xref: /linux/drivers/xen/swiotlb-xen.c (revision 172cdcaefea5c297fdb3d20b7d5aff60ae4fbce6)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  Copyright 2010
4  *  by Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
5  *
6  * This code provides a IOMMU for Xen PV guests with PCI passthrough.
7  *
8  * PV guests under Xen are running in an non-contiguous memory architecture.
9  *
10  * When PCI pass-through is utilized, this necessitates an IOMMU for
11  * translating bus (DMA) to virtual and vice-versa and also providing a
12  * mechanism to have contiguous pages for device drivers operations (say DMA
13  * operations).
14  *
15  * Specifically, under Xen the Linux idea of pages is an illusion. It
16  * assumes that pages start at zero and go up to the available memory. To
17  * help with that, the Linux Xen MMU provides a lookup mechanism to
18  * translate the page frame numbers (PFN) to machine frame numbers (MFN)
19  * and vice-versa. The MFN are the "real" frame numbers. Furthermore
20  * memory is not contiguous. Xen hypervisor stitches memory for guests
21  * from different pools, which means there is no guarantee that PFN==MFN
22  * and PFN+1==MFN+1. Lastly with Xen 4.0, pages (in debug mode) are
23  * allocated in descending order (high to low), meaning the guest might
24  * never get any MFN's under the 4GB mark.
25  */
26 
27 #define pr_fmt(fmt) "xen:" KBUILD_MODNAME ": " fmt
28 
29 #include <linux/memblock.h>
30 #include <linux/dma-direct.h>
31 #include <linux/dma-map-ops.h>
32 #include <linux/export.h>
33 #include <xen/swiotlb-xen.h>
34 #include <xen/page.h>
35 #include <xen/xen-ops.h>
36 #include <xen/hvc-console.h>
37 
38 #include <asm/dma-mapping.h>
39 #include <asm/xen/page-coherent.h>
40 
41 #include <trace/events/swiotlb.h>
42 #define MAX_DMA_BITS 32
43 
44 /*
45  * Quick lookup value of the bus address of the IOTLB.
46  */
47 
48 static inline phys_addr_t xen_phys_to_bus(struct device *dev, phys_addr_t paddr)
49 {
50 	unsigned long bfn = pfn_to_bfn(XEN_PFN_DOWN(paddr));
51 	phys_addr_t baddr = (phys_addr_t)bfn << XEN_PAGE_SHIFT;
52 
53 	baddr |= paddr & ~XEN_PAGE_MASK;
54 	return baddr;
55 }
56 
57 static inline dma_addr_t xen_phys_to_dma(struct device *dev, phys_addr_t paddr)
58 {
59 	return phys_to_dma(dev, xen_phys_to_bus(dev, paddr));
60 }
61 
62 static inline phys_addr_t xen_bus_to_phys(struct device *dev,
63 					  phys_addr_t baddr)
64 {
65 	unsigned long xen_pfn = bfn_to_pfn(XEN_PFN_DOWN(baddr));
66 	phys_addr_t paddr = (xen_pfn << XEN_PAGE_SHIFT) |
67 			    (baddr & ~XEN_PAGE_MASK);
68 
69 	return paddr;
70 }
71 
72 static inline phys_addr_t xen_dma_to_phys(struct device *dev,
73 					  dma_addr_t dma_addr)
74 {
75 	return xen_bus_to_phys(dev, dma_to_phys(dev, dma_addr));
76 }
77 
78 static inline int range_straddles_page_boundary(phys_addr_t p, size_t size)
79 {
80 	unsigned long next_bfn, xen_pfn = XEN_PFN_DOWN(p);
81 	unsigned int i, nr_pages = XEN_PFN_UP(xen_offset_in_page(p) + size);
82 
83 	next_bfn = pfn_to_bfn(xen_pfn);
84 
85 	for (i = 1; i < nr_pages; i++)
86 		if (pfn_to_bfn(++xen_pfn) != ++next_bfn)
87 			return 1;
88 
89 	return 0;
90 }
91 
92 static int is_xen_swiotlb_buffer(struct device *dev, dma_addr_t dma_addr)
93 {
94 	unsigned long bfn = XEN_PFN_DOWN(dma_to_phys(dev, dma_addr));
95 	unsigned long xen_pfn = bfn_to_local_pfn(bfn);
96 	phys_addr_t paddr = (phys_addr_t)xen_pfn << XEN_PAGE_SHIFT;
97 
98 	/* If the address is outside our domain, it CAN
99 	 * have the same virtual address as another address
100 	 * in our domain. Therefore _only_ check address within our domain.
101 	 */
102 	if (pfn_valid(PFN_DOWN(paddr)))
103 		return is_swiotlb_buffer(paddr);
104 	return 0;
105 }
106 
107 static int xen_swiotlb_fixup(void *buf, unsigned long nslabs)
108 {
109 	int i, rc;
110 	int dma_bits;
111 	dma_addr_t dma_handle;
112 	phys_addr_t p = virt_to_phys(buf);
113 
114 	dma_bits = get_order(IO_TLB_SEGSIZE << IO_TLB_SHIFT) + PAGE_SHIFT;
115 
116 	i = 0;
117 	do {
118 		int slabs = min(nslabs - i, (unsigned long)IO_TLB_SEGSIZE);
119 
120 		do {
121 			rc = xen_create_contiguous_region(
122 				p + (i << IO_TLB_SHIFT),
123 				get_order(slabs << IO_TLB_SHIFT),
124 				dma_bits, &dma_handle);
125 		} while (rc && dma_bits++ < MAX_DMA_BITS);
126 		if (rc)
127 			return rc;
128 
129 		i += slabs;
130 	} while (i < nslabs);
131 	return 0;
132 }
133 
134 enum xen_swiotlb_err {
135 	XEN_SWIOTLB_UNKNOWN = 0,
136 	XEN_SWIOTLB_ENOMEM,
137 	XEN_SWIOTLB_EFIXUP
138 };
139 
140 static const char *xen_swiotlb_error(enum xen_swiotlb_err err)
141 {
142 	switch (err) {
143 	case XEN_SWIOTLB_ENOMEM:
144 		return "Cannot allocate Xen-SWIOTLB buffer\n";
145 	case XEN_SWIOTLB_EFIXUP:
146 		return "Failed to get contiguous memory for DMA from Xen!\n"\
147 		    "You either: don't have the permissions, do not have"\
148 		    " enough free memory under 4GB, or the hypervisor memory"\
149 		    " is too fragmented!";
150 	default:
151 		break;
152 	}
153 	return "";
154 }
155 
156 #define DEFAULT_NSLABS		ALIGN(SZ_64M >> IO_TLB_SHIFT, IO_TLB_SEGSIZE)
157 
158 int __ref xen_swiotlb_init(void)
159 {
160 	enum xen_swiotlb_err m_ret = XEN_SWIOTLB_UNKNOWN;
161 	unsigned long bytes = swiotlb_size_or_default();
162 	unsigned long nslabs = bytes >> IO_TLB_SHIFT;
163 	unsigned int order, repeat = 3;
164 	int rc = -ENOMEM;
165 	char *start;
166 
167 retry:
168 	m_ret = XEN_SWIOTLB_ENOMEM;
169 	order = get_order(bytes);
170 
171 	/*
172 	 * Get IO TLB memory from any location.
173 	 */
174 #define SLABS_PER_PAGE (1 << (PAGE_SHIFT - IO_TLB_SHIFT))
175 #define IO_TLB_MIN_SLABS ((1<<20) >> IO_TLB_SHIFT)
176 	while ((SLABS_PER_PAGE << order) > IO_TLB_MIN_SLABS) {
177 		start = (void *)xen_get_swiotlb_free_pages(order);
178 		if (start)
179 			break;
180 		order--;
181 	}
182 	if (!start)
183 		goto error;
184 	if (order != get_order(bytes)) {
185 		pr_warn("Warning: only able to allocate %ld MB for software IO TLB\n",
186 			(PAGE_SIZE << order) >> 20);
187 		nslabs = SLABS_PER_PAGE << order;
188 		bytes = nslabs << IO_TLB_SHIFT;
189 	}
190 
191 	/*
192 	 * And replace that memory with pages under 4GB.
193 	 */
194 	rc = xen_swiotlb_fixup(start, nslabs);
195 	if (rc) {
196 		free_pages((unsigned long)start, order);
197 		m_ret = XEN_SWIOTLB_EFIXUP;
198 		goto error;
199 	}
200 	rc = swiotlb_late_init_with_tbl(start, nslabs);
201 	if (rc)
202 		return rc;
203 	swiotlb_set_max_segment(PAGE_SIZE);
204 	return 0;
205 error:
206 	if (repeat--) {
207 		/* Min is 2MB */
208 		nslabs = max(1024UL, (nslabs >> 1));
209 		pr_info("Lowering to %luMB\n",
210 			(nslabs << IO_TLB_SHIFT) >> 20);
211 		goto retry;
212 	}
213 	pr_err("%s (rc:%d)\n", xen_swiotlb_error(m_ret), rc);
214 	free_pages((unsigned long)start, order);
215 	return rc;
216 }
217 
218 #ifdef CONFIG_X86
219 void __init xen_swiotlb_init_early(void)
220 {
221 	unsigned long bytes = swiotlb_size_or_default();
222 	unsigned long nslabs = bytes >> IO_TLB_SHIFT;
223 	unsigned int repeat = 3;
224 	char *start;
225 	int rc;
226 
227 retry:
228 	/*
229 	 * Get IO TLB memory from any location.
230 	 */
231 	start = memblock_alloc(PAGE_ALIGN(bytes), PAGE_SIZE);
232 	if (!start)
233 		panic("%s: Failed to allocate %lu bytes align=0x%lx\n",
234 		      __func__, PAGE_ALIGN(bytes), PAGE_SIZE);
235 
236 	/*
237 	 * And replace that memory with pages under 4GB.
238 	 */
239 	rc = xen_swiotlb_fixup(start, nslabs);
240 	if (rc) {
241 		memblock_free(__pa(start), PAGE_ALIGN(bytes));
242 		if (repeat--) {
243 			/* Min is 2MB */
244 			nslabs = max(1024UL, (nslabs >> 1));
245 			bytes = nslabs << IO_TLB_SHIFT;
246 			pr_info("Lowering to %luMB\n", bytes >> 20);
247 			goto retry;
248 		}
249 		panic("%s (rc:%d)", xen_swiotlb_error(XEN_SWIOTLB_EFIXUP), rc);
250 	}
251 
252 	if (swiotlb_init_with_tbl(start, nslabs, false))
253 		panic("Cannot allocate SWIOTLB buffer");
254 	swiotlb_set_max_segment(PAGE_SIZE);
255 }
256 #endif /* CONFIG_X86 */
257 
258 static void *
259 xen_swiotlb_alloc_coherent(struct device *hwdev, size_t size,
260 			   dma_addr_t *dma_handle, gfp_t flags,
261 			   unsigned long attrs)
262 {
263 	void *ret;
264 	int order = get_order(size);
265 	u64 dma_mask = DMA_BIT_MASK(32);
266 	phys_addr_t phys;
267 	dma_addr_t dev_addr;
268 
269 	/*
270 	* Ignore region specifiers - the kernel's ideas of
271 	* pseudo-phys memory layout has nothing to do with the
272 	* machine physical layout.  We can't allocate highmem
273 	* because we can't return a pointer to it.
274 	*/
275 	flags &= ~(__GFP_DMA | __GFP_HIGHMEM);
276 
277 	/* Convert the size to actually allocated. */
278 	size = 1UL << (order + XEN_PAGE_SHIFT);
279 
280 	/* On ARM this function returns an ioremap'ped virtual address for
281 	 * which virt_to_phys doesn't return the corresponding physical
282 	 * address. In fact on ARM virt_to_phys only works for kernel direct
283 	 * mapped RAM memory. Also see comment below.
284 	 */
285 	ret = xen_alloc_coherent_pages(hwdev, size, dma_handle, flags, attrs);
286 
287 	if (!ret)
288 		return ret;
289 
290 	if (hwdev && hwdev->coherent_dma_mask)
291 		dma_mask = hwdev->coherent_dma_mask;
292 
293 	/* At this point dma_handle is the dma address, next we are
294 	 * going to set it to the machine address.
295 	 * Do not use virt_to_phys(ret) because on ARM it doesn't correspond
296 	 * to *dma_handle. */
297 	phys = dma_to_phys(hwdev, *dma_handle);
298 	dev_addr = xen_phys_to_dma(hwdev, phys);
299 	if (((dev_addr + size - 1 <= dma_mask)) &&
300 	    !range_straddles_page_boundary(phys, size))
301 		*dma_handle = dev_addr;
302 	else {
303 		if (xen_create_contiguous_region(phys, order,
304 						 fls64(dma_mask), dma_handle) != 0) {
305 			xen_free_coherent_pages(hwdev, size, ret, (dma_addr_t)phys, attrs);
306 			return NULL;
307 		}
308 		*dma_handle = phys_to_dma(hwdev, *dma_handle);
309 		SetPageXenRemapped(virt_to_page(ret));
310 	}
311 	memset(ret, 0, size);
312 	return ret;
313 }
314 
315 static void
316 xen_swiotlb_free_coherent(struct device *hwdev, size_t size, void *vaddr,
317 			  dma_addr_t dev_addr, unsigned long attrs)
318 {
319 	int order = get_order(size);
320 	phys_addr_t phys;
321 	u64 dma_mask = DMA_BIT_MASK(32);
322 	struct page *page;
323 
324 	if (hwdev && hwdev->coherent_dma_mask)
325 		dma_mask = hwdev->coherent_dma_mask;
326 
327 	/* do not use virt_to_phys because on ARM it doesn't return you the
328 	 * physical address */
329 	phys = xen_dma_to_phys(hwdev, dev_addr);
330 
331 	/* Convert the size to actually allocated. */
332 	size = 1UL << (order + XEN_PAGE_SHIFT);
333 
334 	if (is_vmalloc_addr(vaddr))
335 		page = vmalloc_to_page(vaddr);
336 	else
337 		page = virt_to_page(vaddr);
338 
339 	if (!WARN_ON((dev_addr + size - 1 > dma_mask) ||
340 		     range_straddles_page_boundary(phys, size)) &&
341 	    TestClearPageXenRemapped(page))
342 		xen_destroy_contiguous_region(phys, order);
343 
344 	xen_free_coherent_pages(hwdev, size, vaddr, phys_to_dma(hwdev, phys),
345 				attrs);
346 }
347 
348 /*
349  * Map a single buffer of the indicated size for DMA in streaming mode.  The
350  * physical address to use is returned.
351  *
352  * Once the device is given the dma address, the device owns this memory until
353  * either xen_swiotlb_unmap_page or xen_swiotlb_dma_sync_single is performed.
354  */
355 static dma_addr_t xen_swiotlb_map_page(struct device *dev, struct page *page,
356 				unsigned long offset, size_t size,
357 				enum dma_data_direction dir,
358 				unsigned long attrs)
359 {
360 	phys_addr_t map, phys = page_to_phys(page) + offset;
361 	dma_addr_t dev_addr = xen_phys_to_dma(dev, phys);
362 
363 	BUG_ON(dir == DMA_NONE);
364 	/*
365 	 * If the address happens to be in the device's DMA window,
366 	 * we can safely return the device addr and not worry about bounce
367 	 * buffering it.
368 	 */
369 	if (dma_capable(dev, dev_addr, size, true) &&
370 	    !range_straddles_page_boundary(phys, size) &&
371 		!xen_arch_need_swiotlb(dev, phys, dev_addr) &&
372 		swiotlb_force != SWIOTLB_FORCE)
373 		goto done;
374 
375 	/*
376 	 * Oh well, have to allocate and map a bounce buffer.
377 	 */
378 	trace_swiotlb_bounced(dev, dev_addr, size, swiotlb_force);
379 
380 	map = swiotlb_tbl_map_single(dev, phys, size, size, dir, attrs);
381 	if (map == (phys_addr_t)DMA_MAPPING_ERROR)
382 		return DMA_MAPPING_ERROR;
383 
384 	phys = map;
385 	dev_addr = xen_phys_to_dma(dev, map);
386 
387 	/*
388 	 * Ensure that the address returned is DMA'ble
389 	 */
390 	if (unlikely(!dma_capable(dev, dev_addr, size, true))) {
391 		swiotlb_tbl_unmap_single(dev, map, size, dir,
392 				attrs | DMA_ATTR_SKIP_CPU_SYNC);
393 		return DMA_MAPPING_ERROR;
394 	}
395 
396 done:
397 	if (!dev_is_dma_coherent(dev) && !(attrs & DMA_ATTR_SKIP_CPU_SYNC)) {
398 		if (pfn_valid(PFN_DOWN(dma_to_phys(dev, dev_addr))))
399 			arch_sync_dma_for_device(phys, size, dir);
400 		else
401 			xen_dma_sync_for_device(dev, dev_addr, size, dir);
402 	}
403 	return dev_addr;
404 }
405 
406 /*
407  * Unmap a single streaming mode DMA translation.  The dma_addr and size must
408  * match what was provided for in a previous xen_swiotlb_map_page call.  All
409  * other usages are undefined.
410  *
411  * After this call, reads by the cpu to the buffer are guaranteed to see
412  * whatever the device wrote there.
413  */
414 static void xen_swiotlb_unmap_page(struct device *hwdev, dma_addr_t dev_addr,
415 		size_t size, enum dma_data_direction dir, unsigned long attrs)
416 {
417 	phys_addr_t paddr = xen_dma_to_phys(hwdev, dev_addr);
418 
419 	BUG_ON(dir == DMA_NONE);
420 
421 	if (!dev_is_dma_coherent(hwdev) && !(attrs & DMA_ATTR_SKIP_CPU_SYNC)) {
422 		if (pfn_valid(PFN_DOWN(dma_to_phys(hwdev, dev_addr))))
423 			arch_sync_dma_for_cpu(paddr, size, dir);
424 		else
425 			xen_dma_sync_for_cpu(hwdev, dev_addr, size, dir);
426 	}
427 
428 	/* NOTE: We use dev_addr here, not paddr! */
429 	if (is_xen_swiotlb_buffer(hwdev, dev_addr))
430 		swiotlb_tbl_unmap_single(hwdev, paddr, size, dir, attrs);
431 }
432 
433 static void
434 xen_swiotlb_sync_single_for_cpu(struct device *dev, dma_addr_t dma_addr,
435 		size_t size, enum dma_data_direction dir)
436 {
437 	phys_addr_t paddr = xen_dma_to_phys(dev, dma_addr);
438 
439 	if (!dev_is_dma_coherent(dev)) {
440 		if (pfn_valid(PFN_DOWN(dma_to_phys(dev, dma_addr))))
441 			arch_sync_dma_for_cpu(paddr, size, dir);
442 		else
443 			xen_dma_sync_for_cpu(dev, dma_addr, size, dir);
444 	}
445 
446 	if (is_xen_swiotlb_buffer(dev, dma_addr))
447 		swiotlb_sync_single_for_cpu(dev, paddr, size, dir);
448 }
449 
450 static void
451 xen_swiotlb_sync_single_for_device(struct device *dev, dma_addr_t dma_addr,
452 		size_t size, enum dma_data_direction dir)
453 {
454 	phys_addr_t paddr = xen_dma_to_phys(dev, dma_addr);
455 
456 	if (is_xen_swiotlb_buffer(dev, dma_addr))
457 		swiotlb_sync_single_for_device(dev, paddr, size, dir);
458 
459 	if (!dev_is_dma_coherent(dev)) {
460 		if (pfn_valid(PFN_DOWN(dma_to_phys(dev, dma_addr))))
461 			arch_sync_dma_for_device(paddr, size, dir);
462 		else
463 			xen_dma_sync_for_device(dev, dma_addr, size, dir);
464 	}
465 }
466 
467 /*
468  * Unmap a set of streaming mode DMA translations.  Again, cpu read rules
469  * concerning calls here are the same as for swiotlb_unmap_page() above.
470  */
471 static void
472 xen_swiotlb_unmap_sg(struct device *hwdev, struct scatterlist *sgl, int nelems,
473 		enum dma_data_direction dir, unsigned long attrs)
474 {
475 	struct scatterlist *sg;
476 	int i;
477 
478 	BUG_ON(dir == DMA_NONE);
479 
480 	for_each_sg(sgl, sg, nelems, i)
481 		xen_swiotlb_unmap_page(hwdev, sg->dma_address, sg_dma_len(sg),
482 				dir, attrs);
483 
484 }
485 
486 static int
487 xen_swiotlb_map_sg(struct device *dev, struct scatterlist *sgl, int nelems,
488 		enum dma_data_direction dir, unsigned long attrs)
489 {
490 	struct scatterlist *sg;
491 	int i;
492 
493 	BUG_ON(dir == DMA_NONE);
494 
495 	for_each_sg(sgl, sg, nelems, i) {
496 		sg->dma_address = xen_swiotlb_map_page(dev, sg_page(sg),
497 				sg->offset, sg->length, dir, attrs);
498 		if (sg->dma_address == DMA_MAPPING_ERROR)
499 			goto out_unmap;
500 		sg_dma_len(sg) = sg->length;
501 	}
502 
503 	return nelems;
504 out_unmap:
505 	xen_swiotlb_unmap_sg(dev, sgl, i, dir, attrs | DMA_ATTR_SKIP_CPU_SYNC);
506 	sg_dma_len(sgl) = 0;
507 	return 0;
508 }
509 
510 static void
511 xen_swiotlb_sync_sg_for_cpu(struct device *dev, struct scatterlist *sgl,
512 			    int nelems, enum dma_data_direction dir)
513 {
514 	struct scatterlist *sg;
515 	int i;
516 
517 	for_each_sg(sgl, sg, nelems, i) {
518 		xen_swiotlb_sync_single_for_cpu(dev, sg->dma_address,
519 				sg->length, dir);
520 	}
521 }
522 
523 static void
524 xen_swiotlb_sync_sg_for_device(struct device *dev, struct scatterlist *sgl,
525 			       int nelems, enum dma_data_direction dir)
526 {
527 	struct scatterlist *sg;
528 	int i;
529 
530 	for_each_sg(sgl, sg, nelems, i) {
531 		xen_swiotlb_sync_single_for_device(dev, sg->dma_address,
532 				sg->length, dir);
533 	}
534 }
535 
536 /*
537  * Return whether the given device DMA address mask can be supported
538  * properly.  For example, if your device can only drive the low 24-bits
539  * during bus mastering, then you would pass 0x00ffffff as the mask to
540  * this function.
541  */
542 static int
543 xen_swiotlb_dma_supported(struct device *hwdev, u64 mask)
544 {
545 	return xen_phys_to_dma(hwdev, io_tlb_default_mem->end - 1) <= mask;
546 }
547 
548 const struct dma_map_ops xen_swiotlb_dma_ops = {
549 	.alloc = xen_swiotlb_alloc_coherent,
550 	.free = xen_swiotlb_free_coherent,
551 	.sync_single_for_cpu = xen_swiotlb_sync_single_for_cpu,
552 	.sync_single_for_device = xen_swiotlb_sync_single_for_device,
553 	.sync_sg_for_cpu = xen_swiotlb_sync_sg_for_cpu,
554 	.sync_sg_for_device = xen_swiotlb_sync_sg_for_device,
555 	.map_sg = xen_swiotlb_map_sg,
556 	.unmap_sg = xen_swiotlb_unmap_sg,
557 	.map_page = xen_swiotlb_map_page,
558 	.unmap_page = xen_swiotlb_unmap_page,
559 	.dma_supported = xen_swiotlb_dma_supported,
560 	.mmap = dma_common_mmap,
561 	.get_sgtable = dma_common_get_sgtable,
562 	.alloc_pages = dma_common_alloc_pages,
563 	.free_pages = dma_common_free_pages,
564 };
565