xref: /linux/drivers/xen/swiotlb-xen.c (revision 566ab427f827b0256d3e8ce0235d088e6a9c28bd)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  Copyright 2010
4  *  by Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
5  *
6  * This code provides a IOMMU for Xen PV guests with PCI passthrough.
7  *
8  * PV guests under Xen are running in an non-contiguous memory architecture.
9  *
10  * When PCI pass-through is utilized, this necessitates an IOMMU for
11  * translating bus (DMA) to virtual and vice-versa and also providing a
12  * mechanism to have contiguous pages for device drivers operations (say DMA
13  * operations).
14  *
15  * Specifically, under Xen the Linux idea of pages is an illusion. It
16  * assumes that pages start at zero and go up to the available memory. To
17  * help with that, the Linux Xen MMU provides a lookup mechanism to
18  * translate the page frame numbers (PFN) to machine frame numbers (MFN)
19  * and vice-versa. The MFN are the "real" frame numbers. Furthermore
20  * memory is not contiguous. Xen hypervisor stitches memory for guests
21  * from different pools, which means there is no guarantee that PFN==MFN
22  * and PFN+1==MFN+1. Lastly with Xen 4.0, pages (in debug mode) are
23  * allocated in descending order (high to low), meaning the guest might
24  * never get any MFN's under the 4GB mark.
25  */
26 
27 #define pr_fmt(fmt) "xen:" KBUILD_MODNAME ": " fmt
28 
29 #include <linux/memblock.h>
30 #include <linux/dma-direct.h>
31 #include <linux/dma-map-ops.h>
32 #include <linux/export.h>
33 #include <xen/swiotlb-xen.h>
34 #include <xen/page.h>
35 #include <xen/xen-ops.h>
36 #include <xen/hvc-console.h>
37 
38 #include <asm/dma-mapping.h>
39 
40 #include <trace/events/swiotlb.h>
41 #define MAX_DMA_BITS 32
42 
43 /*
44  * Quick lookup value of the bus address of the IOTLB.
45  */
46 
47 static inline phys_addr_t xen_phys_to_bus(struct device *dev, phys_addr_t paddr)
48 {
49 	unsigned long bfn = pfn_to_bfn(XEN_PFN_DOWN(paddr));
50 	phys_addr_t baddr = (phys_addr_t)bfn << XEN_PAGE_SHIFT;
51 
52 	baddr |= paddr & ~XEN_PAGE_MASK;
53 	return baddr;
54 }
55 
56 static inline dma_addr_t xen_phys_to_dma(struct device *dev, phys_addr_t paddr)
57 {
58 	return phys_to_dma(dev, xen_phys_to_bus(dev, paddr));
59 }
60 
61 static inline phys_addr_t xen_bus_to_phys(struct device *dev,
62 					  phys_addr_t baddr)
63 {
64 	unsigned long xen_pfn = bfn_to_pfn(XEN_PFN_DOWN(baddr));
65 	phys_addr_t paddr = (xen_pfn << XEN_PAGE_SHIFT) |
66 			    (baddr & ~XEN_PAGE_MASK);
67 
68 	return paddr;
69 }
70 
71 static inline phys_addr_t xen_dma_to_phys(struct device *dev,
72 					  dma_addr_t dma_addr)
73 {
74 	return xen_bus_to_phys(dev, dma_to_phys(dev, dma_addr));
75 }
76 
77 static inline int range_straddles_page_boundary(phys_addr_t p, size_t size)
78 {
79 	unsigned long next_bfn, xen_pfn = XEN_PFN_DOWN(p);
80 	unsigned int i, nr_pages = XEN_PFN_UP(xen_offset_in_page(p) + size);
81 	phys_addr_t algn = 1ULL << (get_order(size) + PAGE_SHIFT);
82 
83 	next_bfn = pfn_to_bfn(xen_pfn);
84 
85 	/* If buffer is physically aligned, ensure DMA alignment. */
86 	if (IS_ALIGNED(p, algn) &&
87 	    !IS_ALIGNED((phys_addr_t)next_bfn << XEN_PAGE_SHIFT, algn))
88 		return 1;
89 
90 	for (i = 1; i < nr_pages; i++)
91 		if (pfn_to_bfn(++xen_pfn) != ++next_bfn)
92 			return 1;
93 
94 	return 0;
95 }
96 
97 static struct io_tlb_pool *xen_swiotlb_find_pool(struct device *dev,
98 						 dma_addr_t dma_addr)
99 {
100 	unsigned long bfn = XEN_PFN_DOWN(dma_to_phys(dev, dma_addr));
101 	unsigned long xen_pfn = bfn_to_local_pfn(bfn);
102 	phys_addr_t paddr = (phys_addr_t)xen_pfn << XEN_PAGE_SHIFT;
103 
104 	/* If the address is outside our domain, it CAN
105 	 * have the same virtual address as another address
106 	 * in our domain. Therefore _only_ check address within our domain.
107 	 */
108 	if (pfn_valid(PFN_DOWN(paddr)))
109 		return swiotlb_find_pool(dev, paddr);
110 	return NULL;
111 }
112 
113 #ifdef CONFIG_X86
114 int xen_swiotlb_fixup(void *buf, unsigned long nslabs)
115 {
116 	int rc;
117 	unsigned int order = get_order(IO_TLB_SEGSIZE << IO_TLB_SHIFT);
118 	unsigned int i, dma_bits = order + PAGE_SHIFT;
119 	dma_addr_t dma_handle;
120 	phys_addr_t p = virt_to_phys(buf);
121 
122 	BUILD_BUG_ON(IO_TLB_SEGSIZE & (IO_TLB_SEGSIZE - 1));
123 	BUG_ON(nslabs % IO_TLB_SEGSIZE);
124 
125 	i = 0;
126 	do {
127 		do {
128 			rc = xen_create_contiguous_region(
129 				p + (i << IO_TLB_SHIFT), order,
130 				dma_bits, &dma_handle);
131 		} while (rc && dma_bits++ < MAX_DMA_BITS);
132 		if (rc)
133 			return rc;
134 
135 		i += IO_TLB_SEGSIZE;
136 	} while (i < nslabs);
137 	return 0;
138 }
139 
140 static void *
141 xen_swiotlb_alloc_coherent(struct device *dev, size_t size,
142 		dma_addr_t *dma_handle, gfp_t flags, unsigned long attrs)
143 {
144 	u64 dma_mask = dev->coherent_dma_mask;
145 	int order = get_order(size);
146 	phys_addr_t phys;
147 	void *ret;
148 
149 	/* Align the allocation to the Xen page size */
150 	size = ALIGN(size, XEN_PAGE_SIZE);
151 
152 	ret = (void *)__get_free_pages(flags, get_order(size));
153 	if (!ret)
154 		return ret;
155 	phys = virt_to_phys(ret);
156 
157 	*dma_handle = xen_phys_to_dma(dev, phys);
158 	if (*dma_handle + size - 1 > dma_mask ||
159 	    range_straddles_page_boundary(phys, size)) {
160 		if (xen_create_contiguous_region(phys, order, fls64(dma_mask),
161 				dma_handle) != 0)
162 			goto out_free_pages;
163 		SetPageXenRemapped(virt_to_page(ret));
164 	}
165 
166 	memset(ret, 0, size);
167 	return ret;
168 
169 out_free_pages:
170 	free_pages((unsigned long)ret, get_order(size));
171 	return NULL;
172 }
173 
174 static void
175 xen_swiotlb_free_coherent(struct device *dev, size_t size, void *vaddr,
176 		dma_addr_t dma_handle, unsigned long attrs)
177 {
178 	phys_addr_t phys = virt_to_phys(vaddr);
179 	int order = get_order(size);
180 
181 	/* Convert the size to actually allocated. */
182 	size = ALIGN(size, XEN_PAGE_SIZE);
183 
184 	if (WARN_ON_ONCE(dma_handle + size - 1 > dev->coherent_dma_mask) ||
185 	    WARN_ON_ONCE(range_straddles_page_boundary(phys, size)))
186 	    	return;
187 
188 	if (TestClearPageXenRemapped(virt_to_page(vaddr)))
189 		xen_destroy_contiguous_region(phys, order);
190 	free_pages((unsigned long)vaddr, get_order(size));
191 }
192 #endif /* CONFIG_X86 */
193 
194 /*
195  * Map a single buffer of the indicated size for DMA in streaming mode.  The
196  * physical address to use is returned.
197  *
198  * Once the device is given the dma address, the device owns this memory until
199  * either xen_swiotlb_unmap_page or xen_swiotlb_dma_sync_single is performed.
200  */
201 static dma_addr_t xen_swiotlb_map_page(struct device *dev, struct page *page,
202 				unsigned long offset, size_t size,
203 				enum dma_data_direction dir,
204 				unsigned long attrs)
205 {
206 	phys_addr_t map, phys = page_to_phys(page) + offset;
207 	dma_addr_t dev_addr = xen_phys_to_dma(dev, phys);
208 
209 	BUG_ON(dir == DMA_NONE);
210 	/*
211 	 * If the address happens to be in the device's DMA window,
212 	 * we can safely return the device addr and not worry about bounce
213 	 * buffering it.
214 	 */
215 	if (dma_capable(dev, dev_addr, size, true) &&
216 	    !range_straddles_page_boundary(phys, size) &&
217 		!xen_arch_need_swiotlb(dev, phys, dev_addr) &&
218 		!is_swiotlb_force_bounce(dev))
219 		goto done;
220 
221 	/*
222 	 * Oh well, have to allocate and map a bounce buffer.
223 	 */
224 	trace_swiotlb_bounced(dev, dev_addr, size);
225 
226 	map = swiotlb_tbl_map_single(dev, phys, size, 0, dir, attrs);
227 	if (map == (phys_addr_t)DMA_MAPPING_ERROR)
228 		return DMA_MAPPING_ERROR;
229 
230 	phys = map;
231 	dev_addr = xen_phys_to_dma(dev, map);
232 
233 	/*
234 	 * Ensure that the address returned is DMA'ble
235 	 */
236 	if (unlikely(!dma_capable(dev, dev_addr, size, true))) {
237 		__swiotlb_tbl_unmap_single(dev, map, size, dir,
238 				attrs | DMA_ATTR_SKIP_CPU_SYNC,
239 				swiotlb_find_pool(dev, map));
240 		return DMA_MAPPING_ERROR;
241 	}
242 
243 done:
244 	if (!dev_is_dma_coherent(dev) && !(attrs & DMA_ATTR_SKIP_CPU_SYNC)) {
245 		if (pfn_valid(PFN_DOWN(dma_to_phys(dev, dev_addr))))
246 			arch_sync_dma_for_device(phys, size, dir);
247 		else
248 			xen_dma_sync_for_device(dev, dev_addr, size, dir);
249 	}
250 	return dev_addr;
251 }
252 
253 /*
254  * Unmap a single streaming mode DMA translation.  The dma_addr and size must
255  * match what was provided for in a previous xen_swiotlb_map_page call.  All
256  * other usages are undefined.
257  *
258  * After this call, reads by the cpu to the buffer are guaranteed to see
259  * whatever the device wrote there.
260  */
261 static void xen_swiotlb_unmap_page(struct device *hwdev, dma_addr_t dev_addr,
262 		size_t size, enum dma_data_direction dir, unsigned long attrs)
263 {
264 	phys_addr_t paddr = xen_dma_to_phys(hwdev, dev_addr);
265 	struct io_tlb_pool *pool;
266 
267 	BUG_ON(dir == DMA_NONE);
268 
269 	if (!dev_is_dma_coherent(hwdev) && !(attrs & DMA_ATTR_SKIP_CPU_SYNC)) {
270 		if (pfn_valid(PFN_DOWN(dma_to_phys(hwdev, dev_addr))))
271 			arch_sync_dma_for_cpu(paddr, size, dir);
272 		else
273 			xen_dma_sync_for_cpu(hwdev, dev_addr, size, dir);
274 	}
275 
276 	/* NOTE: We use dev_addr here, not paddr! */
277 	pool = xen_swiotlb_find_pool(hwdev, dev_addr);
278 	if (pool)
279 		__swiotlb_tbl_unmap_single(hwdev, paddr, size, dir,
280 					   attrs, pool);
281 }
282 
283 static void
284 xen_swiotlb_sync_single_for_cpu(struct device *dev, dma_addr_t dma_addr,
285 		size_t size, enum dma_data_direction dir)
286 {
287 	phys_addr_t paddr = xen_dma_to_phys(dev, dma_addr);
288 	struct io_tlb_pool *pool;
289 
290 	if (!dev_is_dma_coherent(dev)) {
291 		if (pfn_valid(PFN_DOWN(dma_to_phys(dev, dma_addr))))
292 			arch_sync_dma_for_cpu(paddr, size, dir);
293 		else
294 			xen_dma_sync_for_cpu(dev, dma_addr, size, dir);
295 	}
296 
297 	pool = xen_swiotlb_find_pool(dev, dma_addr);
298 	if (pool)
299 		__swiotlb_sync_single_for_cpu(dev, paddr, size, dir, pool);
300 }
301 
302 static void
303 xen_swiotlb_sync_single_for_device(struct device *dev, dma_addr_t dma_addr,
304 		size_t size, enum dma_data_direction dir)
305 {
306 	phys_addr_t paddr = xen_dma_to_phys(dev, dma_addr);
307 	struct io_tlb_pool *pool;
308 
309 	pool = xen_swiotlb_find_pool(dev, dma_addr);
310 	if (pool)
311 		__swiotlb_sync_single_for_device(dev, paddr, size, dir, pool);
312 
313 	if (!dev_is_dma_coherent(dev)) {
314 		if (pfn_valid(PFN_DOWN(dma_to_phys(dev, dma_addr))))
315 			arch_sync_dma_for_device(paddr, size, dir);
316 		else
317 			xen_dma_sync_for_device(dev, dma_addr, size, dir);
318 	}
319 }
320 
321 /*
322  * Unmap a set of streaming mode DMA translations.  Again, cpu read rules
323  * concerning calls here are the same as for swiotlb_unmap_page() above.
324  */
325 static void
326 xen_swiotlb_unmap_sg(struct device *hwdev, struct scatterlist *sgl, int nelems,
327 		enum dma_data_direction dir, unsigned long attrs)
328 {
329 	struct scatterlist *sg;
330 	int i;
331 
332 	BUG_ON(dir == DMA_NONE);
333 
334 	for_each_sg(sgl, sg, nelems, i)
335 		xen_swiotlb_unmap_page(hwdev, sg->dma_address, sg_dma_len(sg),
336 				dir, attrs);
337 
338 }
339 
340 static int
341 xen_swiotlb_map_sg(struct device *dev, struct scatterlist *sgl, int nelems,
342 		enum dma_data_direction dir, unsigned long attrs)
343 {
344 	struct scatterlist *sg;
345 	int i;
346 
347 	BUG_ON(dir == DMA_NONE);
348 
349 	for_each_sg(sgl, sg, nelems, i) {
350 		sg->dma_address = xen_swiotlb_map_page(dev, sg_page(sg),
351 				sg->offset, sg->length, dir, attrs);
352 		if (sg->dma_address == DMA_MAPPING_ERROR)
353 			goto out_unmap;
354 		sg_dma_len(sg) = sg->length;
355 	}
356 
357 	return nelems;
358 out_unmap:
359 	xen_swiotlb_unmap_sg(dev, sgl, i, dir, attrs | DMA_ATTR_SKIP_CPU_SYNC);
360 	sg_dma_len(sgl) = 0;
361 	return -EIO;
362 }
363 
364 static void
365 xen_swiotlb_sync_sg_for_cpu(struct device *dev, struct scatterlist *sgl,
366 			    int nelems, enum dma_data_direction dir)
367 {
368 	struct scatterlist *sg;
369 	int i;
370 
371 	for_each_sg(sgl, sg, nelems, i) {
372 		xen_swiotlb_sync_single_for_cpu(dev, sg->dma_address,
373 				sg->length, dir);
374 	}
375 }
376 
377 static void
378 xen_swiotlb_sync_sg_for_device(struct device *dev, struct scatterlist *sgl,
379 			       int nelems, enum dma_data_direction dir)
380 {
381 	struct scatterlist *sg;
382 	int i;
383 
384 	for_each_sg(sgl, sg, nelems, i) {
385 		xen_swiotlb_sync_single_for_device(dev, sg->dma_address,
386 				sg->length, dir);
387 	}
388 }
389 
390 /*
391  * Return whether the given device DMA address mask can be supported
392  * properly.  For example, if your device can only drive the low 24-bits
393  * during bus mastering, then you would pass 0x00ffffff as the mask to
394  * this function.
395  */
396 static int
397 xen_swiotlb_dma_supported(struct device *hwdev, u64 mask)
398 {
399 	return xen_phys_to_dma(hwdev, default_swiotlb_limit()) <= mask;
400 }
401 
402 const struct dma_map_ops xen_swiotlb_dma_ops = {
403 #ifdef CONFIG_X86
404 	.alloc = xen_swiotlb_alloc_coherent,
405 	.free = xen_swiotlb_free_coherent,
406 #else
407 	.alloc = dma_direct_alloc,
408 	.free = dma_direct_free,
409 #endif
410 	.sync_single_for_cpu = xen_swiotlb_sync_single_for_cpu,
411 	.sync_single_for_device = xen_swiotlb_sync_single_for_device,
412 	.sync_sg_for_cpu = xen_swiotlb_sync_sg_for_cpu,
413 	.sync_sg_for_device = xen_swiotlb_sync_sg_for_device,
414 	.map_sg = xen_swiotlb_map_sg,
415 	.unmap_sg = xen_swiotlb_unmap_sg,
416 	.map_page = xen_swiotlb_map_page,
417 	.unmap_page = xen_swiotlb_unmap_page,
418 	.dma_supported = xen_swiotlb_dma_supported,
419 	.mmap = dma_common_mmap,
420 	.get_sgtable = dma_common_get_sgtable,
421 	.alloc_pages_op = dma_common_alloc_pages,
422 	.free_pages = dma_common_free_pages,
423 	.max_mapping_size = swiotlb_max_mapping_size,
424 };
425