1 /* 2 * Copyright 2010 3 * by Konrad Rzeszutek Wilk <konrad.wilk@oracle.com> 4 * 5 * This code provides a IOMMU for Xen PV guests with PCI passthrough. 6 * 7 * This program is free software; you can redistribute it and/or modify 8 * it under the terms of the GNU General Public License v2.0 as published by 9 * the Free Software Foundation 10 * 11 * This program is distributed in the hope that it will be useful, 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 14 * GNU General Public License for more details. 15 * 16 * PV guests under Xen are running in an non-contiguous memory architecture. 17 * 18 * When PCI pass-through is utilized, this necessitates an IOMMU for 19 * translating bus (DMA) to virtual and vice-versa and also providing a 20 * mechanism to have contiguous pages for device drivers operations (say DMA 21 * operations). 22 * 23 * Specifically, under Xen the Linux idea of pages is an illusion. It 24 * assumes that pages start at zero and go up to the available memory. To 25 * help with that, the Linux Xen MMU provides a lookup mechanism to 26 * translate the page frame numbers (PFN) to machine frame numbers (MFN) 27 * and vice-versa. The MFN are the "real" frame numbers. Furthermore 28 * memory is not contiguous. Xen hypervisor stitches memory for guests 29 * from different pools, which means there is no guarantee that PFN==MFN 30 * and PFN+1==MFN+1. Lastly with Xen 4.0, pages (in debug mode) are 31 * allocated in descending order (high to low), meaning the guest might 32 * never get any MFN's under the 4GB mark. 33 * 34 */ 35 36 #include <linux/bootmem.h> 37 #include <linux/dma-mapping.h> 38 #include <xen/swiotlb-xen.h> 39 #include <xen/page.h> 40 #include <xen/xen-ops.h> 41 /* 42 * Used to do a quick range check in swiotlb_tbl_unmap_single and 43 * swiotlb_tbl_sync_single_*, to see if the memory was in fact allocated by this 44 * API. 45 */ 46 47 static char *xen_io_tlb_start, *xen_io_tlb_end; 48 static unsigned long xen_io_tlb_nslabs; 49 /* 50 * Quick lookup value of the bus address of the IOTLB. 51 */ 52 53 u64 start_dma_addr; 54 55 static dma_addr_t xen_phys_to_bus(phys_addr_t paddr) 56 { 57 return phys_to_machine(XPADDR(paddr)).maddr;; 58 } 59 60 static phys_addr_t xen_bus_to_phys(dma_addr_t baddr) 61 { 62 return machine_to_phys(XMADDR(baddr)).paddr; 63 } 64 65 static dma_addr_t xen_virt_to_bus(void *address) 66 { 67 return xen_phys_to_bus(virt_to_phys(address)); 68 } 69 70 static int check_pages_physically_contiguous(unsigned long pfn, 71 unsigned int offset, 72 size_t length) 73 { 74 unsigned long next_mfn; 75 int i; 76 int nr_pages; 77 78 next_mfn = pfn_to_mfn(pfn); 79 nr_pages = (offset + length + PAGE_SIZE-1) >> PAGE_SHIFT; 80 81 for (i = 1; i < nr_pages; i++) { 82 if (pfn_to_mfn(++pfn) != ++next_mfn) 83 return 0; 84 } 85 return 1; 86 } 87 88 static int range_straddles_page_boundary(phys_addr_t p, size_t size) 89 { 90 unsigned long pfn = PFN_DOWN(p); 91 unsigned int offset = p & ~PAGE_MASK; 92 93 if (offset + size <= PAGE_SIZE) 94 return 0; 95 if (check_pages_physically_contiguous(pfn, offset, size)) 96 return 0; 97 return 1; 98 } 99 100 static int is_xen_swiotlb_buffer(dma_addr_t dma_addr) 101 { 102 unsigned long mfn = PFN_DOWN(dma_addr); 103 unsigned long pfn = mfn_to_local_pfn(mfn); 104 phys_addr_t paddr; 105 106 /* If the address is outside our domain, it CAN 107 * have the same virtual address as another address 108 * in our domain. Therefore _only_ check address within our domain. 109 */ 110 if (pfn_valid(pfn)) { 111 paddr = PFN_PHYS(pfn); 112 return paddr >= virt_to_phys(xen_io_tlb_start) && 113 paddr < virt_to_phys(xen_io_tlb_end); 114 } 115 return 0; 116 } 117 118 static int max_dma_bits = 32; 119 120 static int 121 xen_swiotlb_fixup(void *buf, size_t size, unsigned long nslabs) 122 { 123 int i, rc; 124 int dma_bits; 125 126 dma_bits = get_order(IO_TLB_SEGSIZE << IO_TLB_SHIFT) + PAGE_SHIFT; 127 128 i = 0; 129 do { 130 int slabs = min(nslabs - i, (unsigned long)IO_TLB_SEGSIZE); 131 132 do { 133 rc = xen_create_contiguous_region( 134 (unsigned long)buf + (i << IO_TLB_SHIFT), 135 get_order(slabs << IO_TLB_SHIFT), 136 dma_bits); 137 } while (rc && dma_bits++ < max_dma_bits); 138 if (rc) 139 return rc; 140 141 i += slabs; 142 } while (i < nslabs); 143 return 0; 144 } 145 146 void __init xen_swiotlb_init(int verbose) 147 { 148 unsigned long bytes; 149 int rc; 150 151 xen_io_tlb_nslabs = (64 * 1024 * 1024 >> IO_TLB_SHIFT); 152 xen_io_tlb_nslabs = ALIGN(xen_io_tlb_nslabs, IO_TLB_SEGSIZE); 153 154 bytes = xen_io_tlb_nslabs << IO_TLB_SHIFT; 155 156 /* 157 * Get IO TLB memory from any location. 158 */ 159 xen_io_tlb_start = alloc_bootmem(bytes); 160 if (!xen_io_tlb_start) 161 panic("Cannot allocate SWIOTLB buffer"); 162 163 xen_io_tlb_end = xen_io_tlb_start + bytes; 164 /* 165 * And replace that memory with pages under 4GB. 166 */ 167 rc = xen_swiotlb_fixup(xen_io_tlb_start, 168 bytes, 169 xen_io_tlb_nslabs); 170 if (rc) 171 goto error; 172 173 start_dma_addr = xen_virt_to_bus(xen_io_tlb_start); 174 swiotlb_init_with_tbl(xen_io_tlb_start, xen_io_tlb_nslabs, verbose); 175 176 return; 177 error: 178 panic("DMA(%d): Failed to exchange pages allocated for DMA with Xen! "\ 179 "We either don't have the permission or you do not have enough"\ 180 "free memory under 4GB!\n", rc); 181 } 182 183 void * 184 xen_swiotlb_alloc_coherent(struct device *hwdev, size_t size, 185 dma_addr_t *dma_handle, gfp_t flags) 186 { 187 void *ret; 188 int order = get_order(size); 189 u64 dma_mask = DMA_BIT_MASK(32); 190 unsigned long vstart; 191 192 /* 193 * Ignore region specifiers - the kernel's ideas of 194 * pseudo-phys memory layout has nothing to do with the 195 * machine physical layout. We can't allocate highmem 196 * because we can't return a pointer to it. 197 */ 198 flags &= ~(__GFP_DMA | __GFP_HIGHMEM); 199 200 if (dma_alloc_from_coherent(hwdev, size, dma_handle, &ret)) 201 return ret; 202 203 vstart = __get_free_pages(flags, order); 204 ret = (void *)vstart; 205 206 if (hwdev && hwdev->coherent_dma_mask) 207 dma_mask = dma_alloc_coherent_mask(hwdev, flags); 208 209 if (ret) { 210 if (xen_create_contiguous_region(vstart, order, 211 fls64(dma_mask)) != 0) { 212 free_pages(vstart, order); 213 return NULL; 214 } 215 memset(ret, 0, size); 216 *dma_handle = virt_to_machine(ret).maddr; 217 } 218 return ret; 219 } 220 EXPORT_SYMBOL_GPL(xen_swiotlb_alloc_coherent); 221 222 void 223 xen_swiotlb_free_coherent(struct device *hwdev, size_t size, void *vaddr, 224 dma_addr_t dev_addr) 225 { 226 int order = get_order(size); 227 228 if (dma_release_from_coherent(hwdev, order, vaddr)) 229 return; 230 231 xen_destroy_contiguous_region((unsigned long)vaddr, order); 232 free_pages((unsigned long)vaddr, order); 233 } 234 EXPORT_SYMBOL_GPL(xen_swiotlb_free_coherent); 235 236 237 /* 238 * Map a single buffer of the indicated size for DMA in streaming mode. The 239 * physical address to use is returned. 240 * 241 * Once the device is given the dma address, the device owns this memory until 242 * either xen_swiotlb_unmap_page or xen_swiotlb_dma_sync_single is performed. 243 */ 244 dma_addr_t xen_swiotlb_map_page(struct device *dev, struct page *page, 245 unsigned long offset, size_t size, 246 enum dma_data_direction dir, 247 struct dma_attrs *attrs) 248 { 249 phys_addr_t phys = page_to_phys(page) + offset; 250 dma_addr_t dev_addr = xen_phys_to_bus(phys); 251 void *map; 252 253 BUG_ON(dir == DMA_NONE); 254 /* 255 * If the address happens to be in the device's DMA window, 256 * we can safely return the device addr and not worry about bounce 257 * buffering it. 258 */ 259 if (dma_capable(dev, dev_addr, size) && 260 !range_straddles_page_boundary(phys, size) && !swiotlb_force) 261 return dev_addr; 262 263 /* 264 * Oh well, have to allocate and map a bounce buffer. 265 */ 266 map = swiotlb_tbl_map_single(dev, start_dma_addr, phys, size, dir); 267 if (!map) 268 return DMA_ERROR_CODE; 269 270 dev_addr = xen_virt_to_bus(map); 271 272 /* 273 * Ensure that the address returned is DMA'ble 274 */ 275 if (!dma_capable(dev, dev_addr, size)) 276 panic("map_single: bounce buffer is not DMA'ble"); 277 278 return dev_addr; 279 } 280 EXPORT_SYMBOL_GPL(xen_swiotlb_map_page); 281 282 /* 283 * Unmap a single streaming mode DMA translation. The dma_addr and size must 284 * match what was provided for in a previous xen_swiotlb_map_page call. All 285 * other usages are undefined. 286 * 287 * After this call, reads by the cpu to the buffer are guaranteed to see 288 * whatever the device wrote there. 289 */ 290 static void xen_unmap_single(struct device *hwdev, dma_addr_t dev_addr, 291 size_t size, enum dma_data_direction dir) 292 { 293 phys_addr_t paddr = xen_bus_to_phys(dev_addr); 294 295 BUG_ON(dir == DMA_NONE); 296 297 /* NOTE: We use dev_addr here, not paddr! */ 298 if (is_xen_swiotlb_buffer(dev_addr)) { 299 swiotlb_tbl_unmap_single(hwdev, phys_to_virt(paddr), size, dir); 300 return; 301 } 302 303 if (dir != DMA_FROM_DEVICE) 304 return; 305 306 /* 307 * phys_to_virt doesn't work with hihgmem page but we could 308 * call dma_mark_clean() with hihgmem page here. However, we 309 * are fine since dma_mark_clean() is null on POWERPC. We can 310 * make dma_mark_clean() take a physical address if necessary. 311 */ 312 dma_mark_clean(phys_to_virt(paddr), size); 313 } 314 315 void xen_swiotlb_unmap_page(struct device *hwdev, dma_addr_t dev_addr, 316 size_t size, enum dma_data_direction dir, 317 struct dma_attrs *attrs) 318 { 319 xen_unmap_single(hwdev, dev_addr, size, dir); 320 } 321 EXPORT_SYMBOL_GPL(xen_swiotlb_unmap_page); 322 323 /* 324 * Make physical memory consistent for a single streaming mode DMA translation 325 * after a transfer. 326 * 327 * If you perform a xen_swiotlb_map_page() but wish to interrogate the buffer 328 * using the cpu, yet do not wish to teardown the dma mapping, you must 329 * call this function before doing so. At the next point you give the dma 330 * address back to the card, you must first perform a 331 * xen_swiotlb_dma_sync_for_device, and then the device again owns the buffer 332 */ 333 static void 334 xen_swiotlb_sync_single(struct device *hwdev, dma_addr_t dev_addr, 335 size_t size, enum dma_data_direction dir, 336 enum dma_sync_target target) 337 { 338 phys_addr_t paddr = xen_bus_to_phys(dev_addr); 339 340 BUG_ON(dir == DMA_NONE); 341 342 /* NOTE: We use dev_addr here, not paddr! */ 343 if (is_xen_swiotlb_buffer(dev_addr)) { 344 swiotlb_tbl_sync_single(hwdev, phys_to_virt(paddr), size, dir, 345 target); 346 return; 347 } 348 349 if (dir != DMA_FROM_DEVICE) 350 return; 351 352 dma_mark_clean(phys_to_virt(paddr), size); 353 } 354 355 void 356 xen_swiotlb_sync_single_for_cpu(struct device *hwdev, dma_addr_t dev_addr, 357 size_t size, enum dma_data_direction dir) 358 { 359 xen_swiotlb_sync_single(hwdev, dev_addr, size, dir, SYNC_FOR_CPU); 360 } 361 EXPORT_SYMBOL_GPL(xen_swiotlb_sync_single_for_cpu); 362 363 void 364 xen_swiotlb_sync_single_for_device(struct device *hwdev, dma_addr_t dev_addr, 365 size_t size, enum dma_data_direction dir) 366 { 367 xen_swiotlb_sync_single(hwdev, dev_addr, size, dir, SYNC_FOR_DEVICE); 368 } 369 EXPORT_SYMBOL_GPL(xen_swiotlb_sync_single_for_device); 370 371 /* 372 * Map a set of buffers described by scatterlist in streaming mode for DMA. 373 * This is the scatter-gather version of the above xen_swiotlb_map_page 374 * interface. Here the scatter gather list elements are each tagged with the 375 * appropriate dma address and length. They are obtained via 376 * sg_dma_{address,length}(SG). 377 * 378 * NOTE: An implementation may be able to use a smaller number of 379 * DMA address/length pairs than there are SG table elements. 380 * (for example via virtual mapping capabilities) 381 * The routine returns the number of addr/length pairs actually 382 * used, at most nents. 383 * 384 * Device ownership issues as mentioned above for xen_swiotlb_map_page are the 385 * same here. 386 */ 387 int 388 xen_swiotlb_map_sg_attrs(struct device *hwdev, struct scatterlist *sgl, 389 int nelems, enum dma_data_direction dir, 390 struct dma_attrs *attrs) 391 { 392 struct scatterlist *sg; 393 int i; 394 395 BUG_ON(dir == DMA_NONE); 396 397 for_each_sg(sgl, sg, nelems, i) { 398 phys_addr_t paddr = sg_phys(sg); 399 dma_addr_t dev_addr = xen_phys_to_bus(paddr); 400 401 if (swiotlb_force || 402 !dma_capable(hwdev, dev_addr, sg->length) || 403 range_straddles_page_boundary(paddr, sg->length)) { 404 void *map = swiotlb_tbl_map_single(hwdev, 405 start_dma_addr, 406 sg_phys(sg), 407 sg->length, dir); 408 if (!map) { 409 /* Don't panic here, we expect map_sg users 410 to do proper error handling. */ 411 xen_swiotlb_unmap_sg_attrs(hwdev, sgl, i, dir, 412 attrs); 413 sgl[0].dma_length = 0; 414 return DMA_ERROR_CODE; 415 } 416 sg->dma_address = xen_virt_to_bus(map); 417 } else 418 sg->dma_address = dev_addr; 419 sg->dma_length = sg->length; 420 } 421 return nelems; 422 } 423 EXPORT_SYMBOL_GPL(xen_swiotlb_map_sg_attrs); 424 425 int 426 xen_swiotlb_map_sg(struct device *hwdev, struct scatterlist *sgl, int nelems, 427 enum dma_data_direction dir) 428 { 429 return xen_swiotlb_map_sg_attrs(hwdev, sgl, nelems, dir, NULL); 430 } 431 EXPORT_SYMBOL_GPL(xen_swiotlb_map_sg); 432 433 /* 434 * Unmap a set of streaming mode DMA translations. Again, cpu read rules 435 * concerning calls here are the same as for swiotlb_unmap_page() above. 436 */ 437 void 438 xen_swiotlb_unmap_sg_attrs(struct device *hwdev, struct scatterlist *sgl, 439 int nelems, enum dma_data_direction dir, 440 struct dma_attrs *attrs) 441 { 442 struct scatterlist *sg; 443 int i; 444 445 BUG_ON(dir == DMA_NONE); 446 447 for_each_sg(sgl, sg, nelems, i) 448 xen_unmap_single(hwdev, sg->dma_address, sg->dma_length, dir); 449 450 } 451 EXPORT_SYMBOL_GPL(xen_swiotlb_unmap_sg_attrs); 452 453 void 454 xen_swiotlb_unmap_sg(struct device *hwdev, struct scatterlist *sgl, int nelems, 455 enum dma_data_direction dir) 456 { 457 return xen_swiotlb_unmap_sg_attrs(hwdev, sgl, nelems, dir, NULL); 458 } 459 EXPORT_SYMBOL_GPL(xen_swiotlb_unmap_sg); 460 461 /* 462 * Make physical memory consistent for a set of streaming mode DMA translations 463 * after a transfer. 464 * 465 * The same as swiotlb_sync_single_* but for a scatter-gather list, same rules 466 * and usage. 467 */ 468 static void 469 xen_swiotlb_sync_sg(struct device *hwdev, struct scatterlist *sgl, 470 int nelems, enum dma_data_direction dir, 471 enum dma_sync_target target) 472 { 473 struct scatterlist *sg; 474 int i; 475 476 for_each_sg(sgl, sg, nelems, i) 477 xen_swiotlb_sync_single(hwdev, sg->dma_address, 478 sg->dma_length, dir, target); 479 } 480 481 void 482 xen_swiotlb_sync_sg_for_cpu(struct device *hwdev, struct scatterlist *sg, 483 int nelems, enum dma_data_direction dir) 484 { 485 xen_swiotlb_sync_sg(hwdev, sg, nelems, dir, SYNC_FOR_CPU); 486 } 487 EXPORT_SYMBOL_GPL(xen_swiotlb_sync_sg_for_cpu); 488 489 void 490 xen_swiotlb_sync_sg_for_device(struct device *hwdev, struct scatterlist *sg, 491 int nelems, enum dma_data_direction dir) 492 { 493 xen_swiotlb_sync_sg(hwdev, sg, nelems, dir, SYNC_FOR_DEVICE); 494 } 495 EXPORT_SYMBOL_GPL(xen_swiotlb_sync_sg_for_device); 496 497 int 498 xen_swiotlb_dma_mapping_error(struct device *hwdev, dma_addr_t dma_addr) 499 { 500 return !dma_addr; 501 } 502 EXPORT_SYMBOL_GPL(xen_swiotlb_dma_mapping_error); 503 504 /* 505 * Return whether the given device DMA address mask can be supported 506 * properly. For example, if your device can only drive the low 24-bits 507 * during bus mastering, then you would pass 0x00ffffff as the mask to 508 * this function. 509 */ 510 int 511 xen_swiotlb_dma_supported(struct device *hwdev, u64 mask) 512 { 513 return xen_virt_to_bus(xen_io_tlb_end - 1) <= mask; 514 } 515 EXPORT_SYMBOL_GPL(xen_swiotlb_dma_supported); 516