1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright 2010 4 * by Konrad Rzeszutek Wilk <konrad.wilk@oracle.com> 5 * 6 * This code provides a IOMMU for Xen PV guests with PCI passthrough. 7 * 8 * PV guests under Xen are running in an non-contiguous memory architecture. 9 * 10 * When PCI pass-through is utilized, this necessitates an IOMMU for 11 * translating bus (DMA) to virtual and vice-versa and also providing a 12 * mechanism to have contiguous pages for device drivers operations (say DMA 13 * operations). 14 * 15 * Specifically, under Xen the Linux idea of pages is an illusion. It 16 * assumes that pages start at zero and go up to the available memory. To 17 * help with that, the Linux Xen MMU provides a lookup mechanism to 18 * translate the page frame numbers (PFN) to machine frame numbers (MFN) 19 * and vice-versa. The MFN are the "real" frame numbers. Furthermore 20 * memory is not contiguous. Xen hypervisor stitches memory for guests 21 * from different pools, which means there is no guarantee that PFN==MFN 22 * and PFN+1==MFN+1. Lastly with Xen 4.0, pages (in debug mode) are 23 * allocated in descending order (high to low), meaning the guest might 24 * never get any MFN's under the 4GB mark. 25 */ 26 27 #define pr_fmt(fmt) "xen:" KBUILD_MODNAME ": " fmt 28 29 #include <linux/memblock.h> 30 #include <linux/dma-direct.h> 31 #include <linux/dma-map-ops.h> 32 #include <linux/export.h> 33 #include <xen/swiotlb-xen.h> 34 #include <xen/page.h> 35 #include <xen/xen-ops.h> 36 #include <xen/hvc-console.h> 37 38 #include <asm/dma-mapping.h> 39 #include <asm/xen/page-coherent.h> 40 41 #include <trace/events/swiotlb.h> 42 #define MAX_DMA_BITS 32 43 44 /* 45 * Quick lookup value of the bus address of the IOTLB. 46 */ 47 48 static inline phys_addr_t xen_phys_to_bus(struct device *dev, phys_addr_t paddr) 49 { 50 unsigned long bfn = pfn_to_bfn(XEN_PFN_DOWN(paddr)); 51 phys_addr_t baddr = (phys_addr_t)bfn << XEN_PAGE_SHIFT; 52 53 baddr |= paddr & ~XEN_PAGE_MASK; 54 return baddr; 55 } 56 57 static inline dma_addr_t xen_phys_to_dma(struct device *dev, phys_addr_t paddr) 58 { 59 return phys_to_dma(dev, xen_phys_to_bus(dev, paddr)); 60 } 61 62 static inline phys_addr_t xen_bus_to_phys(struct device *dev, 63 phys_addr_t baddr) 64 { 65 unsigned long xen_pfn = bfn_to_pfn(XEN_PFN_DOWN(baddr)); 66 phys_addr_t paddr = (xen_pfn << XEN_PAGE_SHIFT) | 67 (baddr & ~XEN_PAGE_MASK); 68 69 return paddr; 70 } 71 72 static inline phys_addr_t xen_dma_to_phys(struct device *dev, 73 dma_addr_t dma_addr) 74 { 75 return xen_bus_to_phys(dev, dma_to_phys(dev, dma_addr)); 76 } 77 78 static inline int range_straddles_page_boundary(phys_addr_t p, size_t size) 79 { 80 unsigned long next_bfn, xen_pfn = XEN_PFN_DOWN(p); 81 unsigned int i, nr_pages = XEN_PFN_UP(xen_offset_in_page(p) + size); 82 83 next_bfn = pfn_to_bfn(xen_pfn); 84 85 for (i = 1; i < nr_pages; i++) 86 if (pfn_to_bfn(++xen_pfn) != ++next_bfn) 87 return 1; 88 89 return 0; 90 } 91 92 static int is_xen_swiotlb_buffer(struct device *dev, dma_addr_t dma_addr) 93 { 94 unsigned long bfn = XEN_PFN_DOWN(dma_to_phys(dev, dma_addr)); 95 unsigned long xen_pfn = bfn_to_local_pfn(bfn); 96 phys_addr_t paddr = (phys_addr_t)xen_pfn << XEN_PAGE_SHIFT; 97 98 /* If the address is outside our domain, it CAN 99 * have the same virtual address as another address 100 * in our domain. Therefore _only_ check address within our domain. 101 */ 102 if (pfn_valid(PFN_DOWN(paddr))) 103 return is_swiotlb_buffer(dev, paddr); 104 return 0; 105 } 106 107 static int xen_swiotlb_fixup(void *buf, unsigned long nslabs) 108 { 109 int rc; 110 unsigned int order = get_order(IO_TLB_SEGSIZE << IO_TLB_SHIFT); 111 unsigned int i, dma_bits = order + PAGE_SHIFT; 112 dma_addr_t dma_handle; 113 phys_addr_t p = virt_to_phys(buf); 114 115 BUILD_BUG_ON(IO_TLB_SEGSIZE & (IO_TLB_SEGSIZE - 1)); 116 BUG_ON(nslabs % IO_TLB_SEGSIZE); 117 118 i = 0; 119 do { 120 do { 121 rc = xen_create_contiguous_region( 122 p + (i << IO_TLB_SHIFT), order, 123 dma_bits, &dma_handle); 124 } while (rc && dma_bits++ < MAX_DMA_BITS); 125 if (rc) 126 return rc; 127 128 i += IO_TLB_SEGSIZE; 129 } while (i < nslabs); 130 return 0; 131 } 132 133 enum xen_swiotlb_err { 134 XEN_SWIOTLB_UNKNOWN = 0, 135 XEN_SWIOTLB_ENOMEM, 136 XEN_SWIOTLB_EFIXUP 137 }; 138 139 static const char *xen_swiotlb_error(enum xen_swiotlb_err err) 140 { 141 switch (err) { 142 case XEN_SWIOTLB_ENOMEM: 143 return "Cannot allocate Xen-SWIOTLB buffer\n"; 144 case XEN_SWIOTLB_EFIXUP: 145 return "Failed to get contiguous memory for DMA from Xen!\n"\ 146 "You either: don't have the permissions, do not have"\ 147 " enough free memory under 4GB, or the hypervisor memory"\ 148 " is too fragmented!"; 149 default: 150 break; 151 } 152 return ""; 153 } 154 155 int xen_swiotlb_init(void) 156 { 157 enum xen_swiotlb_err m_ret = XEN_SWIOTLB_UNKNOWN; 158 unsigned long bytes = swiotlb_size_or_default(); 159 unsigned long nslabs = bytes >> IO_TLB_SHIFT; 160 unsigned int order, repeat = 3; 161 int rc = -ENOMEM; 162 char *start; 163 164 if (io_tlb_default_mem.nslabs) { 165 pr_warn("swiotlb buffer already initialized\n"); 166 return -EEXIST; 167 } 168 169 retry: 170 m_ret = XEN_SWIOTLB_ENOMEM; 171 order = get_order(bytes); 172 173 /* 174 * Get IO TLB memory from any location. 175 */ 176 #define SLABS_PER_PAGE (1 << (PAGE_SHIFT - IO_TLB_SHIFT)) 177 #define IO_TLB_MIN_SLABS ((1<<20) >> IO_TLB_SHIFT) 178 while ((SLABS_PER_PAGE << order) > IO_TLB_MIN_SLABS) { 179 start = (void *)xen_get_swiotlb_free_pages(order); 180 if (start) 181 break; 182 order--; 183 } 184 if (!start) 185 goto exit; 186 if (order != get_order(bytes)) { 187 pr_warn("Warning: only able to allocate %ld MB for software IO TLB\n", 188 (PAGE_SIZE << order) >> 20); 189 nslabs = SLABS_PER_PAGE << order; 190 bytes = nslabs << IO_TLB_SHIFT; 191 } 192 193 /* 194 * And replace that memory with pages under 4GB. 195 */ 196 rc = xen_swiotlb_fixup(start, nslabs); 197 if (rc) { 198 free_pages((unsigned long)start, order); 199 m_ret = XEN_SWIOTLB_EFIXUP; 200 goto error; 201 } 202 rc = swiotlb_late_init_with_tbl(start, nslabs); 203 if (rc) 204 return rc; 205 swiotlb_set_max_segment(PAGE_SIZE); 206 return 0; 207 error: 208 if (nslabs > 1024 && repeat--) { 209 /* Min is 2MB */ 210 nslabs = max(1024UL, ALIGN(nslabs >> 1, IO_TLB_SEGSIZE)); 211 bytes = nslabs << IO_TLB_SHIFT; 212 pr_info("Lowering to %luMB\n", bytes >> 20); 213 goto retry; 214 } 215 exit: 216 pr_err("%s (rc:%d)\n", xen_swiotlb_error(m_ret), rc); 217 return rc; 218 } 219 220 #ifdef CONFIG_X86 221 void __init xen_swiotlb_init_early(void) 222 { 223 unsigned long bytes = swiotlb_size_or_default(); 224 unsigned long nslabs = bytes >> IO_TLB_SHIFT; 225 unsigned int repeat = 3; 226 char *start; 227 int rc; 228 229 retry: 230 /* 231 * Get IO TLB memory from any location. 232 */ 233 start = memblock_alloc(PAGE_ALIGN(bytes), 234 IO_TLB_SEGSIZE << IO_TLB_SHIFT); 235 if (!start) 236 panic("%s: Failed to allocate %lu bytes\n", 237 __func__, PAGE_ALIGN(bytes)); 238 239 /* 240 * And replace that memory with pages under 4GB. 241 */ 242 rc = xen_swiotlb_fixup(start, nslabs); 243 if (rc) { 244 memblock_free(__pa(start), PAGE_ALIGN(bytes)); 245 if (nslabs > 1024 && repeat--) { 246 /* Min is 2MB */ 247 nslabs = max(1024UL, ALIGN(nslabs >> 1, IO_TLB_SEGSIZE)); 248 bytes = nslabs << IO_TLB_SHIFT; 249 pr_info("Lowering to %luMB\n", bytes >> 20); 250 goto retry; 251 } 252 panic("%s (rc:%d)", xen_swiotlb_error(XEN_SWIOTLB_EFIXUP), rc); 253 } 254 255 if (swiotlb_init_with_tbl(start, nslabs, true)) 256 panic("Cannot allocate SWIOTLB buffer"); 257 swiotlb_set_max_segment(PAGE_SIZE); 258 } 259 #endif /* CONFIG_X86 */ 260 261 static void * 262 xen_swiotlb_alloc_coherent(struct device *hwdev, size_t size, 263 dma_addr_t *dma_handle, gfp_t flags, 264 unsigned long attrs) 265 { 266 void *ret; 267 int order = get_order(size); 268 u64 dma_mask = DMA_BIT_MASK(32); 269 phys_addr_t phys; 270 dma_addr_t dev_addr; 271 272 /* 273 * Ignore region specifiers - the kernel's ideas of 274 * pseudo-phys memory layout has nothing to do with the 275 * machine physical layout. We can't allocate highmem 276 * because we can't return a pointer to it. 277 */ 278 flags &= ~(__GFP_DMA | __GFP_HIGHMEM); 279 280 /* Convert the size to actually allocated. */ 281 size = 1UL << (order + XEN_PAGE_SHIFT); 282 283 /* On ARM this function returns an ioremap'ped virtual address for 284 * which virt_to_phys doesn't return the corresponding physical 285 * address. In fact on ARM virt_to_phys only works for kernel direct 286 * mapped RAM memory. Also see comment below. 287 */ 288 ret = xen_alloc_coherent_pages(hwdev, size, dma_handle, flags, attrs); 289 290 if (!ret) 291 return ret; 292 293 if (hwdev && hwdev->coherent_dma_mask) 294 dma_mask = hwdev->coherent_dma_mask; 295 296 /* At this point dma_handle is the dma address, next we are 297 * going to set it to the machine address. 298 * Do not use virt_to_phys(ret) because on ARM it doesn't correspond 299 * to *dma_handle. */ 300 phys = dma_to_phys(hwdev, *dma_handle); 301 dev_addr = xen_phys_to_dma(hwdev, phys); 302 if (((dev_addr + size - 1 <= dma_mask)) && 303 !range_straddles_page_boundary(phys, size)) 304 *dma_handle = dev_addr; 305 else { 306 if (xen_create_contiguous_region(phys, order, 307 fls64(dma_mask), dma_handle) != 0) { 308 xen_free_coherent_pages(hwdev, size, ret, (dma_addr_t)phys, attrs); 309 return NULL; 310 } 311 *dma_handle = phys_to_dma(hwdev, *dma_handle); 312 SetPageXenRemapped(virt_to_page(ret)); 313 } 314 memset(ret, 0, size); 315 return ret; 316 } 317 318 static void 319 xen_swiotlb_free_coherent(struct device *hwdev, size_t size, void *vaddr, 320 dma_addr_t dev_addr, unsigned long attrs) 321 { 322 int order = get_order(size); 323 phys_addr_t phys; 324 u64 dma_mask = DMA_BIT_MASK(32); 325 struct page *page; 326 327 if (hwdev && hwdev->coherent_dma_mask) 328 dma_mask = hwdev->coherent_dma_mask; 329 330 /* do not use virt_to_phys because on ARM it doesn't return you the 331 * physical address */ 332 phys = xen_dma_to_phys(hwdev, dev_addr); 333 334 /* Convert the size to actually allocated. */ 335 size = 1UL << (order + XEN_PAGE_SHIFT); 336 337 if (is_vmalloc_addr(vaddr)) 338 page = vmalloc_to_page(vaddr); 339 else 340 page = virt_to_page(vaddr); 341 342 if (!WARN_ON((dev_addr + size - 1 > dma_mask) || 343 range_straddles_page_boundary(phys, size)) && 344 TestClearPageXenRemapped(page)) 345 xen_destroy_contiguous_region(phys, order); 346 347 xen_free_coherent_pages(hwdev, size, vaddr, phys_to_dma(hwdev, phys), 348 attrs); 349 } 350 351 /* 352 * Map a single buffer of the indicated size for DMA in streaming mode. The 353 * physical address to use is returned. 354 * 355 * Once the device is given the dma address, the device owns this memory until 356 * either xen_swiotlb_unmap_page or xen_swiotlb_dma_sync_single is performed. 357 */ 358 static dma_addr_t xen_swiotlb_map_page(struct device *dev, struct page *page, 359 unsigned long offset, size_t size, 360 enum dma_data_direction dir, 361 unsigned long attrs) 362 { 363 phys_addr_t map, phys = page_to_phys(page) + offset; 364 dma_addr_t dev_addr = xen_phys_to_dma(dev, phys); 365 366 BUG_ON(dir == DMA_NONE); 367 /* 368 * If the address happens to be in the device's DMA window, 369 * we can safely return the device addr and not worry about bounce 370 * buffering it. 371 */ 372 if (dma_capable(dev, dev_addr, size, true) && 373 !range_straddles_page_boundary(phys, size) && 374 !xen_arch_need_swiotlb(dev, phys, dev_addr) && 375 !is_swiotlb_force_bounce(dev)) 376 goto done; 377 378 /* 379 * Oh well, have to allocate and map a bounce buffer. 380 */ 381 trace_swiotlb_bounced(dev, dev_addr, size, swiotlb_force); 382 383 map = swiotlb_tbl_map_single(dev, phys, size, size, dir, attrs); 384 if (map == (phys_addr_t)DMA_MAPPING_ERROR) 385 return DMA_MAPPING_ERROR; 386 387 phys = map; 388 dev_addr = xen_phys_to_dma(dev, map); 389 390 /* 391 * Ensure that the address returned is DMA'ble 392 */ 393 if (unlikely(!dma_capable(dev, dev_addr, size, true))) { 394 swiotlb_tbl_unmap_single(dev, map, size, dir, 395 attrs | DMA_ATTR_SKIP_CPU_SYNC); 396 return DMA_MAPPING_ERROR; 397 } 398 399 done: 400 if (!dev_is_dma_coherent(dev) && !(attrs & DMA_ATTR_SKIP_CPU_SYNC)) { 401 if (pfn_valid(PFN_DOWN(dma_to_phys(dev, dev_addr)))) 402 arch_sync_dma_for_device(phys, size, dir); 403 else 404 xen_dma_sync_for_device(dev, dev_addr, size, dir); 405 } 406 return dev_addr; 407 } 408 409 /* 410 * Unmap a single streaming mode DMA translation. The dma_addr and size must 411 * match what was provided for in a previous xen_swiotlb_map_page call. All 412 * other usages are undefined. 413 * 414 * After this call, reads by the cpu to the buffer are guaranteed to see 415 * whatever the device wrote there. 416 */ 417 static void xen_swiotlb_unmap_page(struct device *hwdev, dma_addr_t dev_addr, 418 size_t size, enum dma_data_direction dir, unsigned long attrs) 419 { 420 phys_addr_t paddr = xen_dma_to_phys(hwdev, dev_addr); 421 422 BUG_ON(dir == DMA_NONE); 423 424 if (!dev_is_dma_coherent(hwdev) && !(attrs & DMA_ATTR_SKIP_CPU_SYNC)) { 425 if (pfn_valid(PFN_DOWN(dma_to_phys(hwdev, dev_addr)))) 426 arch_sync_dma_for_cpu(paddr, size, dir); 427 else 428 xen_dma_sync_for_cpu(hwdev, dev_addr, size, dir); 429 } 430 431 /* NOTE: We use dev_addr here, not paddr! */ 432 if (is_xen_swiotlb_buffer(hwdev, dev_addr)) 433 swiotlb_tbl_unmap_single(hwdev, paddr, size, dir, attrs); 434 } 435 436 static void 437 xen_swiotlb_sync_single_for_cpu(struct device *dev, dma_addr_t dma_addr, 438 size_t size, enum dma_data_direction dir) 439 { 440 phys_addr_t paddr = xen_dma_to_phys(dev, dma_addr); 441 442 if (!dev_is_dma_coherent(dev)) { 443 if (pfn_valid(PFN_DOWN(dma_to_phys(dev, dma_addr)))) 444 arch_sync_dma_for_cpu(paddr, size, dir); 445 else 446 xen_dma_sync_for_cpu(dev, dma_addr, size, dir); 447 } 448 449 if (is_xen_swiotlb_buffer(dev, dma_addr)) 450 swiotlb_sync_single_for_cpu(dev, paddr, size, dir); 451 } 452 453 static void 454 xen_swiotlb_sync_single_for_device(struct device *dev, dma_addr_t dma_addr, 455 size_t size, enum dma_data_direction dir) 456 { 457 phys_addr_t paddr = xen_dma_to_phys(dev, dma_addr); 458 459 if (is_xen_swiotlb_buffer(dev, dma_addr)) 460 swiotlb_sync_single_for_device(dev, paddr, size, dir); 461 462 if (!dev_is_dma_coherent(dev)) { 463 if (pfn_valid(PFN_DOWN(dma_to_phys(dev, dma_addr)))) 464 arch_sync_dma_for_device(paddr, size, dir); 465 else 466 xen_dma_sync_for_device(dev, dma_addr, size, dir); 467 } 468 } 469 470 /* 471 * Unmap a set of streaming mode DMA translations. Again, cpu read rules 472 * concerning calls here are the same as for swiotlb_unmap_page() above. 473 */ 474 static void 475 xen_swiotlb_unmap_sg(struct device *hwdev, struct scatterlist *sgl, int nelems, 476 enum dma_data_direction dir, unsigned long attrs) 477 { 478 struct scatterlist *sg; 479 int i; 480 481 BUG_ON(dir == DMA_NONE); 482 483 for_each_sg(sgl, sg, nelems, i) 484 xen_swiotlb_unmap_page(hwdev, sg->dma_address, sg_dma_len(sg), 485 dir, attrs); 486 487 } 488 489 static int 490 xen_swiotlb_map_sg(struct device *dev, struct scatterlist *sgl, int nelems, 491 enum dma_data_direction dir, unsigned long attrs) 492 { 493 struct scatterlist *sg; 494 int i; 495 496 BUG_ON(dir == DMA_NONE); 497 498 for_each_sg(sgl, sg, nelems, i) { 499 sg->dma_address = xen_swiotlb_map_page(dev, sg_page(sg), 500 sg->offset, sg->length, dir, attrs); 501 if (sg->dma_address == DMA_MAPPING_ERROR) 502 goto out_unmap; 503 sg_dma_len(sg) = sg->length; 504 } 505 506 return nelems; 507 out_unmap: 508 xen_swiotlb_unmap_sg(dev, sgl, i, dir, attrs | DMA_ATTR_SKIP_CPU_SYNC); 509 sg_dma_len(sgl) = 0; 510 return -EIO; 511 } 512 513 static void 514 xen_swiotlb_sync_sg_for_cpu(struct device *dev, struct scatterlist *sgl, 515 int nelems, enum dma_data_direction dir) 516 { 517 struct scatterlist *sg; 518 int i; 519 520 for_each_sg(sgl, sg, nelems, i) { 521 xen_swiotlb_sync_single_for_cpu(dev, sg->dma_address, 522 sg->length, dir); 523 } 524 } 525 526 static void 527 xen_swiotlb_sync_sg_for_device(struct device *dev, struct scatterlist *sgl, 528 int nelems, enum dma_data_direction dir) 529 { 530 struct scatterlist *sg; 531 int i; 532 533 for_each_sg(sgl, sg, nelems, i) { 534 xen_swiotlb_sync_single_for_device(dev, sg->dma_address, 535 sg->length, dir); 536 } 537 } 538 539 /* 540 * Return whether the given device DMA address mask can be supported 541 * properly. For example, if your device can only drive the low 24-bits 542 * during bus mastering, then you would pass 0x00ffffff as the mask to 543 * this function. 544 */ 545 static int 546 xen_swiotlb_dma_supported(struct device *hwdev, u64 mask) 547 { 548 return xen_phys_to_dma(hwdev, io_tlb_default_mem.end - 1) <= mask; 549 } 550 551 const struct dma_map_ops xen_swiotlb_dma_ops = { 552 .alloc = xen_swiotlb_alloc_coherent, 553 .free = xen_swiotlb_free_coherent, 554 .sync_single_for_cpu = xen_swiotlb_sync_single_for_cpu, 555 .sync_single_for_device = xen_swiotlb_sync_single_for_device, 556 .sync_sg_for_cpu = xen_swiotlb_sync_sg_for_cpu, 557 .sync_sg_for_device = xen_swiotlb_sync_sg_for_device, 558 .map_sg = xen_swiotlb_map_sg, 559 .unmap_sg = xen_swiotlb_unmap_sg, 560 .map_page = xen_swiotlb_map_page, 561 .unmap_page = xen_swiotlb_unmap_page, 562 .dma_supported = xen_swiotlb_dma_supported, 563 .mmap = dma_common_mmap, 564 .get_sgtable = dma_common_get_sgtable, 565 .alloc_pages = dma_common_alloc_pages, 566 .free_pages = dma_common_free_pages, 567 }; 568