xref: /linux/drivers/xen/swiotlb-xen.c (revision 765532c8aaac624b5f8687af6d319c6a1138a257)
1 /*
2  *  Copyright 2010
3  *  by Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
4  *
5  * This code provides a IOMMU for Xen PV guests with PCI passthrough.
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License v2.0 as published by
9  * the Free Software Foundation
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  *
16  * PV guests under Xen are running in an non-contiguous memory architecture.
17  *
18  * When PCI pass-through is utilized, this necessitates an IOMMU for
19  * translating bus (DMA) to virtual and vice-versa and also providing a
20  * mechanism to have contiguous pages for device drivers operations (say DMA
21  * operations).
22  *
23  * Specifically, under Xen the Linux idea of pages is an illusion. It
24  * assumes that pages start at zero and go up to the available memory. To
25  * help with that, the Linux Xen MMU provides a lookup mechanism to
26  * translate the page frame numbers (PFN) to machine frame numbers (MFN)
27  * and vice-versa. The MFN are the "real" frame numbers. Furthermore
28  * memory is not contiguous. Xen hypervisor stitches memory for guests
29  * from different pools, which means there is no guarantee that PFN==MFN
30  * and PFN+1==MFN+1. Lastly with Xen 4.0, pages (in debug mode) are
31  * allocated in descending order (high to low), meaning the guest might
32  * never get any MFN's under the 4GB mark.
33  *
34  */
35 
36 #include <linux/bootmem.h>
37 #include <linux/dma-mapping.h>
38 #include <xen/swiotlb-xen.h>
39 #include <xen/page.h>
40 #include <xen/xen-ops.h>
41 /*
42  * Used to do a quick range check in swiotlb_tbl_unmap_single and
43  * swiotlb_tbl_sync_single_*, to see if the memory was in fact allocated by this
44  * API.
45  */
46 
47 static char *xen_io_tlb_start, *xen_io_tlb_end;
48 static unsigned long xen_io_tlb_nslabs;
49 /*
50  * Quick lookup value of the bus address of the IOTLB.
51  */
52 
53 u64 start_dma_addr;
54 
55 static dma_addr_t xen_phys_to_bus(phys_addr_t paddr)
56 {
57 	return phys_to_machine(XPADDR(paddr)).maddr;;
58 }
59 
60 static phys_addr_t xen_bus_to_phys(dma_addr_t baddr)
61 {
62 	return machine_to_phys(XMADDR(baddr)).paddr;
63 }
64 
65 static dma_addr_t xen_virt_to_bus(void *address)
66 {
67 	return xen_phys_to_bus(virt_to_phys(address));
68 }
69 
70 static int check_pages_physically_contiguous(unsigned long pfn,
71 					     unsigned int offset,
72 					     size_t length)
73 {
74 	unsigned long next_mfn;
75 	int i;
76 	int nr_pages;
77 
78 	next_mfn = pfn_to_mfn(pfn);
79 	nr_pages = (offset + length + PAGE_SIZE-1) >> PAGE_SHIFT;
80 
81 	for (i = 1; i < nr_pages; i++) {
82 		if (pfn_to_mfn(++pfn) != ++next_mfn)
83 			return 0;
84 	}
85 	return 1;
86 }
87 
88 static int range_straddles_page_boundary(phys_addr_t p, size_t size)
89 {
90 	unsigned long pfn = PFN_DOWN(p);
91 	unsigned int offset = p & ~PAGE_MASK;
92 
93 	if (offset + size <= PAGE_SIZE)
94 		return 0;
95 	if (check_pages_physically_contiguous(pfn, offset, size))
96 		return 0;
97 	return 1;
98 }
99 
100 static int is_xen_swiotlb_buffer(dma_addr_t dma_addr)
101 {
102 	unsigned long mfn = PFN_DOWN(dma_addr);
103 	unsigned long pfn = mfn_to_local_pfn(mfn);
104 	phys_addr_t paddr;
105 
106 	/* If the address is outside our domain, it CAN
107 	 * have the same virtual address as another address
108 	 * in our domain. Therefore _only_ check address within our domain.
109 	 */
110 	if (pfn_valid(pfn)) {
111 		paddr = PFN_PHYS(pfn);
112 		return paddr >= virt_to_phys(xen_io_tlb_start) &&
113 		       paddr < virt_to_phys(xen_io_tlb_end);
114 	}
115 	return 0;
116 }
117 
118 static int max_dma_bits = 32;
119 
120 static int
121 xen_swiotlb_fixup(void *buf, size_t size, unsigned long nslabs)
122 {
123 	int i, rc;
124 	int dma_bits;
125 
126 	dma_bits = get_order(IO_TLB_SEGSIZE << IO_TLB_SHIFT) + PAGE_SHIFT;
127 
128 	i = 0;
129 	do {
130 		int slabs = min(nslabs - i, (unsigned long)IO_TLB_SEGSIZE);
131 
132 		do {
133 			rc = xen_create_contiguous_region(
134 				(unsigned long)buf + (i << IO_TLB_SHIFT),
135 				get_order(slabs << IO_TLB_SHIFT),
136 				dma_bits);
137 		} while (rc && dma_bits++ < max_dma_bits);
138 		if (rc)
139 			return rc;
140 
141 		i += slabs;
142 	} while (i < nslabs);
143 	return 0;
144 }
145 
146 void __init xen_swiotlb_init(int verbose)
147 {
148 	unsigned long bytes;
149 	int rc;
150 
151 	xen_io_tlb_nslabs = (64 * 1024 * 1024 >> IO_TLB_SHIFT);
152 	xen_io_tlb_nslabs = ALIGN(xen_io_tlb_nslabs, IO_TLB_SEGSIZE);
153 
154 	bytes = xen_io_tlb_nslabs << IO_TLB_SHIFT;
155 
156 	/*
157 	 * Get IO TLB memory from any location.
158 	 */
159 	xen_io_tlb_start = alloc_bootmem(bytes);
160 	if (!xen_io_tlb_start)
161 		panic("Cannot allocate SWIOTLB buffer");
162 
163 	xen_io_tlb_end = xen_io_tlb_start + bytes;
164 	/*
165 	 * And replace that memory with pages under 4GB.
166 	 */
167 	rc = xen_swiotlb_fixup(xen_io_tlb_start,
168 			       bytes,
169 			       xen_io_tlb_nslabs);
170 	if (rc)
171 		goto error;
172 
173 	start_dma_addr = xen_virt_to_bus(xen_io_tlb_start);
174 	swiotlb_init_with_tbl(xen_io_tlb_start, xen_io_tlb_nslabs, verbose);
175 
176 	return;
177 error:
178 	panic("DMA(%d): Failed to exchange pages allocated for DMA with Xen! "\
179 	      "We either don't have the permission or you do not have enough"\
180 	      "free memory under 4GB!\n", rc);
181 }
182 
183 void *
184 xen_swiotlb_alloc_coherent(struct device *hwdev, size_t size,
185 			   dma_addr_t *dma_handle, gfp_t flags)
186 {
187 	void *ret;
188 	int order = get_order(size);
189 	u64 dma_mask = DMA_BIT_MASK(32);
190 	unsigned long vstart;
191 
192 	/*
193 	* Ignore region specifiers - the kernel's ideas of
194 	* pseudo-phys memory layout has nothing to do with the
195 	* machine physical layout.  We can't allocate highmem
196 	* because we can't return a pointer to it.
197 	*/
198 	flags &= ~(__GFP_DMA | __GFP_HIGHMEM);
199 
200 	if (dma_alloc_from_coherent(hwdev, size, dma_handle, &ret))
201 		return ret;
202 
203 	vstart = __get_free_pages(flags, order);
204 	ret = (void *)vstart;
205 
206 	if (hwdev && hwdev->coherent_dma_mask)
207 		dma_mask = dma_alloc_coherent_mask(hwdev, flags);
208 
209 	if (ret) {
210 		if (xen_create_contiguous_region(vstart, order,
211 						 fls64(dma_mask)) != 0) {
212 			free_pages(vstart, order);
213 			return NULL;
214 		}
215 		memset(ret, 0, size);
216 		*dma_handle = virt_to_machine(ret).maddr;
217 	}
218 	return ret;
219 }
220 EXPORT_SYMBOL_GPL(xen_swiotlb_alloc_coherent);
221 
222 void
223 xen_swiotlb_free_coherent(struct device *hwdev, size_t size, void *vaddr,
224 			  dma_addr_t dev_addr)
225 {
226 	int order = get_order(size);
227 
228 	if (dma_release_from_coherent(hwdev, order, vaddr))
229 		return;
230 
231 	xen_destroy_contiguous_region((unsigned long)vaddr, order);
232 	free_pages((unsigned long)vaddr, order);
233 }
234 EXPORT_SYMBOL_GPL(xen_swiotlb_free_coherent);
235 
236 
237 /*
238  * Map a single buffer of the indicated size for DMA in streaming mode.  The
239  * physical address to use is returned.
240  *
241  * Once the device is given the dma address, the device owns this memory until
242  * either xen_swiotlb_unmap_page or xen_swiotlb_dma_sync_single is performed.
243  */
244 dma_addr_t xen_swiotlb_map_page(struct device *dev, struct page *page,
245 				unsigned long offset, size_t size,
246 				enum dma_data_direction dir,
247 				struct dma_attrs *attrs)
248 {
249 	phys_addr_t phys = page_to_phys(page) + offset;
250 	dma_addr_t dev_addr = xen_phys_to_bus(phys);
251 	void *map;
252 
253 	BUG_ON(dir == DMA_NONE);
254 	/*
255 	 * If the address happens to be in the device's DMA window,
256 	 * we can safely return the device addr and not worry about bounce
257 	 * buffering it.
258 	 */
259 	if (dma_capable(dev, dev_addr, size) &&
260 	    !range_straddles_page_boundary(phys, size) && !swiotlb_force)
261 		return dev_addr;
262 
263 	/*
264 	 * Oh well, have to allocate and map a bounce buffer.
265 	 */
266 	map = swiotlb_tbl_map_single(dev, start_dma_addr, phys, size, dir);
267 	if (!map)
268 		return DMA_ERROR_CODE;
269 
270 	dev_addr = xen_virt_to_bus(map);
271 
272 	/*
273 	 * Ensure that the address returned is DMA'ble
274 	 */
275 	if (!dma_capable(dev, dev_addr, size))
276 		panic("map_single: bounce buffer is not DMA'ble");
277 
278 	return dev_addr;
279 }
280 EXPORT_SYMBOL_GPL(xen_swiotlb_map_page);
281 
282 /*
283  * Unmap a single streaming mode DMA translation.  The dma_addr and size must
284  * match what was provided for in a previous xen_swiotlb_map_page call.  All
285  * other usages are undefined.
286  *
287  * After this call, reads by the cpu to the buffer are guaranteed to see
288  * whatever the device wrote there.
289  */
290 static void xen_unmap_single(struct device *hwdev, dma_addr_t dev_addr,
291 			     size_t size, enum dma_data_direction dir)
292 {
293 	phys_addr_t paddr = xen_bus_to_phys(dev_addr);
294 
295 	BUG_ON(dir == DMA_NONE);
296 
297 	/* NOTE: We use dev_addr here, not paddr! */
298 	if (is_xen_swiotlb_buffer(dev_addr)) {
299 		swiotlb_tbl_unmap_single(hwdev, phys_to_virt(paddr), size, dir);
300 		return;
301 	}
302 
303 	if (dir != DMA_FROM_DEVICE)
304 		return;
305 
306 	/*
307 	 * phys_to_virt doesn't work with hihgmem page but we could
308 	 * call dma_mark_clean() with hihgmem page here. However, we
309 	 * are fine since dma_mark_clean() is null on POWERPC. We can
310 	 * make dma_mark_clean() take a physical address if necessary.
311 	 */
312 	dma_mark_clean(phys_to_virt(paddr), size);
313 }
314 
315 void xen_swiotlb_unmap_page(struct device *hwdev, dma_addr_t dev_addr,
316 			    size_t size, enum dma_data_direction dir,
317 			    struct dma_attrs *attrs)
318 {
319 	xen_unmap_single(hwdev, dev_addr, size, dir);
320 }
321 EXPORT_SYMBOL_GPL(xen_swiotlb_unmap_page);
322 
323 /*
324  * Make physical memory consistent for a single streaming mode DMA translation
325  * after a transfer.
326  *
327  * If you perform a xen_swiotlb_map_page() but wish to interrogate the buffer
328  * using the cpu, yet do not wish to teardown the dma mapping, you must
329  * call this function before doing so.  At the next point you give the dma
330  * address back to the card, you must first perform a
331  * xen_swiotlb_dma_sync_for_device, and then the device again owns the buffer
332  */
333 static void
334 xen_swiotlb_sync_single(struct device *hwdev, dma_addr_t dev_addr,
335 			size_t size, enum dma_data_direction dir,
336 			enum dma_sync_target target)
337 {
338 	phys_addr_t paddr = xen_bus_to_phys(dev_addr);
339 
340 	BUG_ON(dir == DMA_NONE);
341 
342 	/* NOTE: We use dev_addr here, not paddr! */
343 	if (is_xen_swiotlb_buffer(dev_addr)) {
344 		swiotlb_tbl_sync_single(hwdev, phys_to_virt(paddr), size, dir,
345 				       target);
346 		return;
347 	}
348 
349 	if (dir != DMA_FROM_DEVICE)
350 		return;
351 
352 	dma_mark_clean(phys_to_virt(paddr), size);
353 }
354 
355 void
356 xen_swiotlb_sync_single_for_cpu(struct device *hwdev, dma_addr_t dev_addr,
357 				size_t size, enum dma_data_direction dir)
358 {
359 	xen_swiotlb_sync_single(hwdev, dev_addr, size, dir, SYNC_FOR_CPU);
360 }
361 EXPORT_SYMBOL_GPL(xen_swiotlb_sync_single_for_cpu);
362 
363 void
364 xen_swiotlb_sync_single_for_device(struct device *hwdev, dma_addr_t dev_addr,
365 				   size_t size, enum dma_data_direction dir)
366 {
367 	xen_swiotlb_sync_single(hwdev, dev_addr, size, dir, SYNC_FOR_DEVICE);
368 }
369 EXPORT_SYMBOL_GPL(xen_swiotlb_sync_single_for_device);
370 
371 /*
372  * Map a set of buffers described by scatterlist in streaming mode for DMA.
373  * This is the scatter-gather version of the above xen_swiotlb_map_page
374  * interface.  Here the scatter gather list elements are each tagged with the
375  * appropriate dma address and length.  They are obtained via
376  * sg_dma_{address,length}(SG).
377  *
378  * NOTE: An implementation may be able to use a smaller number of
379  *       DMA address/length pairs than there are SG table elements.
380  *       (for example via virtual mapping capabilities)
381  *       The routine returns the number of addr/length pairs actually
382  *       used, at most nents.
383  *
384  * Device ownership issues as mentioned above for xen_swiotlb_map_page are the
385  * same here.
386  */
387 int
388 xen_swiotlb_map_sg_attrs(struct device *hwdev, struct scatterlist *sgl,
389 			 int nelems, enum dma_data_direction dir,
390 			 struct dma_attrs *attrs)
391 {
392 	struct scatterlist *sg;
393 	int i;
394 
395 	BUG_ON(dir == DMA_NONE);
396 
397 	for_each_sg(sgl, sg, nelems, i) {
398 		phys_addr_t paddr = sg_phys(sg);
399 		dma_addr_t dev_addr = xen_phys_to_bus(paddr);
400 
401 		if (swiotlb_force ||
402 		    !dma_capable(hwdev, dev_addr, sg->length) ||
403 		    range_straddles_page_boundary(paddr, sg->length)) {
404 			void *map = swiotlb_tbl_map_single(hwdev,
405 							   start_dma_addr,
406 							   sg_phys(sg),
407 							   sg->length, dir);
408 			if (!map) {
409 				/* Don't panic here, we expect map_sg users
410 				   to do proper error handling. */
411 				xen_swiotlb_unmap_sg_attrs(hwdev, sgl, i, dir,
412 							   attrs);
413 				sgl[0].dma_length = 0;
414 				return DMA_ERROR_CODE;
415 			}
416 			sg->dma_address = xen_virt_to_bus(map);
417 		} else
418 			sg->dma_address = dev_addr;
419 		sg->dma_length = sg->length;
420 	}
421 	return nelems;
422 }
423 EXPORT_SYMBOL_GPL(xen_swiotlb_map_sg_attrs);
424 
425 int
426 xen_swiotlb_map_sg(struct device *hwdev, struct scatterlist *sgl, int nelems,
427 		   enum dma_data_direction dir)
428 {
429 	return xen_swiotlb_map_sg_attrs(hwdev, sgl, nelems, dir, NULL);
430 }
431 EXPORT_SYMBOL_GPL(xen_swiotlb_map_sg);
432 
433 /*
434  * Unmap a set of streaming mode DMA translations.  Again, cpu read rules
435  * concerning calls here are the same as for swiotlb_unmap_page() above.
436  */
437 void
438 xen_swiotlb_unmap_sg_attrs(struct device *hwdev, struct scatterlist *sgl,
439 			   int nelems, enum dma_data_direction dir,
440 			   struct dma_attrs *attrs)
441 {
442 	struct scatterlist *sg;
443 	int i;
444 
445 	BUG_ON(dir == DMA_NONE);
446 
447 	for_each_sg(sgl, sg, nelems, i)
448 		xen_unmap_single(hwdev, sg->dma_address, sg->dma_length, dir);
449 
450 }
451 EXPORT_SYMBOL_GPL(xen_swiotlb_unmap_sg_attrs);
452 
453 void
454 xen_swiotlb_unmap_sg(struct device *hwdev, struct scatterlist *sgl, int nelems,
455 		     enum dma_data_direction dir)
456 {
457 	return xen_swiotlb_unmap_sg_attrs(hwdev, sgl, nelems, dir, NULL);
458 }
459 EXPORT_SYMBOL_GPL(xen_swiotlb_unmap_sg);
460 
461 /*
462  * Make physical memory consistent for a set of streaming mode DMA translations
463  * after a transfer.
464  *
465  * The same as swiotlb_sync_single_* but for a scatter-gather list, same rules
466  * and usage.
467  */
468 static void
469 xen_swiotlb_sync_sg(struct device *hwdev, struct scatterlist *sgl,
470 		    int nelems, enum dma_data_direction dir,
471 		    enum dma_sync_target target)
472 {
473 	struct scatterlist *sg;
474 	int i;
475 
476 	for_each_sg(sgl, sg, nelems, i)
477 		xen_swiotlb_sync_single(hwdev, sg->dma_address,
478 					sg->dma_length, dir, target);
479 }
480 
481 void
482 xen_swiotlb_sync_sg_for_cpu(struct device *hwdev, struct scatterlist *sg,
483 			    int nelems, enum dma_data_direction dir)
484 {
485 	xen_swiotlb_sync_sg(hwdev, sg, nelems, dir, SYNC_FOR_CPU);
486 }
487 EXPORT_SYMBOL_GPL(xen_swiotlb_sync_sg_for_cpu);
488 
489 void
490 xen_swiotlb_sync_sg_for_device(struct device *hwdev, struct scatterlist *sg,
491 			       int nelems, enum dma_data_direction dir)
492 {
493 	xen_swiotlb_sync_sg(hwdev, sg, nelems, dir, SYNC_FOR_DEVICE);
494 }
495 EXPORT_SYMBOL_GPL(xen_swiotlb_sync_sg_for_device);
496 
497 int
498 xen_swiotlb_dma_mapping_error(struct device *hwdev, dma_addr_t dma_addr)
499 {
500 	return !dma_addr;
501 }
502 EXPORT_SYMBOL_GPL(xen_swiotlb_dma_mapping_error);
503 
504 /*
505  * Return whether the given device DMA address mask can be supported
506  * properly.  For example, if your device can only drive the low 24-bits
507  * during bus mastering, then you would pass 0x00ffffff as the mask to
508  * this function.
509  */
510 int
511 xen_swiotlb_dma_supported(struct device *hwdev, u64 mask)
512 {
513 	return xen_virt_to_bus(xen_io_tlb_end - 1) <= mask;
514 }
515 EXPORT_SYMBOL_GPL(xen_swiotlb_dma_supported);
516