357 
358 void xen_swiotlb_unmap_page(struct device *hwdev, dma_addr_t dev_addr,
359 			    size_t size, enum dma_data_direction dir,
360 			    struct dma_attrs *attrs)
361 {
362 	xen_unmap_single(hwdev, dev_addr, size, dir);
363 }
364 EXPORT_SYMBOL_GPL(xen_swiotlb_unmap_page);
365 
366 /*
367  * Make physical memory consistent for a single streaming mode DMA translation
368  * after a transfer.
369  *
370  * If you perform a xen_swiotlb_map_page() but wish to interrogate the buffer
371  * using the cpu, yet do not wish to teardown the dma mapping, you must
372  * call this function before doing so.  At the next point you give the dma
373  * address back to the card, you must first perform a
374  * xen_swiotlb_dma_sync_for_device, and then the device again owns the buffer
375  */
376 static void
377 xen_swiotlb_sync_single(struct device *hwdev, dma_addr_t dev_addr,
378 			size_t size, enum dma_data_direction dir,
379 			enum dma_sync_target target)
380 {
381 	phys_addr_t paddr = xen_bus_to_phys(dev_addr);
382 
383 	BUG_ON(dir == DMA_NONE);
384 
385 	/* NOTE: We use dev_addr here, not paddr! */
386 	if (is_xen_swiotlb_buffer(dev_addr)) {
387 		swiotlb_tbl_sync_single(hwdev, phys_to_virt(paddr), size, dir,
388 				       target);
389 		return;
390 	}
391 
392 	if (dir != DMA_FROM_DEVICE)
393 		return;
394 
395 	dma_mark_clean(phys_to_virt(paddr), size);
396 }
397 
398 void
399 xen_swiotlb_sync_single_for_cpu(struct device *hwdev, dma_addr_t dev_addr,
400 				size_t size, enum dma_data_direction dir)
401 {
402 	xen_swiotlb_sync_single(hwdev, dev_addr, size, dir, SYNC_FOR_CPU);
403 }
404 EXPORT_SYMBOL_GPL(xen_swiotlb_sync_single_for_cpu);
405 
406 void
407 xen_swiotlb_sync_single_for_device(struct device *hwdev, dma_addr_t dev_addr,
408 				   size_t size, enum dma_data_direction dir)
409 {
410 	xen_swiotlb_sync_single(hwdev, dev_addr, size, dir, SYNC_FOR_DEVICE);
411 }
412 EXPORT_SYMBOL_GPL(xen_swiotlb_sync_single_for_device);
413 
414 /*
415  * Map a set of buffers described by scatterlist in streaming mode for DMA.
416  * This is the scatter-gather version of the above xen_swiotlb_map_page
417  * interface.  Here the scatter gather list elements are each tagged with the
418  * appropriate dma address and length.  They are obtained via
419  * sg_dma_{address,length}(SG).
420  *
421  * NOTE: An implementation may be able to use a smaller number of
422  *       DMA address/length pairs than there are SG table elements.
423  *       (for example via virtual mapping capabilities)
424  *       The routine returns the number of addr/length pairs actually
425  *       used, at most nents.
426  *
427  * Device ownership issues as mentioned above for xen_swiotlb_map_page are the
428  * same here.
429  */
430 int
431 xen_swiotlb_map_sg_attrs(struct device *hwdev, struct scatterlist *sgl,
432 			 int nelems, enum dma_data_direction dir,
433 			 struct dma_attrs *attrs)
434 {
435 	struct scatterlist *sg;
436 	int i;
437 
438 	BUG_ON(dir == DMA_NONE);
439 
440 	for_each_sg(sgl, sg, nelems, i) {
441 		phys_addr_t paddr = sg_phys(sg);
442 		dma_addr_t dev_addr = xen_phys_to_bus(paddr);
443 
444 		if (swiotlb_force ||
445 		    !dma_capable(hwdev, dev_addr, sg->length) ||
446 		    range_straddles_page_boundary(paddr, sg->length)) {
447 			void *map = swiotlb_tbl_map_single(hwdev,
448 							   start_dma_addr,
449 							   sg_phys(sg),
450 							   sg->length, dir);
451 			if (!map) {
452 				/* Don't panic here, we expect map_sg users
453 				   to do proper error handling. */
454 				xen_swiotlb_unmap_sg_attrs(hwdev, sgl, i, dir,
455 							   attrs);
456 				sgl[0].dma_length = 0;
457 				return DMA_ERROR_CODE;
458 			}
459 			sg->dma_address = xen_virt_to_bus(map);
460 		} else
461 			sg->dma_address = dev_addr;
462 		sg->dma_length = sg->length;
463 	}
464 	return nelems;
465 }
466 EXPORT_SYMBOL_GPL(xen_swiotlb_map_sg_attrs);
467 
468 int
469 xen_swiotlb_map_sg(struct device *hwdev, struct scatterlist *sgl, int nelems,
470 		   enum dma_data_direction dir)
471 {
472 	return xen_swiotlb_map_sg_attrs(hwdev, sgl, nelems, dir, NULL);
473 }
474 EXPORT_SYMBOL_GPL(xen_swiotlb_map_sg);
475 
476 /*
477  * Unmap a set of streaming mode DMA translations.  Again, cpu read rules
478  * concerning calls here are the same as for swiotlb_unmap_page() above.
479  */
480 void
481 xen_swiotlb_unmap_sg_attrs(struct device *hwdev, struct scatterlist *sgl,
482 			   int nelems, enum dma_data_direction dir,
483 			   struct dma_attrs *attrs)
484 {
485 	struct scatterlist *sg;
486 	int i;
487 
488 	BUG_ON(dir == DMA_NONE);
489 
490 	for_each_sg(sgl, sg, nelems, i)
491 		xen_unmap_single(hwdev, sg->dma_address, sg->dma_length, dir);
492 
493 }
494 EXPORT_SYMBOL_GPL(xen_swiotlb_unmap_sg_attrs);
495 
496 void
497 xen_swiotlb_unmap_sg(struct device *hwdev, struct scatterlist *sgl, int nelems,
498 		     enum dma_data_direction dir)
499 {
500 	return xen_swiotlb_unmap_sg_attrs(hwdev, sgl, nelems, dir, NULL);
501 }
502 EXPORT_SYMBOL_GPL(xen_swiotlb_unmap_sg);
503 
504 /*
505  * Make physical memory consistent for a set of streaming mode DMA translations
506  * after a transfer.
507  *
508  * The same as swiotlb_sync_single_* but for a scatter-gather list, same rules
509  * and usage.
510  */
511 static void
512 xen_swiotlb_sync_sg(struct device *hwdev, struct scatterlist *sgl,
513 		    int nelems, enum dma_data_direction dir,
514 		    enum dma_sync_target target)
515 {
516 	struct scatterlist *sg;
517 	int i;
518 
519 	for_each_sg(sgl, sg, nelems, i)
520 		xen_swiotlb_sync_single(hwdev, sg->dma_address,
521 					sg->dma_length, dir, target);
522 }
523 
524 void
525 xen_swiotlb_sync_sg_for_cpu(struct device *hwdev, struct scatterlist *sg,
526 			    int nelems, enum dma_data_direction dir)
527 {
528 	xen_swiotlb_sync_sg(hwdev, sg, nelems, dir, SYNC_FOR_CPU);
529 }
530 EXPORT_SYMBOL_GPL(xen_swiotlb_sync_sg_for_cpu);
531 
532 void
533 xen_swiotlb_sync_sg_for_device(struct device *hwdev, struct scatterlist *sg,
534 			       int nelems, enum dma_data_direction dir)
535 {
536 	xen_swiotlb_sync_sg(hwdev, sg, nelems, dir, SYNC_FOR_DEVICE);
537 }
538 EXPORT_SYMBOL_GPL(xen_swiotlb_sync_sg_for_device);
539 
540 int
541 xen_swiotlb_dma_mapping_error(struct device *hwdev, dma_addr_t dma_addr)
542 {
543 	return !dma_addr;
544 }
545 EXPORT_SYMBOL_GPL(xen_swiotlb_dma_mapping_error);
546 
547 /*
548  * Return whether the given device DMA address mask can be supported
549  * properly.  For example, if your device can only drive the low 24-bits
550  * during bus mastering, then you would pass 0x00ffffff as the mask to
551  * this function.
552  */
553 int
554 xen_swiotlb_dma_supported(struct device *hwdev, u64 mask)
555 {
556 	return xen_virt_to_bus(xen_io_tlb_end - 1) <= mask;
557 }
558 EXPORT_SYMBOL_GPL(xen_swiotlb_dma_supported);
559