xref: /linux/drivers/xen/swiotlb-xen.c (revision 9a379e77033f02c4a071891afdf0f0a01eff8ccb)
1 /*
2  *  Copyright 2010
3  *  by Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
4  *
5  * This code provides a IOMMU for Xen PV guests with PCI passthrough.
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License v2.0 as published by
9  * the Free Software Foundation
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  *
16  * PV guests under Xen are running in an non-contiguous memory architecture.
17  *
18  * When PCI pass-through is utilized, this necessitates an IOMMU for
19  * translating bus (DMA) to virtual and vice-versa and also providing a
20  * mechanism to have contiguous pages for device drivers operations (say DMA
21  * operations).
22  *
23  * Specifically, under Xen the Linux idea of pages is an illusion. It
24  * assumes that pages start at zero and go up to the available memory. To
25  * help with that, the Linux Xen MMU provides a lookup mechanism to
26  * translate the page frame numbers (PFN) to machine frame numbers (MFN)
27  * and vice-versa. The MFN are the "real" frame numbers. Furthermore
28  * memory is not contiguous. Xen hypervisor stitches memory for guests
29  * from different pools, which means there is no guarantee that PFN==MFN
30  * and PFN+1==MFN+1. Lastly with Xen 4.0, pages (in debug mode) are
31  * allocated in descending order (high to low), meaning the guest might
32  * never get any MFN's under the 4GB mark.
33  *
34  */
35 
36 #define pr_fmt(fmt) "xen:" KBUILD_MODNAME ": " fmt
37 
38 #include <linux/bootmem.h>
39 #include <linux/dma-direct.h>
40 #include <linux/export.h>
41 #include <xen/swiotlb-xen.h>
42 #include <xen/page.h>
43 #include <xen/xen-ops.h>
44 #include <xen/hvc-console.h>
45 
46 #include <asm/dma-mapping.h>
47 #include <asm/xen/page-coherent.h>
48 
49 #include <trace/events/swiotlb.h>
50 /*
51  * Used to do a quick range check in swiotlb_tbl_unmap_single and
52  * swiotlb_tbl_sync_single_*, to see if the memory was in fact allocated by this
53  * API.
54  */
55 
56 #ifndef CONFIG_X86
57 static unsigned long dma_alloc_coherent_mask(struct device *dev,
58 					    gfp_t gfp)
59 {
60 	unsigned long dma_mask = 0;
61 
62 	dma_mask = dev->coherent_dma_mask;
63 	if (!dma_mask)
64 		dma_mask = (gfp & GFP_DMA) ? DMA_BIT_MASK(24) : DMA_BIT_MASK(32);
65 
66 	return dma_mask;
67 }
68 #endif
69 
70 #define XEN_SWIOTLB_ERROR_CODE	(~(dma_addr_t)0x0)
71 
72 static char *xen_io_tlb_start, *xen_io_tlb_end;
73 static unsigned long xen_io_tlb_nslabs;
74 /*
75  * Quick lookup value of the bus address of the IOTLB.
76  */
77 
78 static u64 start_dma_addr;
79 
80 /*
81  * Both of these functions should avoid XEN_PFN_PHYS because phys_addr_t
82  * can be 32bit when dma_addr_t is 64bit leading to a loss in
83  * information if the shift is done before casting to 64bit.
84  */
85 static inline dma_addr_t xen_phys_to_bus(phys_addr_t paddr)
86 {
87 	unsigned long bfn = pfn_to_bfn(XEN_PFN_DOWN(paddr));
88 	dma_addr_t dma = (dma_addr_t)bfn << XEN_PAGE_SHIFT;
89 
90 	dma |= paddr & ~XEN_PAGE_MASK;
91 
92 	return dma;
93 }
94 
95 static inline phys_addr_t xen_bus_to_phys(dma_addr_t baddr)
96 {
97 	unsigned long xen_pfn = bfn_to_pfn(XEN_PFN_DOWN(baddr));
98 	dma_addr_t dma = (dma_addr_t)xen_pfn << XEN_PAGE_SHIFT;
99 	phys_addr_t paddr = dma;
100 
101 	paddr |= baddr & ~XEN_PAGE_MASK;
102 
103 	return paddr;
104 }
105 
106 static inline dma_addr_t xen_virt_to_bus(void *address)
107 {
108 	return xen_phys_to_bus(virt_to_phys(address));
109 }
110 
111 static int check_pages_physically_contiguous(unsigned long xen_pfn,
112 					     unsigned int offset,
113 					     size_t length)
114 {
115 	unsigned long next_bfn;
116 	int i;
117 	int nr_pages;
118 
119 	next_bfn = pfn_to_bfn(xen_pfn);
120 	nr_pages = (offset + length + XEN_PAGE_SIZE-1) >> XEN_PAGE_SHIFT;
121 
122 	for (i = 1; i < nr_pages; i++) {
123 		if (pfn_to_bfn(++xen_pfn) != ++next_bfn)
124 			return 0;
125 	}
126 	return 1;
127 }
128 
129 static inline int range_straddles_page_boundary(phys_addr_t p, size_t size)
130 {
131 	unsigned long xen_pfn = XEN_PFN_DOWN(p);
132 	unsigned int offset = p & ~XEN_PAGE_MASK;
133 
134 	if (offset + size <= XEN_PAGE_SIZE)
135 		return 0;
136 	if (check_pages_physically_contiguous(xen_pfn, offset, size))
137 		return 0;
138 	return 1;
139 }
140 
141 static int is_xen_swiotlb_buffer(dma_addr_t dma_addr)
142 {
143 	unsigned long bfn = XEN_PFN_DOWN(dma_addr);
144 	unsigned long xen_pfn = bfn_to_local_pfn(bfn);
145 	phys_addr_t paddr = XEN_PFN_PHYS(xen_pfn);
146 
147 	/* If the address is outside our domain, it CAN
148 	 * have the same virtual address as another address
149 	 * in our domain. Therefore _only_ check address within our domain.
150 	 */
151 	if (pfn_valid(PFN_DOWN(paddr))) {
152 		return paddr >= virt_to_phys(xen_io_tlb_start) &&
153 		       paddr < virt_to_phys(xen_io_tlb_end);
154 	}
155 	return 0;
156 }
157 
158 static int max_dma_bits = 32;
159 
160 static int
161 xen_swiotlb_fixup(void *buf, size_t size, unsigned long nslabs)
162 {
163 	int i, rc;
164 	int dma_bits;
165 	dma_addr_t dma_handle;
166 	phys_addr_t p = virt_to_phys(buf);
167 
168 	dma_bits = get_order(IO_TLB_SEGSIZE << IO_TLB_SHIFT) + PAGE_SHIFT;
169 
170 	i = 0;
171 	do {
172 		int slabs = min(nslabs - i, (unsigned long)IO_TLB_SEGSIZE);
173 
174 		do {
175 			rc = xen_create_contiguous_region(
176 				p + (i << IO_TLB_SHIFT),
177 				get_order(slabs << IO_TLB_SHIFT),
178 				dma_bits, &dma_handle);
179 		} while (rc && dma_bits++ < max_dma_bits);
180 		if (rc)
181 			return rc;
182 
183 		i += slabs;
184 	} while (i < nslabs);
185 	return 0;
186 }
187 static unsigned long xen_set_nslabs(unsigned long nr_tbl)
188 {
189 	if (!nr_tbl) {
190 		xen_io_tlb_nslabs = (64 * 1024 * 1024 >> IO_TLB_SHIFT);
191 		xen_io_tlb_nslabs = ALIGN(xen_io_tlb_nslabs, IO_TLB_SEGSIZE);
192 	} else
193 		xen_io_tlb_nslabs = nr_tbl;
194 
195 	return xen_io_tlb_nslabs << IO_TLB_SHIFT;
196 }
197 
198 enum xen_swiotlb_err {
199 	XEN_SWIOTLB_UNKNOWN = 0,
200 	XEN_SWIOTLB_ENOMEM,
201 	XEN_SWIOTLB_EFIXUP
202 };
203 
204 static const char *xen_swiotlb_error(enum xen_swiotlb_err err)
205 {
206 	switch (err) {
207 	case XEN_SWIOTLB_ENOMEM:
208 		return "Cannot allocate Xen-SWIOTLB buffer\n";
209 	case XEN_SWIOTLB_EFIXUP:
210 		return "Failed to get contiguous memory for DMA from Xen!\n"\
211 		    "You either: don't have the permissions, do not have"\
212 		    " enough free memory under 4GB, or the hypervisor memory"\
213 		    " is too fragmented!";
214 	default:
215 		break;
216 	}
217 	return "";
218 }
219 int __ref xen_swiotlb_init(int verbose, bool early)
220 {
221 	unsigned long bytes, order;
222 	int rc = -ENOMEM;
223 	enum xen_swiotlb_err m_ret = XEN_SWIOTLB_UNKNOWN;
224 	unsigned int repeat = 3;
225 
226 	xen_io_tlb_nslabs = swiotlb_nr_tbl();
227 retry:
228 	bytes = xen_set_nslabs(xen_io_tlb_nslabs);
229 	order = get_order(xen_io_tlb_nslabs << IO_TLB_SHIFT);
230 	/*
231 	 * Get IO TLB memory from any location.
232 	 */
233 	if (early)
234 		xen_io_tlb_start = alloc_bootmem_pages(PAGE_ALIGN(bytes));
235 	else {
236 #define SLABS_PER_PAGE (1 << (PAGE_SHIFT - IO_TLB_SHIFT))
237 #define IO_TLB_MIN_SLABS ((1<<20) >> IO_TLB_SHIFT)
238 		while ((SLABS_PER_PAGE << order) > IO_TLB_MIN_SLABS) {
239 			xen_io_tlb_start = (void *)xen_get_swiotlb_free_pages(order);
240 			if (xen_io_tlb_start)
241 				break;
242 			order--;
243 		}
244 		if (order != get_order(bytes)) {
245 			pr_warn("Warning: only able to allocate %ld MB for software IO TLB\n",
246 				(PAGE_SIZE << order) >> 20);
247 			xen_io_tlb_nslabs = SLABS_PER_PAGE << order;
248 			bytes = xen_io_tlb_nslabs << IO_TLB_SHIFT;
249 		}
250 	}
251 	if (!xen_io_tlb_start) {
252 		m_ret = XEN_SWIOTLB_ENOMEM;
253 		goto error;
254 	}
255 	xen_io_tlb_end = xen_io_tlb_start + bytes;
256 	/*
257 	 * And replace that memory with pages under 4GB.
258 	 */
259 	rc = xen_swiotlb_fixup(xen_io_tlb_start,
260 			       bytes,
261 			       xen_io_tlb_nslabs);
262 	if (rc) {
263 		if (early)
264 			free_bootmem(__pa(xen_io_tlb_start), PAGE_ALIGN(bytes));
265 		else {
266 			free_pages((unsigned long)xen_io_tlb_start, order);
267 			xen_io_tlb_start = NULL;
268 		}
269 		m_ret = XEN_SWIOTLB_EFIXUP;
270 		goto error;
271 	}
272 	start_dma_addr = xen_virt_to_bus(xen_io_tlb_start);
273 	if (early) {
274 		if (swiotlb_init_with_tbl(xen_io_tlb_start, xen_io_tlb_nslabs,
275 			 verbose))
276 			panic("Cannot allocate SWIOTLB buffer");
277 		rc = 0;
278 	} else
279 		rc = swiotlb_late_init_with_tbl(xen_io_tlb_start, xen_io_tlb_nslabs);
280 
281 	if (!rc)
282 		swiotlb_set_max_segment(PAGE_SIZE);
283 
284 	return rc;
285 error:
286 	if (repeat--) {
287 		xen_io_tlb_nslabs = max(1024UL, /* Min is 2MB */
288 					(xen_io_tlb_nslabs >> 1));
289 		pr_info("Lowering to %luMB\n",
290 			(xen_io_tlb_nslabs << IO_TLB_SHIFT) >> 20);
291 		goto retry;
292 	}
293 	pr_err("%s (rc:%d)\n", xen_swiotlb_error(m_ret), rc);
294 	if (early)
295 		panic("%s (rc:%d)", xen_swiotlb_error(m_ret), rc);
296 	else
297 		free_pages((unsigned long)xen_io_tlb_start, order);
298 	return rc;
299 }
300 
301 static void *
302 xen_swiotlb_alloc_coherent(struct device *hwdev, size_t size,
303 			   dma_addr_t *dma_handle, gfp_t flags,
304 			   unsigned long attrs)
305 {
306 	void *ret;
307 	int order = get_order(size);
308 	u64 dma_mask = DMA_BIT_MASK(32);
309 	phys_addr_t phys;
310 	dma_addr_t dev_addr;
311 
312 	/*
313 	* Ignore region specifiers - the kernel's ideas of
314 	* pseudo-phys memory layout has nothing to do with the
315 	* machine physical layout.  We can't allocate highmem
316 	* because we can't return a pointer to it.
317 	*/
318 	flags &= ~(__GFP_DMA | __GFP_HIGHMEM);
319 
320 	/* On ARM this function returns an ioremap'ped virtual address for
321 	 * which virt_to_phys doesn't return the corresponding physical
322 	 * address. In fact on ARM virt_to_phys only works for kernel direct
323 	 * mapped RAM memory. Also see comment below.
324 	 */
325 	ret = xen_alloc_coherent_pages(hwdev, size, dma_handle, flags, attrs);
326 
327 	if (!ret)
328 		return ret;
329 
330 	if (hwdev && hwdev->coherent_dma_mask)
331 		dma_mask = dma_alloc_coherent_mask(hwdev, flags);
332 
333 	/* At this point dma_handle is the physical address, next we are
334 	 * going to set it to the machine address.
335 	 * Do not use virt_to_phys(ret) because on ARM it doesn't correspond
336 	 * to *dma_handle. */
337 	phys = *dma_handle;
338 	dev_addr = xen_phys_to_bus(phys);
339 	if (((dev_addr + size - 1 <= dma_mask)) &&
340 	    !range_straddles_page_boundary(phys, size))
341 		*dma_handle = dev_addr;
342 	else {
343 		if (xen_create_contiguous_region(phys, order,
344 						 fls64(dma_mask), dma_handle) != 0) {
345 			xen_free_coherent_pages(hwdev, size, ret, (dma_addr_t)phys, attrs);
346 			return NULL;
347 		}
348 	}
349 	memset(ret, 0, size);
350 	return ret;
351 }
352 
353 static void
354 xen_swiotlb_free_coherent(struct device *hwdev, size_t size, void *vaddr,
355 			  dma_addr_t dev_addr, unsigned long attrs)
356 {
357 	int order = get_order(size);
358 	phys_addr_t phys;
359 	u64 dma_mask = DMA_BIT_MASK(32);
360 
361 	if (hwdev && hwdev->coherent_dma_mask)
362 		dma_mask = hwdev->coherent_dma_mask;
363 
364 	/* do not use virt_to_phys because on ARM it doesn't return you the
365 	 * physical address */
366 	phys = xen_bus_to_phys(dev_addr);
367 
368 	if (((dev_addr + size - 1 > dma_mask)) ||
369 	    range_straddles_page_boundary(phys, size))
370 		xen_destroy_contiguous_region(phys, order);
371 
372 	xen_free_coherent_pages(hwdev, size, vaddr, (dma_addr_t)phys, attrs);
373 }
374 
375 /*
376  * Map a single buffer of the indicated size for DMA in streaming mode.  The
377  * physical address to use is returned.
378  *
379  * Once the device is given the dma address, the device owns this memory until
380  * either xen_swiotlb_unmap_page or xen_swiotlb_dma_sync_single is performed.
381  */
382 static dma_addr_t xen_swiotlb_map_page(struct device *dev, struct page *page,
383 				unsigned long offset, size_t size,
384 				enum dma_data_direction dir,
385 				unsigned long attrs)
386 {
387 	phys_addr_t map, phys = page_to_phys(page) + offset;
388 	dma_addr_t dev_addr = xen_phys_to_bus(phys);
389 
390 	BUG_ON(dir == DMA_NONE);
391 	/*
392 	 * If the address happens to be in the device's DMA window,
393 	 * we can safely return the device addr and not worry about bounce
394 	 * buffering it.
395 	 */
396 	if (dma_capable(dev, dev_addr, size) &&
397 	    !range_straddles_page_boundary(phys, size) &&
398 		!xen_arch_need_swiotlb(dev, phys, dev_addr) &&
399 		(swiotlb_force != SWIOTLB_FORCE)) {
400 		/* we are not interested in the dma_addr returned by
401 		 * xen_dma_map_page, only in the potential cache flushes executed
402 		 * by the function. */
403 		xen_dma_map_page(dev, page, dev_addr, offset, size, dir, attrs);
404 		return dev_addr;
405 	}
406 
407 	/*
408 	 * Oh well, have to allocate and map a bounce buffer.
409 	 */
410 	trace_swiotlb_bounced(dev, dev_addr, size, swiotlb_force);
411 
412 	map = swiotlb_tbl_map_single(dev, start_dma_addr, phys, size, dir,
413 				     attrs);
414 	if (map == SWIOTLB_MAP_ERROR)
415 		return XEN_SWIOTLB_ERROR_CODE;
416 
417 	dev_addr = xen_phys_to_bus(map);
418 	xen_dma_map_page(dev, pfn_to_page(map >> PAGE_SHIFT),
419 					dev_addr, map & ~PAGE_MASK, size, dir, attrs);
420 
421 	/*
422 	 * Ensure that the address returned is DMA'ble
423 	 */
424 	if (dma_capable(dev, dev_addr, size))
425 		return dev_addr;
426 
427 	attrs |= DMA_ATTR_SKIP_CPU_SYNC;
428 	swiotlb_tbl_unmap_single(dev, map, size, dir, attrs);
429 
430 	return XEN_SWIOTLB_ERROR_CODE;
431 }
432 
433 /*
434  * Unmap a single streaming mode DMA translation.  The dma_addr and size must
435  * match what was provided for in a previous xen_swiotlb_map_page call.  All
436  * other usages are undefined.
437  *
438  * After this call, reads by the cpu to the buffer are guaranteed to see
439  * whatever the device wrote there.
440  */
441 static void xen_unmap_single(struct device *hwdev, dma_addr_t dev_addr,
442 			     size_t size, enum dma_data_direction dir,
443 			     unsigned long attrs)
444 {
445 	phys_addr_t paddr = xen_bus_to_phys(dev_addr);
446 
447 	BUG_ON(dir == DMA_NONE);
448 
449 	xen_dma_unmap_page(hwdev, dev_addr, size, dir, attrs);
450 
451 	/* NOTE: We use dev_addr here, not paddr! */
452 	if (is_xen_swiotlb_buffer(dev_addr)) {
453 		swiotlb_tbl_unmap_single(hwdev, paddr, size, dir, attrs);
454 		return;
455 	}
456 
457 	if (dir != DMA_FROM_DEVICE)
458 		return;
459 
460 	/*
461 	 * phys_to_virt doesn't work with hihgmem page but we could
462 	 * call dma_mark_clean() with hihgmem page here. However, we
463 	 * are fine since dma_mark_clean() is null on POWERPC. We can
464 	 * make dma_mark_clean() take a physical address if necessary.
465 	 */
466 	dma_mark_clean(phys_to_virt(paddr), size);
467 }
468 
469 static void xen_swiotlb_unmap_page(struct device *hwdev, dma_addr_t dev_addr,
470 			    size_t size, enum dma_data_direction dir,
471 			    unsigned long attrs)
472 {
473 	xen_unmap_single(hwdev, dev_addr, size, dir, attrs);
474 }
475 
476 /*
477  * Make physical memory consistent for a single streaming mode DMA translation
478  * after a transfer.
479  *
480  * If you perform a xen_swiotlb_map_page() but wish to interrogate the buffer
481  * using the cpu, yet do not wish to teardown the dma mapping, you must
482  * call this function before doing so.  At the next point you give the dma
483  * address back to the card, you must first perform a
484  * xen_swiotlb_dma_sync_for_device, and then the device again owns the buffer
485  */
486 static void
487 xen_swiotlb_sync_single(struct device *hwdev, dma_addr_t dev_addr,
488 			size_t size, enum dma_data_direction dir,
489 			enum dma_sync_target target)
490 {
491 	phys_addr_t paddr = xen_bus_to_phys(dev_addr);
492 
493 	BUG_ON(dir == DMA_NONE);
494 
495 	if (target == SYNC_FOR_CPU)
496 		xen_dma_sync_single_for_cpu(hwdev, dev_addr, size, dir);
497 
498 	/* NOTE: We use dev_addr here, not paddr! */
499 	if (is_xen_swiotlb_buffer(dev_addr))
500 		swiotlb_tbl_sync_single(hwdev, paddr, size, dir, target);
501 
502 	if (target == SYNC_FOR_DEVICE)
503 		xen_dma_sync_single_for_device(hwdev, dev_addr, size, dir);
504 
505 	if (dir != DMA_FROM_DEVICE)
506 		return;
507 
508 	dma_mark_clean(phys_to_virt(paddr), size);
509 }
510 
511 void
512 xen_swiotlb_sync_single_for_cpu(struct device *hwdev, dma_addr_t dev_addr,
513 				size_t size, enum dma_data_direction dir)
514 {
515 	xen_swiotlb_sync_single(hwdev, dev_addr, size, dir, SYNC_FOR_CPU);
516 }
517 
518 void
519 xen_swiotlb_sync_single_for_device(struct device *hwdev, dma_addr_t dev_addr,
520 				   size_t size, enum dma_data_direction dir)
521 {
522 	xen_swiotlb_sync_single(hwdev, dev_addr, size, dir, SYNC_FOR_DEVICE);
523 }
524 
525 /*
526  * Unmap a set of streaming mode DMA translations.  Again, cpu read rules
527  * concerning calls here are the same as for swiotlb_unmap_page() above.
528  */
529 static void
530 xen_swiotlb_unmap_sg_attrs(struct device *hwdev, struct scatterlist *sgl,
531 			   int nelems, enum dma_data_direction dir,
532 			   unsigned long attrs)
533 {
534 	struct scatterlist *sg;
535 	int i;
536 
537 	BUG_ON(dir == DMA_NONE);
538 
539 	for_each_sg(sgl, sg, nelems, i)
540 		xen_unmap_single(hwdev, sg->dma_address, sg_dma_len(sg), dir, attrs);
541 
542 }
543 
544 /*
545  * Map a set of buffers described by scatterlist in streaming mode for DMA.
546  * This is the scatter-gather version of the above xen_swiotlb_map_page
547  * interface.  Here the scatter gather list elements are each tagged with the
548  * appropriate dma address and length.  They are obtained via
549  * sg_dma_{address,length}(SG).
550  *
551  * NOTE: An implementation may be able to use a smaller number of
552  *       DMA address/length pairs than there are SG table elements.
553  *       (for example via virtual mapping capabilities)
554  *       The routine returns the number of addr/length pairs actually
555  *       used, at most nents.
556  *
557  * Device ownership issues as mentioned above for xen_swiotlb_map_page are the
558  * same here.
559  */
560 static int
561 xen_swiotlb_map_sg_attrs(struct device *hwdev, struct scatterlist *sgl,
562 			 int nelems, enum dma_data_direction dir,
563 			 unsigned long attrs)
564 {
565 	struct scatterlist *sg;
566 	int i;
567 
568 	BUG_ON(dir == DMA_NONE);
569 
570 	for_each_sg(sgl, sg, nelems, i) {
571 		phys_addr_t paddr = sg_phys(sg);
572 		dma_addr_t dev_addr = xen_phys_to_bus(paddr);
573 
574 		if (swiotlb_force == SWIOTLB_FORCE ||
575 		    xen_arch_need_swiotlb(hwdev, paddr, dev_addr) ||
576 		    !dma_capable(hwdev, dev_addr, sg->length) ||
577 		    range_straddles_page_boundary(paddr, sg->length)) {
578 			phys_addr_t map = swiotlb_tbl_map_single(hwdev,
579 								 start_dma_addr,
580 								 sg_phys(sg),
581 								 sg->length,
582 								 dir, attrs);
583 			if (map == SWIOTLB_MAP_ERROR) {
584 				dev_warn(hwdev, "swiotlb buffer is full\n");
585 				/* Don't panic here, we expect map_sg users
586 				   to do proper error handling. */
587 				attrs |= DMA_ATTR_SKIP_CPU_SYNC;
588 				xen_swiotlb_unmap_sg_attrs(hwdev, sgl, i, dir,
589 							   attrs);
590 				sg_dma_len(sgl) = 0;
591 				return 0;
592 			}
593 			dev_addr = xen_phys_to_bus(map);
594 			xen_dma_map_page(hwdev, pfn_to_page(map >> PAGE_SHIFT),
595 						dev_addr,
596 						map & ~PAGE_MASK,
597 						sg->length,
598 						dir,
599 						attrs);
600 			sg->dma_address = dev_addr;
601 		} else {
602 			/* we are not interested in the dma_addr returned by
603 			 * xen_dma_map_page, only in the potential cache flushes executed
604 			 * by the function. */
605 			xen_dma_map_page(hwdev, pfn_to_page(paddr >> PAGE_SHIFT),
606 						dev_addr,
607 						paddr & ~PAGE_MASK,
608 						sg->length,
609 						dir,
610 						attrs);
611 			sg->dma_address = dev_addr;
612 		}
613 		sg_dma_len(sg) = sg->length;
614 	}
615 	return nelems;
616 }
617 
618 /*
619  * Make physical memory consistent for a set of streaming mode DMA translations
620  * after a transfer.
621  *
622  * The same as swiotlb_sync_single_* but for a scatter-gather list, same rules
623  * and usage.
624  */
625 static void
626 xen_swiotlb_sync_sg(struct device *hwdev, struct scatterlist *sgl,
627 		    int nelems, enum dma_data_direction dir,
628 		    enum dma_sync_target target)
629 {
630 	struct scatterlist *sg;
631 	int i;
632 
633 	for_each_sg(sgl, sg, nelems, i)
634 		xen_swiotlb_sync_single(hwdev, sg->dma_address,
635 					sg_dma_len(sg), dir, target);
636 }
637 
638 static void
639 xen_swiotlb_sync_sg_for_cpu(struct device *hwdev, struct scatterlist *sg,
640 			    int nelems, enum dma_data_direction dir)
641 {
642 	xen_swiotlb_sync_sg(hwdev, sg, nelems, dir, SYNC_FOR_CPU);
643 }
644 
645 static void
646 xen_swiotlb_sync_sg_for_device(struct device *hwdev, struct scatterlist *sg,
647 			       int nelems, enum dma_data_direction dir)
648 {
649 	xen_swiotlb_sync_sg(hwdev, sg, nelems, dir, SYNC_FOR_DEVICE);
650 }
651 
652 /*
653  * Return whether the given device DMA address mask can be supported
654  * properly.  For example, if your device can only drive the low 24-bits
655  * during bus mastering, then you would pass 0x00ffffff as the mask to
656  * this function.
657  */
658 static int
659 xen_swiotlb_dma_supported(struct device *hwdev, u64 mask)
660 {
661 	return xen_virt_to_bus(xen_io_tlb_end - 1) <= mask;
662 }
663 
664 /*
665  * Create userspace mapping for the DMA-coherent memory.
666  * This function should be called with the pages from the current domain only,
667  * passing pages mapped from other domains would lead to memory corruption.
668  */
669 static int
670 xen_swiotlb_dma_mmap(struct device *dev, struct vm_area_struct *vma,
671 		     void *cpu_addr, dma_addr_t dma_addr, size_t size,
672 		     unsigned long attrs)
673 {
674 #if defined(CONFIG_ARM) || defined(CONFIG_ARM64)
675 	if (xen_get_dma_ops(dev)->mmap)
676 		return xen_get_dma_ops(dev)->mmap(dev, vma, cpu_addr,
677 						    dma_addr, size, attrs);
678 #endif
679 	return dma_common_mmap(dev, vma, cpu_addr, dma_addr, size);
680 }
681 
682 /*
683  * This function should be called with the pages from the current domain only,
684  * passing pages mapped from other domains would lead to memory corruption.
685  */
686 static int
687 xen_swiotlb_get_sgtable(struct device *dev, struct sg_table *sgt,
688 			void *cpu_addr, dma_addr_t handle, size_t size,
689 			unsigned long attrs)
690 {
691 #if defined(CONFIG_ARM) || defined(CONFIG_ARM64)
692 	if (xen_get_dma_ops(dev)->get_sgtable) {
693 #if 0
694 	/*
695 	 * This check verifies that the page belongs to the current domain and
696 	 * is not one mapped from another domain.
697 	 * This check is for debug only, and should not go to production build
698 	 */
699 		unsigned long bfn = PHYS_PFN(dma_to_phys(dev, handle));
700 		BUG_ON (!page_is_ram(bfn));
701 #endif
702 		return xen_get_dma_ops(dev)->get_sgtable(dev, sgt, cpu_addr,
703 							   handle, size, attrs);
704 	}
705 #endif
706 	return dma_common_get_sgtable(dev, sgt, cpu_addr, handle, size);
707 }
708 
709 static int xen_swiotlb_mapping_error(struct device *dev, dma_addr_t dma_addr)
710 {
711 	return dma_addr == XEN_SWIOTLB_ERROR_CODE;
712 }
713 
714 const struct dma_map_ops xen_swiotlb_dma_ops = {
715 	.alloc = xen_swiotlb_alloc_coherent,
716 	.free = xen_swiotlb_free_coherent,
717 	.sync_single_for_cpu = xen_swiotlb_sync_single_for_cpu,
718 	.sync_single_for_device = xen_swiotlb_sync_single_for_device,
719 	.sync_sg_for_cpu = xen_swiotlb_sync_sg_for_cpu,
720 	.sync_sg_for_device = xen_swiotlb_sync_sg_for_device,
721 	.map_sg = xen_swiotlb_map_sg_attrs,
722 	.unmap_sg = xen_swiotlb_unmap_sg_attrs,
723 	.map_page = xen_swiotlb_map_page,
724 	.unmap_page = xen_swiotlb_unmap_page,
725 	.dma_supported = xen_swiotlb_dma_supported,
726 	.mmap = xen_swiotlb_dma_mmap,
727 	.get_sgtable = xen_swiotlb_get_sgtable,
728 	.mapping_error	= xen_swiotlb_mapping_error,
729 };
730