xref: /linux/drivers/xen/swiotlb-xen.c (revision 8137a49e1567726eb10fcf55ad141ac19804ca6b)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  Copyright 2010
4  *  by Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
5  *
6  * This code provides a IOMMU for Xen PV guests with PCI passthrough.
7  *
8  * PV guests under Xen are running in an non-contiguous memory architecture.
9  *
10  * When PCI pass-through is utilized, this necessitates an IOMMU for
11  * translating bus (DMA) to virtual and vice-versa and also providing a
12  * mechanism to have contiguous pages for device drivers operations (say DMA
13  * operations).
14  *
15  * Specifically, under Xen the Linux idea of pages is an illusion. It
16  * assumes that pages start at zero and go up to the available memory. To
17  * help with that, the Linux Xen MMU provides a lookup mechanism to
18  * translate the page frame numbers (PFN) to machine frame numbers (MFN)
19  * and vice-versa. The MFN are the "real" frame numbers. Furthermore
20  * memory is not contiguous. Xen hypervisor stitches memory for guests
21  * from different pools, which means there is no guarantee that PFN==MFN
22  * and PFN+1==MFN+1. Lastly with Xen 4.0, pages (in debug mode) are
23  * allocated in descending order (high to low), meaning the guest might
24  * never get any MFN's under the 4GB mark.
25  */
26 
27 #define pr_fmt(fmt) "xen:" KBUILD_MODNAME ": " fmt
28 
29 #include <linux/memblock.h>
30 #include <linux/dma-direct.h>
31 #include <linux/dma-map-ops.h>
32 #include <linux/export.h>
33 #include <xen/swiotlb-xen.h>
34 #include <xen/page.h>
35 #include <xen/xen-ops.h>
36 #include <xen/hvc-console.h>
37 
38 #include <asm/dma-mapping.h>
39 #include <asm/xen/page-coherent.h>
40 
41 #include <trace/events/swiotlb.h>
42 #define MAX_DMA_BITS 32
43 
44 /*
45  * Quick lookup value of the bus address of the IOTLB.
46  */
47 
48 static inline phys_addr_t xen_phys_to_bus(struct device *dev, phys_addr_t paddr)
49 {
50 	unsigned long bfn = pfn_to_bfn(XEN_PFN_DOWN(paddr));
51 	phys_addr_t baddr = (phys_addr_t)bfn << XEN_PAGE_SHIFT;
52 
53 	baddr |= paddr & ~XEN_PAGE_MASK;
54 	return baddr;
55 }
56 
57 static inline dma_addr_t xen_phys_to_dma(struct device *dev, phys_addr_t paddr)
58 {
59 	return phys_to_dma(dev, xen_phys_to_bus(dev, paddr));
60 }
61 
62 static inline phys_addr_t xen_bus_to_phys(struct device *dev,
63 					  phys_addr_t baddr)
64 {
65 	unsigned long xen_pfn = bfn_to_pfn(XEN_PFN_DOWN(baddr));
66 	phys_addr_t paddr = (xen_pfn << XEN_PAGE_SHIFT) |
67 			    (baddr & ~XEN_PAGE_MASK);
68 
69 	return paddr;
70 }
71 
72 static inline phys_addr_t xen_dma_to_phys(struct device *dev,
73 					  dma_addr_t dma_addr)
74 {
75 	return xen_bus_to_phys(dev, dma_to_phys(dev, dma_addr));
76 }
77 
78 static inline int range_straddles_page_boundary(phys_addr_t p, size_t size)
79 {
80 	unsigned long next_bfn, xen_pfn = XEN_PFN_DOWN(p);
81 	unsigned int i, nr_pages = XEN_PFN_UP(xen_offset_in_page(p) + size);
82 
83 	next_bfn = pfn_to_bfn(xen_pfn);
84 
85 	for (i = 1; i < nr_pages; i++)
86 		if (pfn_to_bfn(++xen_pfn) != ++next_bfn)
87 			return 1;
88 
89 	return 0;
90 }
91 
92 static int is_xen_swiotlb_buffer(struct device *dev, dma_addr_t dma_addr)
93 {
94 	unsigned long bfn = XEN_PFN_DOWN(dma_to_phys(dev, dma_addr));
95 	unsigned long xen_pfn = bfn_to_local_pfn(bfn);
96 	phys_addr_t paddr = (phys_addr_t)xen_pfn << XEN_PAGE_SHIFT;
97 
98 	/* If the address is outside our domain, it CAN
99 	 * have the same virtual address as another address
100 	 * in our domain. Therefore _only_ check address within our domain.
101 	 */
102 	if (pfn_valid(PFN_DOWN(paddr)))
103 		return is_swiotlb_buffer(paddr);
104 	return 0;
105 }
106 
107 static int xen_swiotlb_fixup(void *buf, unsigned long nslabs)
108 {
109 	int i, rc;
110 	int dma_bits;
111 	dma_addr_t dma_handle;
112 	phys_addr_t p = virt_to_phys(buf);
113 
114 	dma_bits = get_order(IO_TLB_SEGSIZE << IO_TLB_SHIFT) + PAGE_SHIFT;
115 
116 	i = 0;
117 	do {
118 		int slabs = min(nslabs - i, (unsigned long)IO_TLB_SEGSIZE);
119 
120 		do {
121 			rc = xen_create_contiguous_region(
122 				p + (i << IO_TLB_SHIFT),
123 				get_order(slabs << IO_TLB_SHIFT),
124 				dma_bits, &dma_handle);
125 		} while (rc && dma_bits++ < MAX_DMA_BITS);
126 		if (rc)
127 			return rc;
128 
129 		i += slabs;
130 	} while (i < nslabs);
131 	return 0;
132 }
133 
134 enum xen_swiotlb_err {
135 	XEN_SWIOTLB_UNKNOWN = 0,
136 	XEN_SWIOTLB_ENOMEM,
137 	XEN_SWIOTLB_EFIXUP
138 };
139 
140 static const char *xen_swiotlb_error(enum xen_swiotlb_err err)
141 {
142 	switch (err) {
143 	case XEN_SWIOTLB_ENOMEM:
144 		return "Cannot allocate Xen-SWIOTLB buffer\n";
145 	case XEN_SWIOTLB_EFIXUP:
146 		return "Failed to get contiguous memory for DMA from Xen!\n"\
147 		    "You either: don't have the permissions, do not have"\
148 		    " enough free memory under 4GB, or the hypervisor memory"\
149 		    " is too fragmented!";
150 	default:
151 		break;
152 	}
153 	return "";
154 }
155 
156 #define DEFAULT_NSLABS		ALIGN(SZ_64M >> IO_TLB_SHIFT, IO_TLB_SEGSIZE)
157 
158 int __ref xen_swiotlb_init(void)
159 {
160 	enum xen_swiotlb_err m_ret = XEN_SWIOTLB_UNKNOWN;
161 	unsigned long bytes = swiotlb_size_or_default();
162 	unsigned long nslabs = bytes >> IO_TLB_SHIFT;
163 	unsigned int order, repeat = 3;
164 	int rc = -ENOMEM;
165 	char *start;
166 
167 	if (io_tlb_default_mem != NULL) {
168 		pr_warn("swiotlb buffer already initialized\n");
169 		return -EEXIST;
170 	}
171 
172 retry:
173 	m_ret = XEN_SWIOTLB_ENOMEM;
174 	order = get_order(bytes);
175 
176 	/*
177 	 * Get IO TLB memory from any location.
178 	 */
179 #define SLABS_PER_PAGE (1 << (PAGE_SHIFT - IO_TLB_SHIFT))
180 #define IO_TLB_MIN_SLABS ((1<<20) >> IO_TLB_SHIFT)
181 	while ((SLABS_PER_PAGE << order) > IO_TLB_MIN_SLABS) {
182 		start = (void *)xen_get_swiotlb_free_pages(order);
183 		if (start)
184 			break;
185 		order--;
186 	}
187 	if (!start)
188 		goto error;
189 	if (order != get_order(bytes)) {
190 		pr_warn("Warning: only able to allocate %ld MB for software IO TLB\n",
191 			(PAGE_SIZE << order) >> 20);
192 		nslabs = SLABS_PER_PAGE << order;
193 		bytes = nslabs << IO_TLB_SHIFT;
194 	}
195 
196 	/*
197 	 * And replace that memory with pages under 4GB.
198 	 */
199 	rc = xen_swiotlb_fixup(start, nslabs);
200 	if (rc) {
201 		free_pages((unsigned long)start, order);
202 		m_ret = XEN_SWIOTLB_EFIXUP;
203 		goto error;
204 	}
205 	rc = swiotlb_late_init_with_tbl(start, nslabs);
206 	if (rc)
207 		return rc;
208 	swiotlb_set_max_segment(PAGE_SIZE);
209 	return 0;
210 error:
211 	if (repeat--) {
212 		/* Min is 2MB */
213 		nslabs = max(1024UL, (nslabs >> 1));
214 		pr_info("Lowering to %luMB\n",
215 			(nslabs << IO_TLB_SHIFT) >> 20);
216 		goto retry;
217 	}
218 	pr_err("%s (rc:%d)\n", xen_swiotlb_error(m_ret), rc);
219 	free_pages((unsigned long)start, order);
220 	return rc;
221 }
222 
223 #ifdef CONFIG_X86
224 void __init xen_swiotlb_init_early(void)
225 {
226 	unsigned long bytes = swiotlb_size_or_default();
227 	unsigned long nslabs = bytes >> IO_TLB_SHIFT;
228 	unsigned int repeat = 3;
229 	char *start;
230 	int rc;
231 
232 retry:
233 	/*
234 	 * Get IO TLB memory from any location.
235 	 */
236 	start = memblock_alloc(PAGE_ALIGN(bytes), PAGE_SIZE);
237 	if (!start)
238 		panic("%s: Failed to allocate %lu bytes align=0x%lx\n",
239 		      __func__, PAGE_ALIGN(bytes), PAGE_SIZE);
240 
241 	/*
242 	 * And replace that memory with pages under 4GB.
243 	 */
244 	rc = xen_swiotlb_fixup(start, nslabs);
245 	if (rc) {
246 		memblock_free(__pa(start), PAGE_ALIGN(bytes));
247 		if (repeat--) {
248 			/* Min is 2MB */
249 			nslabs = max(1024UL, (nslabs >> 1));
250 			bytes = nslabs << IO_TLB_SHIFT;
251 			pr_info("Lowering to %luMB\n", bytes >> 20);
252 			goto retry;
253 		}
254 		panic("%s (rc:%d)", xen_swiotlb_error(XEN_SWIOTLB_EFIXUP), rc);
255 	}
256 
257 	if (swiotlb_init_with_tbl(start, nslabs, false))
258 		panic("Cannot allocate SWIOTLB buffer");
259 	swiotlb_set_max_segment(PAGE_SIZE);
260 }
261 #endif /* CONFIG_X86 */
262 
263 static void *
264 xen_swiotlb_alloc_coherent(struct device *hwdev, size_t size,
265 			   dma_addr_t *dma_handle, gfp_t flags,
266 			   unsigned long attrs)
267 {
268 	void *ret;
269 	int order = get_order(size);
270 	u64 dma_mask = DMA_BIT_MASK(32);
271 	phys_addr_t phys;
272 	dma_addr_t dev_addr;
273 
274 	/*
275 	* Ignore region specifiers - the kernel's ideas of
276 	* pseudo-phys memory layout has nothing to do with the
277 	* machine physical layout.  We can't allocate highmem
278 	* because we can't return a pointer to it.
279 	*/
280 	flags &= ~(__GFP_DMA | __GFP_HIGHMEM);
281 
282 	/* Convert the size to actually allocated. */
283 	size = 1UL << (order + XEN_PAGE_SHIFT);
284 
285 	/* On ARM this function returns an ioremap'ped virtual address for
286 	 * which virt_to_phys doesn't return the corresponding physical
287 	 * address. In fact on ARM virt_to_phys only works for kernel direct
288 	 * mapped RAM memory. Also see comment below.
289 	 */
290 	ret = xen_alloc_coherent_pages(hwdev, size, dma_handle, flags, attrs);
291 
292 	if (!ret)
293 		return ret;
294 
295 	if (hwdev && hwdev->coherent_dma_mask)
296 		dma_mask = hwdev->coherent_dma_mask;
297 
298 	/* At this point dma_handle is the dma address, next we are
299 	 * going to set it to the machine address.
300 	 * Do not use virt_to_phys(ret) because on ARM it doesn't correspond
301 	 * to *dma_handle. */
302 	phys = dma_to_phys(hwdev, *dma_handle);
303 	dev_addr = xen_phys_to_dma(hwdev, phys);
304 	if (((dev_addr + size - 1 <= dma_mask)) &&
305 	    !range_straddles_page_boundary(phys, size))
306 		*dma_handle = dev_addr;
307 	else {
308 		if (xen_create_contiguous_region(phys, order,
309 						 fls64(dma_mask), dma_handle) != 0) {
310 			xen_free_coherent_pages(hwdev, size, ret, (dma_addr_t)phys, attrs);
311 			return NULL;
312 		}
313 		*dma_handle = phys_to_dma(hwdev, *dma_handle);
314 		SetPageXenRemapped(virt_to_page(ret));
315 	}
316 	memset(ret, 0, size);
317 	return ret;
318 }
319 
320 static void
321 xen_swiotlb_free_coherent(struct device *hwdev, size_t size, void *vaddr,
322 			  dma_addr_t dev_addr, unsigned long attrs)
323 {
324 	int order = get_order(size);
325 	phys_addr_t phys;
326 	u64 dma_mask = DMA_BIT_MASK(32);
327 	struct page *page;
328 
329 	if (hwdev && hwdev->coherent_dma_mask)
330 		dma_mask = hwdev->coherent_dma_mask;
331 
332 	/* do not use virt_to_phys because on ARM it doesn't return you the
333 	 * physical address */
334 	phys = xen_dma_to_phys(hwdev, dev_addr);
335 
336 	/* Convert the size to actually allocated. */
337 	size = 1UL << (order + XEN_PAGE_SHIFT);
338 
339 	if (is_vmalloc_addr(vaddr))
340 		page = vmalloc_to_page(vaddr);
341 	else
342 		page = virt_to_page(vaddr);
343 
344 	if (!WARN_ON((dev_addr + size - 1 > dma_mask) ||
345 		     range_straddles_page_boundary(phys, size)) &&
346 	    TestClearPageXenRemapped(page))
347 		xen_destroy_contiguous_region(phys, order);
348 
349 	xen_free_coherent_pages(hwdev, size, vaddr, phys_to_dma(hwdev, phys),
350 				attrs);
351 }
352 
353 /*
354  * Map a single buffer of the indicated size for DMA in streaming mode.  The
355  * physical address to use is returned.
356  *
357  * Once the device is given the dma address, the device owns this memory until
358  * either xen_swiotlb_unmap_page or xen_swiotlb_dma_sync_single is performed.
359  */
360 static dma_addr_t xen_swiotlb_map_page(struct device *dev, struct page *page,
361 				unsigned long offset, size_t size,
362 				enum dma_data_direction dir,
363 				unsigned long attrs)
364 {
365 	phys_addr_t map, phys = page_to_phys(page) + offset;
366 	dma_addr_t dev_addr = xen_phys_to_dma(dev, phys);
367 
368 	BUG_ON(dir == DMA_NONE);
369 	/*
370 	 * If the address happens to be in the device's DMA window,
371 	 * we can safely return the device addr and not worry about bounce
372 	 * buffering it.
373 	 */
374 	if (dma_capable(dev, dev_addr, size, true) &&
375 	    !range_straddles_page_boundary(phys, size) &&
376 		!xen_arch_need_swiotlb(dev, phys, dev_addr) &&
377 		swiotlb_force != SWIOTLB_FORCE)
378 		goto done;
379 
380 	/*
381 	 * Oh well, have to allocate and map a bounce buffer.
382 	 */
383 	trace_swiotlb_bounced(dev, dev_addr, size, swiotlb_force);
384 
385 	map = swiotlb_tbl_map_single(dev, phys, size, size, dir, attrs);
386 	if (map == (phys_addr_t)DMA_MAPPING_ERROR)
387 		return DMA_MAPPING_ERROR;
388 
389 	phys = map;
390 	dev_addr = xen_phys_to_dma(dev, map);
391 
392 	/*
393 	 * Ensure that the address returned is DMA'ble
394 	 */
395 	if (unlikely(!dma_capable(dev, dev_addr, size, true))) {
396 		swiotlb_tbl_unmap_single(dev, map, size, dir,
397 				attrs | DMA_ATTR_SKIP_CPU_SYNC);
398 		return DMA_MAPPING_ERROR;
399 	}
400 
401 done:
402 	if (!dev_is_dma_coherent(dev) && !(attrs & DMA_ATTR_SKIP_CPU_SYNC)) {
403 		if (pfn_valid(PFN_DOWN(dma_to_phys(dev, dev_addr))))
404 			arch_sync_dma_for_device(phys, size, dir);
405 		else
406 			xen_dma_sync_for_device(dev, dev_addr, size, dir);
407 	}
408 	return dev_addr;
409 }
410 
411 /*
412  * Unmap a single streaming mode DMA translation.  The dma_addr and size must
413  * match what was provided for in a previous xen_swiotlb_map_page call.  All
414  * other usages are undefined.
415  *
416  * After this call, reads by the cpu to the buffer are guaranteed to see
417  * whatever the device wrote there.
418  */
419 static void xen_swiotlb_unmap_page(struct device *hwdev, dma_addr_t dev_addr,
420 		size_t size, enum dma_data_direction dir, unsigned long attrs)
421 {
422 	phys_addr_t paddr = xen_dma_to_phys(hwdev, dev_addr);
423 
424 	BUG_ON(dir == DMA_NONE);
425 
426 	if (!dev_is_dma_coherent(hwdev) && !(attrs & DMA_ATTR_SKIP_CPU_SYNC)) {
427 		if (pfn_valid(PFN_DOWN(dma_to_phys(hwdev, dev_addr))))
428 			arch_sync_dma_for_cpu(paddr, size, dir);
429 		else
430 			xen_dma_sync_for_cpu(hwdev, dev_addr, size, dir);
431 	}
432 
433 	/* NOTE: We use dev_addr here, not paddr! */
434 	if (is_xen_swiotlb_buffer(hwdev, dev_addr))
435 		swiotlb_tbl_unmap_single(hwdev, paddr, size, dir, attrs);
436 }
437 
438 static void
439 xen_swiotlb_sync_single_for_cpu(struct device *dev, dma_addr_t dma_addr,
440 		size_t size, enum dma_data_direction dir)
441 {
442 	phys_addr_t paddr = xen_dma_to_phys(dev, dma_addr);
443 
444 	if (!dev_is_dma_coherent(dev)) {
445 		if (pfn_valid(PFN_DOWN(dma_to_phys(dev, dma_addr))))
446 			arch_sync_dma_for_cpu(paddr, size, dir);
447 		else
448 			xen_dma_sync_for_cpu(dev, dma_addr, size, dir);
449 	}
450 
451 	if (is_xen_swiotlb_buffer(dev, dma_addr))
452 		swiotlb_sync_single_for_cpu(dev, paddr, size, dir);
453 }
454 
455 static void
456 xen_swiotlb_sync_single_for_device(struct device *dev, dma_addr_t dma_addr,
457 		size_t size, enum dma_data_direction dir)
458 {
459 	phys_addr_t paddr = xen_dma_to_phys(dev, dma_addr);
460 
461 	if (is_xen_swiotlb_buffer(dev, dma_addr))
462 		swiotlb_sync_single_for_device(dev, paddr, size, dir);
463 
464 	if (!dev_is_dma_coherent(dev)) {
465 		if (pfn_valid(PFN_DOWN(dma_to_phys(dev, dma_addr))))
466 			arch_sync_dma_for_device(paddr, size, dir);
467 		else
468 			xen_dma_sync_for_device(dev, dma_addr, size, dir);
469 	}
470 }
471 
472 /*
473  * Unmap a set of streaming mode DMA translations.  Again, cpu read rules
474  * concerning calls here are the same as for swiotlb_unmap_page() above.
475  */
476 static void
477 xen_swiotlb_unmap_sg(struct device *hwdev, struct scatterlist *sgl, int nelems,
478 		enum dma_data_direction dir, unsigned long attrs)
479 {
480 	struct scatterlist *sg;
481 	int i;
482 
483 	BUG_ON(dir == DMA_NONE);
484 
485 	for_each_sg(sgl, sg, nelems, i)
486 		xen_swiotlb_unmap_page(hwdev, sg->dma_address, sg_dma_len(sg),
487 				dir, attrs);
488 
489 }
490 
491 static int
492 xen_swiotlb_map_sg(struct device *dev, struct scatterlist *sgl, int nelems,
493 		enum dma_data_direction dir, unsigned long attrs)
494 {
495 	struct scatterlist *sg;
496 	int i;
497 
498 	BUG_ON(dir == DMA_NONE);
499 
500 	for_each_sg(sgl, sg, nelems, i) {
501 		sg->dma_address = xen_swiotlb_map_page(dev, sg_page(sg),
502 				sg->offset, sg->length, dir, attrs);
503 		if (sg->dma_address == DMA_MAPPING_ERROR)
504 			goto out_unmap;
505 		sg_dma_len(sg) = sg->length;
506 	}
507 
508 	return nelems;
509 out_unmap:
510 	xen_swiotlb_unmap_sg(dev, sgl, i, dir, attrs | DMA_ATTR_SKIP_CPU_SYNC);
511 	sg_dma_len(sgl) = 0;
512 	return 0;
513 }
514 
515 static void
516 xen_swiotlb_sync_sg_for_cpu(struct device *dev, struct scatterlist *sgl,
517 			    int nelems, enum dma_data_direction dir)
518 {
519 	struct scatterlist *sg;
520 	int i;
521 
522 	for_each_sg(sgl, sg, nelems, i) {
523 		xen_swiotlb_sync_single_for_cpu(dev, sg->dma_address,
524 				sg->length, dir);
525 	}
526 }
527 
528 static void
529 xen_swiotlb_sync_sg_for_device(struct device *dev, struct scatterlist *sgl,
530 			       int nelems, enum dma_data_direction dir)
531 {
532 	struct scatterlist *sg;
533 	int i;
534 
535 	for_each_sg(sgl, sg, nelems, i) {
536 		xen_swiotlb_sync_single_for_device(dev, sg->dma_address,
537 				sg->length, dir);
538 	}
539 }
540 
541 /*
542  * Return whether the given device DMA address mask can be supported
543  * properly.  For example, if your device can only drive the low 24-bits
544  * during bus mastering, then you would pass 0x00ffffff as the mask to
545  * this function.
546  */
547 static int
548 xen_swiotlb_dma_supported(struct device *hwdev, u64 mask)
549 {
550 	return xen_phys_to_dma(hwdev, io_tlb_default_mem->end - 1) <= mask;
551 }
552 
553 const struct dma_map_ops xen_swiotlb_dma_ops = {
554 	.alloc = xen_swiotlb_alloc_coherent,
555 	.free = xen_swiotlb_free_coherent,
556 	.sync_single_for_cpu = xen_swiotlb_sync_single_for_cpu,
557 	.sync_single_for_device = xen_swiotlb_sync_single_for_device,
558 	.sync_sg_for_cpu = xen_swiotlb_sync_sg_for_cpu,
559 	.sync_sg_for_device = xen_swiotlb_sync_sg_for_device,
560 	.map_sg = xen_swiotlb_map_sg,
561 	.unmap_sg = xen_swiotlb_unmap_sg,
562 	.map_page = xen_swiotlb_map_page,
563 	.unmap_page = xen_swiotlb_unmap_page,
564 	.dma_supported = xen_swiotlb_dma_supported,
565 	.mmap = dma_common_mmap,
566 	.get_sgtable = dma_common_get_sgtable,
567 	.alloc_pages = dma_common_alloc_pages,
568 	.free_pages = dma_common_free_pages,
569 };
570