1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright 2010 4 * by Konrad Rzeszutek Wilk <konrad.wilk@oracle.com> 5 * 6 * This code provides a IOMMU for Xen PV guests with PCI passthrough. 7 * 8 * PV guests under Xen are running in an non-contiguous memory architecture. 9 * 10 * When PCI pass-through is utilized, this necessitates an IOMMU for 11 * translating bus (DMA) to virtual and vice-versa and also providing a 12 * mechanism to have contiguous pages for device drivers operations (say DMA 13 * operations). 14 * 15 * Specifically, under Xen the Linux idea of pages is an illusion. It 16 * assumes that pages start at zero and go up to the available memory. To 17 * help with that, the Linux Xen MMU provides a lookup mechanism to 18 * translate the page frame numbers (PFN) to machine frame numbers (MFN) 19 * and vice-versa. The MFN are the "real" frame numbers. Furthermore 20 * memory is not contiguous. Xen hypervisor stitches memory for guests 21 * from different pools, which means there is no guarantee that PFN==MFN 22 * and PFN+1==MFN+1. Lastly with Xen 4.0, pages (in debug mode) are 23 * allocated in descending order (high to low), meaning the guest might 24 * never get any MFN's under the 4GB mark. 25 */ 26 27 #define pr_fmt(fmt) "xen:" KBUILD_MODNAME ": " fmt 28 29 #include <linux/memblock.h> 30 #include <linux/dma-direct.h> 31 #include <linux/dma-map-ops.h> 32 #include <linux/export.h> 33 #include <xen/swiotlb-xen.h> 34 #include <xen/page.h> 35 #include <xen/xen-ops.h> 36 #include <xen/hvc-console.h> 37 38 #include <asm/dma-mapping.h> 39 #include <asm/xen/page-coherent.h> 40 41 #include <trace/events/swiotlb.h> 42 #define MAX_DMA_BITS 32 43 44 /* 45 * Quick lookup value of the bus address of the IOTLB. 46 */ 47 48 static inline phys_addr_t xen_phys_to_bus(struct device *dev, phys_addr_t paddr) 49 { 50 unsigned long bfn = pfn_to_bfn(XEN_PFN_DOWN(paddr)); 51 phys_addr_t baddr = (phys_addr_t)bfn << XEN_PAGE_SHIFT; 52 53 baddr |= paddr & ~XEN_PAGE_MASK; 54 return baddr; 55 } 56 57 static inline dma_addr_t xen_phys_to_dma(struct device *dev, phys_addr_t paddr) 58 { 59 return phys_to_dma(dev, xen_phys_to_bus(dev, paddr)); 60 } 61 62 static inline phys_addr_t xen_bus_to_phys(struct device *dev, 63 phys_addr_t baddr) 64 { 65 unsigned long xen_pfn = bfn_to_pfn(XEN_PFN_DOWN(baddr)); 66 phys_addr_t paddr = (xen_pfn << XEN_PAGE_SHIFT) | 67 (baddr & ~XEN_PAGE_MASK); 68 69 return paddr; 70 } 71 72 static inline phys_addr_t xen_dma_to_phys(struct device *dev, 73 dma_addr_t dma_addr) 74 { 75 return xen_bus_to_phys(dev, dma_to_phys(dev, dma_addr)); 76 } 77 78 static inline int range_straddles_page_boundary(phys_addr_t p, size_t size) 79 { 80 unsigned long next_bfn, xen_pfn = XEN_PFN_DOWN(p); 81 unsigned int i, nr_pages = XEN_PFN_UP(xen_offset_in_page(p) + size); 82 83 next_bfn = pfn_to_bfn(xen_pfn); 84 85 for (i = 1; i < nr_pages; i++) 86 if (pfn_to_bfn(++xen_pfn) != ++next_bfn) 87 return 1; 88 89 return 0; 90 } 91 92 static int is_xen_swiotlb_buffer(struct device *dev, dma_addr_t dma_addr) 93 { 94 unsigned long bfn = XEN_PFN_DOWN(dma_to_phys(dev, dma_addr)); 95 unsigned long xen_pfn = bfn_to_local_pfn(bfn); 96 phys_addr_t paddr = (phys_addr_t)xen_pfn << XEN_PAGE_SHIFT; 97 98 /* If the address is outside our domain, it CAN 99 * have the same virtual address as another address 100 * in our domain. Therefore _only_ check address within our domain. 101 */ 102 if (pfn_valid(PFN_DOWN(paddr))) 103 return is_swiotlb_buffer(paddr); 104 return 0; 105 } 106 107 static int xen_swiotlb_fixup(void *buf, unsigned long nslabs) 108 { 109 int i, rc; 110 int dma_bits; 111 dma_addr_t dma_handle; 112 phys_addr_t p = virt_to_phys(buf); 113 114 dma_bits = get_order(IO_TLB_SEGSIZE << IO_TLB_SHIFT) + PAGE_SHIFT; 115 116 i = 0; 117 do { 118 int slabs = min(nslabs - i, (unsigned long)IO_TLB_SEGSIZE); 119 120 do { 121 rc = xen_create_contiguous_region( 122 p + (i << IO_TLB_SHIFT), 123 get_order(slabs << IO_TLB_SHIFT), 124 dma_bits, &dma_handle); 125 } while (rc && dma_bits++ < MAX_DMA_BITS); 126 if (rc) 127 return rc; 128 129 i += slabs; 130 } while (i < nslabs); 131 return 0; 132 } 133 134 enum xen_swiotlb_err { 135 XEN_SWIOTLB_UNKNOWN = 0, 136 XEN_SWIOTLB_ENOMEM, 137 XEN_SWIOTLB_EFIXUP 138 }; 139 140 static const char *xen_swiotlb_error(enum xen_swiotlb_err err) 141 { 142 switch (err) { 143 case XEN_SWIOTLB_ENOMEM: 144 return "Cannot allocate Xen-SWIOTLB buffer\n"; 145 case XEN_SWIOTLB_EFIXUP: 146 return "Failed to get contiguous memory for DMA from Xen!\n"\ 147 "You either: don't have the permissions, do not have"\ 148 " enough free memory under 4GB, or the hypervisor memory"\ 149 " is too fragmented!"; 150 default: 151 break; 152 } 153 return ""; 154 } 155 156 #define DEFAULT_NSLABS ALIGN(SZ_64M >> IO_TLB_SHIFT, IO_TLB_SEGSIZE) 157 158 int __ref xen_swiotlb_init(void) 159 { 160 enum xen_swiotlb_err m_ret = XEN_SWIOTLB_UNKNOWN; 161 unsigned long bytes = swiotlb_size_or_default(); 162 unsigned long nslabs = bytes >> IO_TLB_SHIFT; 163 unsigned int order, repeat = 3; 164 int rc = -ENOMEM; 165 char *start; 166 167 retry: 168 m_ret = XEN_SWIOTLB_ENOMEM; 169 order = get_order(bytes); 170 171 /* 172 * Get IO TLB memory from any location. 173 */ 174 #define SLABS_PER_PAGE (1 << (PAGE_SHIFT - IO_TLB_SHIFT)) 175 #define IO_TLB_MIN_SLABS ((1<<20) >> IO_TLB_SHIFT) 176 while ((SLABS_PER_PAGE << order) > IO_TLB_MIN_SLABS) { 177 start = (void *)xen_get_swiotlb_free_pages(order); 178 if (start) 179 break; 180 order--; 181 } 182 if (!start) 183 goto error; 184 if (order != get_order(bytes)) { 185 pr_warn("Warning: only able to allocate %ld MB for software IO TLB\n", 186 (PAGE_SIZE << order) >> 20); 187 nslabs = SLABS_PER_PAGE << order; 188 bytes = nslabs << IO_TLB_SHIFT; 189 } 190 191 /* 192 * And replace that memory with pages under 4GB. 193 */ 194 rc = xen_swiotlb_fixup(start, nslabs); 195 if (rc) { 196 free_pages((unsigned long)start, order); 197 m_ret = XEN_SWIOTLB_EFIXUP; 198 goto error; 199 } 200 rc = swiotlb_late_init_with_tbl(start, nslabs); 201 if (rc) 202 return rc; 203 swiotlb_set_max_segment(PAGE_SIZE); 204 return 0; 205 error: 206 if (repeat--) { 207 /* Min is 2MB */ 208 nslabs = max(1024UL, (nslabs >> 1)); 209 pr_info("Lowering to %luMB\n", 210 (nslabs << IO_TLB_SHIFT) >> 20); 211 goto retry; 212 } 213 pr_err("%s (rc:%d)\n", xen_swiotlb_error(m_ret), rc); 214 free_pages((unsigned long)start, order); 215 return rc; 216 } 217 218 #ifdef CONFIG_X86 219 void __init xen_swiotlb_init_early(void) 220 { 221 unsigned long bytes = swiotlb_size_or_default(); 222 unsigned long nslabs = bytes >> IO_TLB_SHIFT; 223 unsigned int repeat = 3; 224 char *start; 225 int rc; 226 227 retry: 228 /* 229 * Get IO TLB memory from any location. 230 */ 231 start = memblock_alloc(PAGE_ALIGN(bytes), PAGE_SIZE); 232 if (!start) 233 panic("%s: Failed to allocate %lu bytes align=0x%lx\n", 234 __func__, PAGE_ALIGN(bytes), PAGE_SIZE); 235 236 /* 237 * And replace that memory with pages under 4GB. 238 */ 239 rc = xen_swiotlb_fixup(start, nslabs); 240 if (rc) { 241 memblock_free(__pa(start), PAGE_ALIGN(bytes)); 242 if (repeat--) { 243 /* Min is 2MB */ 244 nslabs = max(1024UL, (nslabs >> 1)); 245 bytes = nslabs << IO_TLB_SHIFT; 246 pr_info("Lowering to %luMB\n", bytes >> 20); 247 goto retry; 248 } 249 panic("%s (rc:%d)", xen_swiotlb_error(XEN_SWIOTLB_EFIXUP), rc); 250 } 251 252 if (swiotlb_init_with_tbl(start, nslabs, false)) 253 panic("Cannot allocate SWIOTLB buffer"); 254 swiotlb_set_max_segment(PAGE_SIZE); 255 } 256 #endif /* CONFIG_X86 */ 257 258 static void * 259 xen_swiotlb_alloc_coherent(struct device *hwdev, size_t size, 260 dma_addr_t *dma_handle, gfp_t flags, 261 unsigned long attrs) 262 { 263 void *ret; 264 int order = get_order(size); 265 u64 dma_mask = DMA_BIT_MASK(32); 266 phys_addr_t phys; 267 dma_addr_t dev_addr; 268 269 /* 270 * Ignore region specifiers - the kernel's ideas of 271 * pseudo-phys memory layout has nothing to do with the 272 * machine physical layout. We can't allocate highmem 273 * because we can't return a pointer to it. 274 */ 275 flags &= ~(__GFP_DMA | __GFP_HIGHMEM); 276 277 /* Convert the size to actually allocated. */ 278 size = 1UL << (order + XEN_PAGE_SHIFT); 279 280 /* On ARM this function returns an ioremap'ped virtual address for 281 * which virt_to_phys doesn't return the corresponding physical 282 * address. In fact on ARM virt_to_phys only works for kernel direct 283 * mapped RAM memory. Also see comment below. 284 */ 285 ret = xen_alloc_coherent_pages(hwdev, size, dma_handle, flags, attrs); 286 287 if (!ret) 288 return ret; 289 290 if (hwdev && hwdev->coherent_dma_mask) 291 dma_mask = hwdev->coherent_dma_mask; 292 293 /* At this point dma_handle is the dma address, next we are 294 * going to set it to the machine address. 295 * Do not use virt_to_phys(ret) because on ARM it doesn't correspond 296 * to *dma_handle. */ 297 phys = dma_to_phys(hwdev, *dma_handle); 298 dev_addr = xen_phys_to_dma(hwdev, phys); 299 if (((dev_addr + size - 1 <= dma_mask)) && 300 !range_straddles_page_boundary(phys, size)) 301 *dma_handle = dev_addr; 302 else { 303 if (xen_create_contiguous_region(phys, order, 304 fls64(dma_mask), dma_handle) != 0) { 305 xen_free_coherent_pages(hwdev, size, ret, (dma_addr_t)phys, attrs); 306 return NULL; 307 } 308 *dma_handle = phys_to_dma(hwdev, *dma_handle); 309 SetPageXenRemapped(virt_to_page(ret)); 310 } 311 memset(ret, 0, size); 312 return ret; 313 } 314 315 static void 316 xen_swiotlb_free_coherent(struct device *hwdev, size_t size, void *vaddr, 317 dma_addr_t dev_addr, unsigned long attrs) 318 { 319 int order = get_order(size); 320 phys_addr_t phys; 321 u64 dma_mask = DMA_BIT_MASK(32); 322 struct page *page; 323 324 if (hwdev && hwdev->coherent_dma_mask) 325 dma_mask = hwdev->coherent_dma_mask; 326 327 /* do not use virt_to_phys because on ARM it doesn't return you the 328 * physical address */ 329 phys = xen_dma_to_phys(hwdev, dev_addr); 330 331 /* Convert the size to actually allocated. */ 332 size = 1UL << (order + XEN_PAGE_SHIFT); 333 334 if (is_vmalloc_addr(vaddr)) 335 page = vmalloc_to_page(vaddr); 336 else 337 page = virt_to_page(vaddr); 338 339 if (!WARN_ON((dev_addr + size - 1 > dma_mask) || 340 range_straddles_page_boundary(phys, size)) && 341 TestClearPageXenRemapped(page)) 342 xen_destroy_contiguous_region(phys, order); 343 344 xen_free_coherent_pages(hwdev, size, vaddr, phys_to_dma(hwdev, phys), 345 attrs); 346 } 347 348 /* 349 * Map a single buffer of the indicated size for DMA in streaming mode. The 350 * physical address to use is returned. 351 * 352 * Once the device is given the dma address, the device owns this memory until 353 * either xen_swiotlb_unmap_page or xen_swiotlb_dma_sync_single is performed. 354 */ 355 static dma_addr_t xen_swiotlb_map_page(struct device *dev, struct page *page, 356 unsigned long offset, size_t size, 357 enum dma_data_direction dir, 358 unsigned long attrs) 359 { 360 phys_addr_t map, phys = page_to_phys(page) + offset; 361 dma_addr_t dev_addr = xen_phys_to_dma(dev, phys); 362 363 BUG_ON(dir == DMA_NONE); 364 /* 365 * If the address happens to be in the device's DMA window, 366 * we can safely return the device addr and not worry about bounce 367 * buffering it. 368 */ 369 if (dma_capable(dev, dev_addr, size, true) && 370 !range_straddles_page_boundary(phys, size) && 371 !xen_arch_need_swiotlb(dev, phys, dev_addr) && 372 swiotlb_force != SWIOTLB_FORCE) 373 goto done; 374 375 /* 376 * Oh well, have to allocate and map a bounce buffer. 377 */ 378 trace_swiotlb_bounced(dev, dev_addr, size, swiotlb_force); 379 380 map = swiotlb_tbl_map_single(dev, phys, size, size, dir, attrs); 381 if (map == (phys_addr_t)DMA_MAPPING_ERROR) 382 return DMA_MAPPING_ERROR; 383 384 phys = map; 385 dev_addr = xen_phys_to_dma(dev, map); 386 387 /* 388 * Ensure that the address returned is DMA'ble 389 */ 390 if (unlikely(!dma_capable(dev, dev_addr, size, true))) { 391 swiotlb_tbl_unmap_single(dev, map, size, dir, 392 attrs | DMA_ATTR_SKIP_CPU_SYNC); 393 return DMA_MAPPING_ERROR; 394 } 395 396 done: 397 if (!dev_is_dma_coherent(dev) && !(attrs & DMA_ATTR_SKIP_CPU_SYNC)) { 398 if (pfn_valid(PFN_DOWN(dma_to_phys(dev, dev_addr)))) 399 arch_sync_dma_for_device(phys, size, dir); 400 else 401 xen_dma_sync_for_device(dev, dev_addr, size, dir); 402 } 403 return dev_addr; 404 } 405 406 /* 407 * Unmap a single streaming mode DMA translation. The dma_addr and size must 408 * match what was provided for in a previous xen_swiotlb_map_page call. All 409 * other usages are undefined. 410 * 411 * After this call, reads by the cpu to the buffer are guaranteed to see 412 * whatever the device wrote there. 413 */ 414 static void xen_swiotlb_unmap_page(struct device *hwdev, dma_addr_t dev_addr, 415 size_t size, enum dma_data_direction dir, unsigned long attrs) 416 { 417 phys_addr_t paddr = xen_dma_to_phys(hwdev, dev_addr); 418 419 BUG_ON(dir == DMA_NONE); 420 421 if (!dev_is_dma_coherent(hwdev) && !(attrs & DMA_ATTR_SKIP_CPU_SYNC)) { 422 if (pfn_valid(PFN_DOWN(dma_to_phys(hwdev, dev_addr)))) 423 arch_sync_dma_for_cpu(paddr, size, dir); 424 else 425 xen_dma_sync_for_cpu(hwdev, dev_addr, size, dir); 426 } 427 428 /* NOTE: We use dev_addr here, not paddr! */ 429 if (is_xen_swiotlb_buffer(hwdev, dev_addr)) 430 swiotlb_tbl_unmap_single(hwdev, paddr, size, dir, attrs); 431 } 432 433 static void 434 xen_swiotlb_sync_single_for_cpu(struct device *dev, dma_addr_t dma_addr, 435 size_t size, enum dma_data_direction dir) 436 { 437 phys_addr_t paddr = xen_dma_to_phys(dev, dma_addr); 438 439 if (!dev_is_dma_coherent(dev)) { 440 if (pfn_valid(PFN_DOWN(dma_to_phys(dev, dma_addr)))) 441 arch_sync_dma_for_cpu(paddr, size, dir); 442 else 443 xen_dma_sync_for_cpu(dev, dma_addr, size, dir); 444 } 445 446 if (is_xen_swiotlb_buffer(dev, dma_addr)) 447 swiotlb_sync_single_for_cpu(dev, paddr, size, dir); 448 } 449 450 static void 451 xen_swiotlb_sync_single_for_device(struct device *dev, dma_addr_t dma_addr, 452 size_t size, enum dma_data_direction dir) 453 { 454 phys_addr_t paddr = xen_dma_to_phys(dev, dma_addr); 455 456 if (is_xen_swiotlb_buffer(dev, dma_addr)) 457 swiotlb_sync_single_for_device(dev, paddr, size, dir); 458 459 if (!dev_is_dma_coherent(dev)) { 460 if (pfn_valid(PFN_DOWN(dma_to_phys(dev, dma_addr)))) 461 arch_sync_dma_for_device(paddr, size, dir); 462 else 463 xen_dma_sync_for_device(dev, dma_addr, size, dir); 464 } 465 } 466 467 /* 468 * Unmap a set of streaming mode DMA translations. Again, cpu read rules 469 * concerning calls here are the same as for swiotlb_unmap_page() above. 470 */ 471 static void 472 xen_swiotlb_unmap_sg(struct device *hwdev, struct scatterlist *sgl, int nelems, 473 enum dma_data_direction dir, unsigned long attrs) 474 { 475 struct scatterlist *sg; 476 int i; 477 478 BUG_ON(dir == DMA_NONE); 479 480 for_each_sg(sgl, sg, nelems, i) 481 xen_swiotlb_unmap_page(hwdev, sg->dma_address, sg_dma_len(sg), 482 dir, attrs); 483 484 } 485 486 static int 487 xen_swiotlb_map_sg(struct device *dev, struct scatterlist *sgl, int nelems, 488 enum dma_data_direction dir, unsigned long attrs) 489 { 490 struct scatterlist *sg; 491 int i; 492 493 BUG_ON(dir == DMA_NONE); 494 495 for_each_sg(sgl, sg, nelems, i) { 496 sg->dma_address = xen_swiotlb_map_page(dev, sg_page(sg), 497 sg->offset, sg->length, dir, attrs); 498 if (sg->dma_address == DMA_MAPPING_ERROR) 499 goto out_unmap; 500 sg_dma_len(sg) = sg->length; 501 } 502 503 return nelems; 504 out_unmap: 505 xen_swiotlb_unmap_sg(dev, sgl, i, dir, attrs | DMA_ATTR_SKIP_CPU_SYNC); 506 sg_dma_len(sgl) = 0; 507 return 0; 508 } 509 510 static void 511 xen_swiotlb_sync_sg_for_cpu(struct device *dev, struct scatterlist *sgl, 512 int nelems, enum dma_data_direction dir) 513 { 514 struct scatterlist *sg; 515 int i; 516 517 for_each_sg(sgl, sg, nelems, i) { 518 xen_swiotlb_sync_single_for_cpu(dev, sg->dma_address, 519 sg->length, dir); 520 } 521 } 522 523 static void 524 xen_swiotlb_sync_sg_for_device(struct device *dev, struct scatterlist *sgl, 525 int nelems, enum dma_data_direction dir) 526 { 527 struct scatterlist *sg; 528 int i; 529 530 for_each_sg(sgl, sg, nelems, i) { 531 xen_swiotlb_sync_single_for_device(dev, sg->dma_address, 532 sg->length, dir); 533 } 534 } 535 536 /* 537 * Return whether the given device DMA address mask can be supported 538 * properly. For example, if your device can only drive the low 24-bits 539 * during bus mastering, then you would pass 0x00ffffff as the mask to 540 * this function. 541 */ 542 static int 543 xen_swiotlb_dma_supported(struct device *hwdev, u64 mask) 544 { 545 return xen_phys_to_dma(hwdev, io_tlb_default_mem->end - 1) <= mask; 546 } 547 548 const struct dma_map_ops xen_swiotlb_dma_ops = { 549 .alloc = xen_swiotlb_alloc_coherent, 550 .free = xen_swiotlb_free_coherent, 551 .sync_single_for_cpu = xen_swiotlb_sync_single_for_cpu, 552 .sync_single_for_device = xen_swiotlb_sync_single_for_device, 553 .sync_sg_for_cpu = xen_swiotlb_sync_sg_for_cpu, 554 .sync_sg_for_device = xen_swiotlb_sync_sg_for_device, 555 .map_sg = xen_swiotlb_map_sg, 556 .unmap_sg = xen_swiotlb_unmap_sg, 557 .map_page = xen_swiotlb_map_page, 558 .unmap_page = xen_swiotlb_unmap_page, 559 .dma_supported = xen_swiotlb_dma_supported, 560 .mmap = dma_common_mmap, 561 .get_sgtable = dma_common_get_sgtable, 562 .alloc_pages = dma_common_alloc_pages, 563 .free_pages = dma_common_free_pages, 564 }; 565