xref: /linux/drivers/xen/swiotlb-xen.c (revision 9052e9c95d908d6c3d7570aadc8898e1d871c8bb)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  Copyright 2010
4  *  by Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
5  *
6  * This code provides a IOMMU for Xen PV guests with PCI passthrough.
7  *
8  * PV guests under Xen are running in an non-contiguous memory architecture.
9  *
10  * When PCI pass-through is utilized, this necessitates an IOMMU for
11  * translating bus (DMA) to virtual and vice-versa and also providing a
12  * mechanism to have contiguous pages for device drivers operations (say DMA
13  * operations).
14  *
15  * Specifically, under Xen the Linux idea of pages is an illusion. It
16  * assumes that pages start at zero and go up to the available memory. To
17  * help with that, the Linux Xen MMU provides a lookup mechanism to
18  * translate the page frame numbers (PFN) to machine frame numbers (MFN)
19  * and vice-versa. The MFN are the "real" frame numbers. Furthermore
20  * memory is not contiguous. Xen hypervisor stitches memory for guests
21  * from different pools, which means there is no guarantee that PFN==MFN
22  * and PFN+1==MFN+1. Lastly with Xen 4.0, pages (in debug mode) are
23  * allocated in descending order (high to low), meaning the guest might
24  * never get any MFN's under the 4GB mark.
25  */
26 
27 #define pr_fmt(fmt) "xen:" KBUILD_MODNAME ": " fmt
28 
29 #include <linux/memblock.h>
30 #include <linux/dma-direct.h>
31 #include <linux/dma-map-ops.h>
32 #include <linux/export.h>
33 #include <xen/swiotlb-xen.h>
34 #include <xen/page.h>
35 #include <xen/xen-ops.h>
36 #include <xen/hvc-console.h>
37 
38 #include <asm/dma-mapping.h>
39 #include <asm/xen/page-coherent.h>
40 
41 #include <trace/events/swiotlb.h>
42 #define MAX_DMA_BITS 32
43 
44 /*
45  * Quick lookup value of the bus address of the IOTLB.
46  */
47 
48 static inline phys_addr_t xen_phys_to_bus(struct device *dev, phys_addr_t paddr)
49 {
50 	unsigned long bfn = pfn_to_bfn(XEN_PFN_DOWN(paddr));
51 	phys_addr_t baddr = (phys_addr_t)bfn << XEN_PAGE_SHIFT;
52 
53 	baddr |= paddr & ~XEN_PAGE_MASK;
54 	return baddr;
55 }
56 
57 static inline dma_addr_t xen_phys_to_dma(struct device *dev, phys_addr_t paddr)
58 {
59 	return phys_to_dma(dev, xen_phys_to_bus(dev, paddr));
60 }
61 
62 static inline phys_addr_t xen_bus_to_phys(struct device *dev,
63 					  phys_addr_t baddr)
64 {
65 	unsigned long xen_pfn = bfn_to_pfn(XEN_PFN_DOWN(baddr));
66 	phys_addr_t paddr = (xen_pfn << XEN_PAGE_SHIFT) |
67 			    (baddr & ~XEN_PAGE_MASK);
68 
69 	return paddr;
70 }
71 
72 static inline phys_addr_t xen_dma_to_phys(struct device *dev,
73 					  dma_addr_t dma_addr)
74 {
75 	return xen_bus_to_phys(dev, dma_to_phys(dev, dma_addr));
76 }
77 
78 static inline int range_straddles_page_boundary(phys_addr_t p, size_t size)
79 {
80 	unsigned long next_bfn, xen_pfn = XEN_PFN_DOWN(p);
81 	unsigned int i, nr_pages = XEN_PFN_UP(xen_offset_in_page(p) + size);
82 
83 	next_bfn = pfn_to_bfn(xen_pfn);
84 
85 	for (i = 1; i < nr_pages; i++)
86 		if (pfn_to_bfn(++xen_pfn) != ++next_bfn)
87 			return 1;
88 
89 	return 0;
90 }
91 
92 static int is_xen_swiotlb_buffer(struct device *dev, dma_addr_t dma_addr)
93 {
94 	unsigned long bfn = XEN_PFN_DOWN(dma_to_phys(dev, dma_addr));
95 	unsigned long xen_pfn = bfn_to_local_pfn(bfn);
96 	phys_addr_t paddr = (phys_addr_t)xen_pfn << XEN_PAGE_SHIFT;
97 
98 	/* If the address is outside our domain, it CAN
99 	 * have the same virtual address as another address
100 	 * in our domain. Therefore _only_ check address within our domain.
101 	 */
102 	if (pfn_valid(PFN_DOWN(paddr)))
103 		return is_swiotlb_buffer(dev, paddr);
104 	return 0;
105 }
106 
107 static int xen_swiotlb_fixup(void *buf, unsigned long nslabs)
108 {
109 	int rc;
110 	unsigned int order = get_order(IO_TLB_SEGSIZE << IO_TLB_SHIFT);
111 	unsigned int i, dma_bits = order + PAGE_SHIFT;
112 	dma_addr_t dma_handle;
113 	phys_addr_t p = virt_to_phys(buf);
114 
115 	BUILD_BUG_ON(IO_TLB_SEGSIZE & (IO_TLB_SEGSIZE - 1));
116 	BUG_ON(nslabs % IO_TLB_SEGSIZE);
117 
118 	i = 0;
119 	do {
120 		do {
121 			rc = xen_create_contiguous_region(
122 				p + (i << IO_TLB_SHIFT), order,
123 				dma_bits, &dma_handle);
124 		} while (rc && dma_bits++ < MAX_DMA_BITS);
125 		if (rc)
126 			return rc;
127 
128 		i += IO_TLB_SEGSIZE;
129 	} while (i < nslabs);
130 	return 0;
131 }
132 
133 enum xen_swiotlb_err {
134 	XEN_SWIOTLB_UNKNOWN = 0,
135 	XEN_SWIOTLB_ENOMEM,
136 	XEN_SWIOTLB_EFIXUP
137 };
138 
139 static const char *xen_swiotlb_error(enum xen_swiotlb_err err)
140 {
141 	switch (err) {
142 	case XEN_SWIOTLB_ENOMEM:
143 		return "Cannot allocate Xen-SWIOTLB buffer\n";
144 	case XEN_SWIOTLB_EFIXUP:
145 		return "Failed to get contiguous memory for DMA from Xen!\n"\
146 		    "You either: don't have the permissions, do not have"\
147 		    " enough free memory under 4GB, or the hypervisor memory"\
148 		    " is too fragmented!";
149 	default:
150 		break;
151 	}
152 	return "";
153 }
154 
155 int xen_swiotlb_init(void)
156 {
157 	enum xen_swiotlb_err m_ret = XEN_SWIOTLB_UNKNOWN;
158 	unsigned long bytes = swiotlb_size_or_default();
159 	unsigned long nslabs = bytes >> IO_TLB_SHIFT;
160 	unsigned int order, repeat = 3;
161 	int rc = -ENOMEM;
162 	char *start;
163 
164 	if (io_tlb_default_mem.nslabs) {
165 		pr_warn("swiotlb buffer already initialized\n");
166 		return -EEXIST;
167 	}
168 
169 retry:
170 	m_ret = XEN_SWIOTLB_ENOMEM;
171 	order = get_order(bytes);
172 
173 	/*
174 	 * Get IO TLB memory from any location.
175 	 */
176 #define SLABS_PER_PAGE (1 << (PAGE_SHIFT - IO_TLB_SHIFT))
177 #define IO_TLB_MIN_SLABS ((1<<20) >> IO_TLB_SHIFT)
178 	while ((SLABS_PER_PAGE << order) > IO_TLB_MIN_SLABS) {
179 		start = (void *)xen_get_swiotlb_free_pages(order);
180 		if (start)
181 			break;
182 		order--;
183 	}
184 	if (!start)
185 		goto exit;
186 	if (order != get_order(bytes)) {
187 		pr_warn("Warning: only able to allocate %ld MB for software IO TLB\n",
188 			(PAGE_SIZE << order) >> 20);
189 		nslabs = SLABS_PER_PAGE << order;
190 		bytes = nslabs << IO_TLB_SHIFT;
191 	}
192 
193 	/*
194 	 * And replace that memory with pages under 4GB.
195 	 */
196 	rc = xen_swiotlb_fixup(start, nslabs);
197 	if (rc) {
198 		free_pages((unsigned long)start, order);
199 		m_ret = XEN_SWIOTLB_EFIXUP;
200 		goto error;
201 	}
202 	rc = swiotlb_late_init_with_tbl(start, nslabs);
203 	if (rc)
204 		return rc;
205 	swiotlb_set_max_segment(PAGE_SIZE);
206 	return 0;
207 error:
208 	if (nslabs > 1024 && repeat--) {
209 		/* Min is 2MB */
210 		nslabs = max(1024UL, ALIGN(nslabs >> 1, IO_TLB_SEGSIZE));
211 		bytes = nslabs << IO_TLB_SHIFT;
212 		pr_info("Lowering to %luMB\n", bytes >> 20);
213 		goto retry;
214 	}
215 exit:
216 	pr_err("%s (rc:%d)\n", xen_swiotlb_error(m_ret), rc);
217 	return rc;
218 }
219 
220 #ifdef CONFIG_X86
221 void __init xen_swiotlb_init_early(void)
222 {
223 	unsigned long bytes = swiotlb_size_or_default();
224 	unsigned long nslabs = bytes >> IO_TLB_SHIFT;
225 	unsigned int repeat = 3;
226 	char *start;
227 	int rc;
228 
229 retry:
230 	/*
231 	 * Get IO TLB memory from any location.
232 	 */
233 	start = memblock_alloc(PAGE_ALIGN(bytes),
234 			       IO_TLB_SEGSIZE << IO_TLB_SHIFT);
235 	if (!start)
236 		panic("%s: Failed to allocate %lu bytes\n",
237 		      __func__, PAGE_ALIGN(bytes));
238 
239 	/*
240 	 * And replace that memory with pages under 4GB.
241 	 */
242 	rc = xen_swiotlb_fixup(start, nslabs);
243 	if (rc) {
244 		memblock_free(__pa(start), PAGE_ALIGN(bytes));
245 		if (nslabs > 1024 && repeat--) {
246 			/* Min is 2MB */
247 			nslabs = max(1024UL, ALIGN(nslabs >> 1, IO_TLB_SEGSIZE));
248 			bytes = nslabs << IO_TLB_SHIFT;
249 			pr_info("Lowering to %luMB\n", bytes >> 20);
250 			goto retry;
251 		}
252 		panic("%s (rc:%d)", xen_swiotlb_error(XEN_SWIOTLB_EFIXUP), rc);
253 	}
254 
255 	if (swiotlb_init_with_tbl(start, nslabs, true))
256 		panic("Cannot allocate SWIOTLB buffer");
257 	swiotlb_set_max_segment(PAGE_SIZE);
258 }
259 #endif /* CONFIG_X86 */
260 
261 static void *
262 xen_swiotlb_alloc_coherent(struct device *hwdev, size_t size,
263 			   dma_addr_t *dma_handle, gfp_t flags,
264 			   unsigned long attrs)
265 {
266 	void *ret;
267 	int order = get_order(size);
268 	u64 dma_mask = DMA_BIT_MASK(32);
269 	phys_addr_t phys;
270 	dma_addr_t dev_addr;
271 
272 	/*
273 	* Ignore region specifiers - the kernel's ideas of
274 	* pseudo-phys memory layout has nothing to do with the
275 	* machine physical layout.  We can't allocate highmem
276 	* because we can't return a pointer to it.
277 	*/
278 	flags &= ~(__GFP_DMA | __GFP_HIGHMEM);
279 
280 	/* Convert the size to actually allocated. */
281 	size = 1UL << (order + XEN_PAGE_SHIFT);
282 
283 	/* On ARM this function returns an ioremap'ped virtual address for
284 	 * which virt_to_phys doesn't return the corresponding physical
285 	 * address. In fact on ARM virt_to_phys only works for kernel direct
286 	 * mapped RAM memory. Also see comment below.
287 	 */
288 	ret = xen_alloc_coherent_pages(hwdev, size, dma_handle, flags, attrs);
289 
290 	if (!ret)
291 		return ret;
292 
293 	if (hwdev && hwdev->coherent_dma_mask)
294 		dma_mask = hwdev->coherent_dma_mask;
295 
296 	/* At this point dma_handle is the dma address, next we are
297 	 * going to set it to the machine address.
298 	 * Do not use virt_to_phys(ret) because on ARM it doesn't correspond
299 	 * to *dma_handle. */
300 	phys = dma_to_phys(hwdev, *dma_handle);
301 	dev_addr = xen_phys_to_dma(hwdev, phys);
302 	if (((dev_addr + size - 1 <= dma_mask)) &&
303 	    !range_straddles_page_boundary(phys, size))
304 		*dma_handle = dev_addr;
305 	else {
306 		if (xen_create_contiguous_region(phys, order,
307 						 fls64(dma_mask), dma_handle) != 0) {
308 			xen_free_coherent_pages(hwdev, size, ret, (dma_addr_t)phys, attrs);
309 			return NULL;
310 		}
311 		*dma_handle = phys_to_dma(hwdev, *dma_handle);
312 		SetPageXenRemapped(virt_to_page(ret));
313 	}
314 	memset(ret, 0, size);
315 	return ret;
316 }
317 
318 static void
319 xen_swiotlb_free_coherent(struct device *hwdev, size_t size, void *vaddr,
320 			  dma_addr_t dev_addr, unsigned long attrs)
321 {
322 	int order = get_order(size);
323 	phys_addr_t phys;
324 	u64 dma_mask = DMA_BIT_MASK(32);
325 	struct page *page;
326 
327 	if (hwdev && hwdev->coherent_dma_mask)
328 		dma_mask = hwdev->coherent_dma_mask;
329 
330 	/* do not use virt_to_phys because on ARM it doesn't return you the
331 	 * physical address */
332 	phys = xen_dma_to_phys(hwdev, dev_addr);
333 
334 	/* Convert the size to actually allocated. */
335 	size = 1UL << (order + XEN_PAGE_SHIFT);
336 
337 	if (is_vmalloc_addr(vaddr))
338 		page = vmalloc_to_page(vaddr);
339 	else
340 		page = virt_to_page(vaddr);
341 
342 	if (!WARN_ON((dev_addr + size - 1 > dma_mask) ||
343 		     range_straddles_page_boundary(phys, size)) &&
344 	    TestClearPageXenRemapped(page))
345 		xen_destroy_contiguous_region(phys, order);
346 
347 	xen_free_coherent_pages(hwdev, size, vaddr, phys_to_dma(hwdev, phys),
348 				attrs);
349 }
350 
351 /*
352  * Map a single buffer of the indicated size for DMA in streaming mode.  The
353  * physical address to use is returned.
354  *
355  * Once the device is given the dma address, the device owns this memory until
356  * either xen_swiotlb_unmap_page or xen_swiotlb_dma_sync_single is performed.
357  */
358 static dma_addr_t xen_swiotlb_map_page(struct device *dev, struct page *page,
359 				unsigned long offset, size_t size,
360 				enum dma_data_direction dir,
361 				unsigned long attrs)
362 {
363 	phys_addr_t map, phys = page_to_phys(page) + offset;
364 	dma_addr_t dev_addr = xen_phys_to_dma(dev, phys);
365 
366 	BUG_ON(dir == DMA_NONE);
367 	/*
368 	 * If the address happens to be in the device's DMA window,
369 	 * we can safely return the device addr and not worry about bounce
370 	 * buffering it.
371 	 */
372 	if (dma_capable(dev, dev_addr, size, true) &&
373 	    !range_straddles_page_boundary(phys, size) &&
374 		!xen_arch_need_swiotlb(dev, phys, dev_addr) &&
375 		!is_swiotlb_force_bounce(dev))
376 		goto done;
377 
378 	/*
379 	 * Oh well, have to allocate and map a bounce buffer.
380 	 */
381 	trace_swiotlb_bounced(dev, dev_addr, size, swiotlb_force);
382 
383 	map = swiotlb_tbl_map_single(dev, phys, size, size, dir, attrs);
384 	if (map == (phys_addr_t)DMA_MAPPING_ERROR)
385 		return DMA_MAPPING_ERROR;
386 
387 	phys = map;
388 	dev_addr = xen_phys_to_dma(dev, map);
389 
390 	/*
391 	 * Ensure that the address returned is DMA'ble
392 	 */
393 	if (unlikely(!dma_capable(dev, dev_addr, size, true))) {
394 		swiotlb_tbl_unmap_single(dev, map, size, dir,
395 				attrs | DMA_ATTR_SKIP_CPU_SYNC);
396 		return DMA_MAPPING_ERROR;
397 	}
398 
399 done:
400 	if (!dev_is_dma_coherent(dev) && !(attrs & DMA_ATTR_SKIP_CPU_SYNC)) {
401 		if (pfn_valid(PFN_DOWN(dma_to_phys(dev, dev_addr))))
402 			arch_sync_dma_for_device(phys, size, dir);
403 		else
404 			xen_dma_sync_for_device(dev, dev_addr, size, dir);
405 	}
406 	return dev_addr;
407 }
408 
409 /*
410  * Unmap a single streaming mode DMA translation.  The dma_addr and size must
411  * match what was provided for in a previous xen_swiotlb_map_page call.  All
412  * other usages are undefined.
413  *
414  * After this call, reads by the cpu to the buffer are guaranteed to see
415  * whatever the device wrote there.
416  */
417 static void xen_swiotlb_unmap_page(struct device *hwdev, dma_addr_t dev_addr,
418 		size_t size, enum dma_data_direction dir, unsigned long attrs)
419 {
420 	phys_addr_t paddr = xen_dma_to_phys(hwdev, dev_addr);
421 
422 	BUG_ON(dir == DMA_NONE);
423 
424 	if (!dev_is_dma_coherent(hwdev) && !(attrs & DMA_ATTR_SKIP_CPU_SYNC)) {
425 		if (pfn_valid(PFN_DOWN(dma_to_phys(hwdev, dev_addr))))
426 			arch_sync_dma_for_cpu(paddr, size, dir);
427 		else
428 			xen_dma_sync_for_cpu(hwdev, dev_addr, size, dir);
429 	}
430 
431 	/* NOTE: We use dev_addr here, not paddr! */
432 	if (is_xen_swiotlb_buffer(hwdev, dev_addr))
433 		swiotlb_tbl_unmap_single(hwdev, paddr, size, dir, attrs);
434 }
435 
436 static void
437 xen_swiotlb_sync_single_for_cpu(struct device *dev, dma_addr_t dma_addr,
438 		size_t size, enum dma_data_direction dir)
439 {
440 	phys_addr_t paddr = xen_dma_to_phys(dev, dma_addr);
441 
442 	if (!dev_is_dma_coherent(dev)) {
443 		if (pfn_valid(PFN_DOWN(dma_to_phys(dev, dma_addr))))
444 			arch_sync_dma_for_cpu(paddr, size, dir);
445 		else
446 			xen_dma_sync_for_cpu(dev, dma_addr, size, dir);
447 	}
448 
449 	if (is_xen_swiotlb_buffer(dev, dma_addr))
450 		swiotlb_sync_single_for_cpu(dev, paddr, size, dir);
451 }
452 
453 static void
454 xen_swiotlb_sync_single_for_device(struct device *dev, dma_addr_t dma_addr,
455 		size_t size, enum dma_data_direction dir)
456 {
457 	phys_addr_t paddr = xen_dma_to_phys(dev, dma_addr);
458 
459 	if (is_xen_swiotlb_buffer(dev, dma_addr))
460 		swiotlb_sync_single_for_device(dev, paddr, size, dir);
461 
462 	if (!dev_is_dma_coherent(dev)) {
463 		if (pfn_valid(PFN_DOWN(dma_to_phys(dev, dma_addr))))
464 			arch_sync_dma_for_device(paddr, size, dir);
465 		else
466 			xen_dma_sync_for_device(dev, dma_addr, size, dir);
467 	}
468 }
469 
470 /*
471  * Unmap a set of streaming mode DMA translations.  Again, cpu read rules
472  * concerning calls here are the same as for swiotlb_unmap_page() above.
473  */
474 static void
475 xen_swiotlb_unmap_sg(struct device *hwdev, struct scatterlist *sgl, int nelems,
476 		enum dma_data_direction dir, unsigned long attrs)
477 {
478 	struct scatterlist *sg;
479 	int i;
480 
481 	BUG_ON(dir == DMA_NONE);
482 
483 	for_each_sg(sgl, sg, nelems, i)
484 		xen_swiotlb_unmap_page(hwdev, sg->dma_address, sg_dma_len(sg),
485 				dir, attrs);
486 
487 }
488 
489 static int
490 xen_swiotlb_map_sg(struct device *dev, struct scatterlist *sgl, int nelems,
491 		enum dma_data_direction dir, unsigned long attrs)
492 {
493 	struct scatterlist *sg;
494 	int i;
495 
496 	BUG_ON(dir == DMA_NONE);
497 
498 	for_each_sg(sgl, sg, nelems, i) {
499 		sg->dma_address = xen_swiotlb_map_page(dev, sg_page(sg),
500 				sg->offset, sg->length, dir, attrs);
501 		if (sg->dma_address == DMA_MAPPING_ERROR)
502 			goto out_unmap;
503 		sg_dma_len(sg) = sg->length;
504 	}
505 
506 	return nelems;
507 out_unmap:
508 	xen_swiotlb_unmap_sg(dev, sgl, i, dir, attrs | DMA_ATTR_SKIP_CPU_SYNC);
509 	sg_dma_len(sgl) = 0;
510 	return -EIO;
511 }
512 
513 static void
514 xen_swiotlb_sync_sg_for_cpu(struct device *dev, struct scatterlist *sgl,
515 			    int nelems, enum dma_data_direction dir)
516 {
517 	struct scatterlist *sg;
518 	int i;
519 
520 	for_each_sg(sgl, sg, nelems, i) {
521 		xen_swiotlb_sync_single_for_cpu(dev, sg->dma_address,
522 				sg->length, dir);
523 	}
524 }
525 
526 static void
527 xen_swiotlb_sync_sg_for_device(struct device *dev, struct scatterlist *sgl,
528 			       int nelems, enum dma_data_direction dir)
529 {
530 	struct scatterlist *sg;
531 	int i;
532 
533 	for_each_sg(sgl, sg, nelems, i) {
534 		xen_swiotlb_sync_single_for_device(dev, sg->dma_address,
535 				sg->length, dir);
536 	}
537 }
538 
539 /*
540  * Return whether the given device DMA address mask can be supported
541  * properly.  For example, if your device can only drive the low 24-bits
542  * during bus mastering, then you would pass 0x00ffffff as the mask to
543  * this function.
544  */
545 static int
546 xen_swiotlb_dma_supported(struct device *hwdev, u64 mask)
547 {
548 	return xen_phys_to_dma(hwdev, io_tlb_default_mem.end - 1) <= mask;
549 }
550 
551 const struct dma_map_ops xen_swiotlb_dma_ops = {
552 	.alloc = xen_swiotlb_alloc_coherent,
553 	.free = xen_swiotlb_free_coherent,
554 	.sync_single_for_cpu = xen_swiotlb_sync_single_for_cpu,
555 	.sync_single_for_device = xen_swiotlb_sync_single_for_device,
556 	.sync_sg_for_cpu = xen_swiotlb_sync_sg_for_cpu,
557 	.sync_sg_for_device = xen_swiotlb_sync_sg_for_device,
558 	.map_sg = xen_swiotlb_map_sg,
559 	.unmap_sg = xen_swiotlb_unmap_sg,
560 	.map_page = xen_swiotlb_map_page,
561 	.unmap_page = xen_swiotlb_unmap_page,
562 	.dma_supported = xen_swiotlb_dma_supported,
563 	.mmap = dma_common_mmap,
564 	.get_sgtable = dma_common_get_sgtable,
565 	.alloc_pages = dma_common_alloc_pages,
566 	.free_pages = dma_common_free_pages,
567 };
568