xref: /linux/drivers/xen/pvcalls-back.c (revision 4b132aacb0768ac1e652cf517097ea6f237214b9)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * (c) 2017 Stefano Stabellini <stefano@aporeto.com>
4  */
5 
6 #include <linux/inet.h>
7 #include <linux/kthread.h>
8 #include <linux/list.h>
9 #include <linux/radix-tree.h>
10 #include <linux/module.h>
11 #include <linux/semaphore.h>
12 #include <linux/wait.h>
13 #include <net/sock.h>
14 #include <net/inet_common.h>
15 #include <net/inet_connection_sock.h>
16 #include <net/request_sock.h>
17 #include <trace/events/sock.h>
18 
19 #include <xen/events.h>
20 #include <xen/grant_table.h>
21 #include <xen/xen.h>
22 #include <xen/xenbus.h>
23 #include <xen/interface/io/pvcalls.h>
24 
25 #define PVCALLS_VERSIONS "1"
26 #define MAX_RING_ORDER XENBUS_MAX_RING_GRANT_ORDER
27 
28 static struct pvcalls_back_global {
29 	struct list_head frontends;
30 	struct semaphore frontends_lock;
31 } pvcalls_back_global;
32 
33 /*
34  * Per-frontend data structure. It contains pointers to the command
35  * ring, its event channel, a list of active sockets and a tree of
36  * passive sockets.
37  */
38 struct pvcalls_fedata {
39 	struct list_head list;
40 	struct xenbus_device *dev;
41 	struct xen_pvcalls_sring *sring;
42 	struct xen_pvcalls_back_ring ring;
43 	int irq;
44 	struct list_head socket_mappings;
45 	struct radix_tree_root socketpass_mappings;
46 	struct semaphore socket_lock;
47 };
48 
49 struct pvcalls_ioworker {
50 	struct work_struct register_work;
51 	struct workqueue_struct *wq;
52 };
53 
54 struct sock_mapping {
55 	struct list_head list;
56 	struct pvcalls_fedata *fedata;
57 	struct sockpass_mapping *sockpass;
58 	struct socket *sock;
59 	uint64_t id;
60 	grant_ref_t ref;
61 	struct pvcalls_data_intf *ring;
62 	void *bytes;
63 	struct pvcalls_data data;
64 	uint32_t ring_order;
65 	int irq;
66 	atomic_t read;
67 	atomic_t write;
68 	atomic_t io;
69 	atomic_t release;
70 	atomic_t eoi;
71 	void (*saved_data_ready)(struct sock *sk);
72 	struct pvcalls_ioworker ioworker;
73 };
74 
75 struct sockpass_mapping {
76 	struct list_head list;
77 	struct pvcalls_fedata *fedata;
78 	struct socket *sock;
79 	uint64_t id;
80 	struct xen_pvcalls_request reqcopy;
81 	spinlock_t copy_lock;
82 	struct workqueue_struct *wq;
83 	struct work_struct register_work;
84 	void (*saved_data_ready)(struct sock *sk);
85 };
86 
87 static irqreturn_t pvcalls_back_conn_event(int irq, void *sock_map);
88 static int pvcalls_back_release_active(struct xenbus_device *dev,
89 				       struct pvcalls_fedata *fedata,
90 				       struct sock_mapping *map);
91 
92 static bool pvcalls_conn_back_read(void *opaque)
93 {
94 	struct sock_mapping *map = (struct sock_mapping *)opaque;
95 	struct msghdr msg;
96 	struct kvec vec[2];
97 	RING_IDX cons, prod, size, wanted, array_size, masked_prod, masked_cons;
98 	int32_t error;
99 	struct pvcalls_data_intf *intf = map->ring;
100 	struct pvcalls_data *data = &map->data;
101 	unsigned long flags;
102 	int ret;
103 
104 	array_size = XEN_FLEX_RING_SIZE(map->ring_order);
105 	cons = intf->in_cons;
106 	prod = intf->in_prod;
107 	error = intf->in_error;
108 	/* read the indexes first, then deal with the data */
109 	virt_mb();
110 
111 	if (error)
112 		return false;
113 
114 	size = pvcalls_queued(prod, cons, array_size);
115 	if (size >= array_size)
116 		return false;
117 	spin_lock_irqsave(&map->sock->sk->sk_receive_queue.lock, flags);
118 	if (skb_queue_empty(&map->sock->sk->sk_receive_queue)) {
119 		atomic_set(&map->read, 0);
120 		spin_unlock_irqrestore(&map->sock->sk->sk_receive_queue.lock,
121 				flags);
122 		return true;
123 	}
124 	spin_unlock_irqrestore(&map->sock->sk->sk_receive_queue.lock, flags);
125 	wanted = array_size - size;
126 	masked_prod = pvcalls_mask(prod, array_size);
127 	masked_cons = pvcalls_mask(cons, array_size);
128 
129 	memset(&msg, 0, sizeof(msg));
130 	if (masked_prod < masked_cons) {
131 		vec[0].iov_base = data->in + masked_prod;
132 		vec[0].iov_len = wanted;
133 		iov_iter_kvec(&msg.msg_iter, ITER_DEST, vec, 1, wanted);
134 	} else {
135 		vec[0].iov_base = data->in + masked_prod;
136 		vec[0].iov_len = array_size - masked_prod;
137 		vec[1].iov_base = data->in;
138 		vec[1].iov_len = wanted - vec[0].iov_len;
139 		iov_iter_kvec(&msg.msg_iter, ITER_DEST, vec, 2, wanted);
140 	}
141 
142 	atomic_set(&map->read, 0);
143 	ret = inet_recvmsg(map->sock, &msg, wanted, MSG_DONTWAIT);
144 	WARN_ON(ret > wanted);
145 	if (ret == -EAGAIN) /* shouldn't happen */
146 		return true;
147 	if (!ret)
148 		ret = -ENOTCONN;
149 	spin_lock_irqsave(&map->sock->sk->sk_receive_queue.lock, flags);
150 	if (ret > 0 && !skb_queue_empty(&map->sock->sk->sk_receive_queue))
151 		atomic_inc(&map->read);
152 	spin_unlock_irqrestore(&map->sock->sk->sk_receive_queue.lock, flags);
153 
154 	/* write the data, then modify the indexes */
155 	virt_wmb();
156 	if (ret < 0) {
157 		atomic_set(&map->read, 0);
158 		intf->in_error = ret;
159 	} else
160 		intf->in_prod = prod + ret;
161 	/* update the indexes, then notify the other end */
162 	virt_wmb();
163 	notify_remote_via_irq(map->irq);
164 
165 	return true;
166 }
167 
168 static bool pvcalls_conn_back_write(struct sock_mapping *map)
169 {
170 	struct pvcalls_data_intf *intf = map->ring;
171 	struct pvcalls_data *data = &map->data;
172 	struct msghdr msg;
173 	struct kvec vec[2];
174 	RING_IDX cons, prod, size, array_size;
175 	int ret;
176 
177 	atomic_set(&map->write, 0);
178 
179 	cons = intf->out_cons;
180 	prod = intf->out_prod;
181 	/* read the indexes before dealing with the data */
182 	virt_mb();
183 
184 	array_size = XEN_FLEX_RING_SIZE(map->ring_order);
185 	size = pvcalls_queued(prod, cons, array_size);
186 	if (size == 0)
187 		return false;
188 
189 	memset(&msg, 0, sizeof(msg));
190 	msg.msg_flags |= MSG_DONTWAIT;
191 	if (pvcalls_mask(prod, array_size) > pvcalls_mask(cons, array_size)) {
192 		vec[0].iov_base = data->out + pvcalls_mask(cons, array_size);
193 		vec[0].iov_len = size;
194 		iov_iter_kvec(&msg.msg_iter, ITER_SOURCE, vec, 1, size);
195 	} else {
196 		vec[0].iov_base = data->out + pvcalls_mask(cons, array_size);
197 		vec[0].iov_len = array_size - pvcalls_mask(cons, array_size);
198 		vec[1].iov_base = data->out;
199 		vec[1].iov_len = size - vec[0].iov_len;
200 		iov_iter_kvec(&msg.msg_iter, ITER_SOURCE, vec, 2, size);
201 	}
202 
203 	ret = inet_sendmsg(map->sock, &msg, size);
204 	if (ret == -EAGAIN) {
205 		atomic_inc(&map->write);
206 		atomic_inc(&map->io);
207 		return true;
208 	}
209 
210 	/* write the data, then update the indexes */
211 	virt_wmb();
212 	if (ret < 0) {
213 		intf->out_error = ret;
214 	} else {
215 		intf->out_error = 0;
216 		intf->out_cons = cons + ret;
217 		prod = intf->out_prod;
218 	}
219 	/* update the indexes, then notify the other end */
220 	virt_wmb();
221 	if (prod != cons + ret) {
222 		atomic_inc(&map->write);
223 		atomic_inc(&map->io);
224 	}
225 	notify_remote_via_irq(map->irq);
226 
227 	return true;
228 }
229 
230 static void pvcalls_back_ioworker(struct work_struct *work)
231 {
232 	struct pvcalls_ioworker *ioworker = container_of(work,
233 		struct pvcalls_ioworker, register_work);
234 	struct sock_mapping *map = container_of(ioworker, struct sock_mapping,
235 		ioworker);
236 	unsigned int eoi_flags = XEN_EOI_FLAG_SPURIOUS;
237 
238 	while (atomic_read(&map->io) > 0) {
239 		if (atomic_read(&map->release) > 0) {
240 			atomic_set(&map->release, 0);
241 			return;
242 		}
243 
244 		if (atomic_read(&map->read) > 0 &&
245 		    pvcalls_conn_back_read(map))
246 			eoi_flags = 0;
247 		if (atomic_read(&map->write) > 0 &&
248 		    pvcalls_conn_back_write(map))
249 			eoi_flags = 0;
250 
251 		if (atomic_read(&map->eoi) > 0 && !atomic_read(&map->write)) {
252 			atomic_set(&map->eoi, 0);
253 			xen_irq_lateeoi(map->irq, eoi_flags);
254 			eoi_flags = XEN_EOI_FLAG_SPURIOUS;
255 		}
256 
257 		atomic_dec(&map->io);
258 	}
259 }
260 
261 static int pvcalls_back_socket(struct xenbus_device *dev,
262 		struct xen_pvcalls_request *req)
263 {
264 	struct pvcalls_fedata *fedata;
265 	int ret;
266 	struct xen_pvcalls_response *rsp;
267 
268 	fedata = dev_get_drvdata(&dev->dev);
269 
270 	if (req->u.socket.domain != AF_INET ||
271 	    req->u.socket.type != SOCK_STREAM ||
272 	    (req->u.socket.protocol != IPPROTO_IP &&
273 	     req->u.socket.protocol != AF_INET))
274 		ret = -EAFNOSUPPORT;
275 	else
276 		ret = 0;
277 
278 	/* leave the actual socket allocation for later */
279 
280 	rsp = RING_GET_RESPONSE(&fedata->ring, fedata->ring.rsp_prod_pvt++);
281 	rsp->req_id = req->req_id;
282 	rsp->cmd = req->cmd;
283 	rsp->u.socket.id = req->u.socket.id;
284 	rsp->ret = ret;
285 
286 	return 0;
287 }
288 
289 static void pvcalls_sk_state_change(struct sock *sock)
290 {
291 	struct sock_mapping *map = sock->sk_user_data;
292 
293 	if (map == NULL)
294 		return;
295 
296 	atomic_inc(&map->read);
297 	notify_remote_via_irq(map->irq);
298 }
299 
300 static void pvcalls_sk_data_ready(struct sock *sock)
301 {
302 	struct sock_mapping *map = sock->sk_user_data;
303 	struct pvcalls_ioworker *iow;
304 
305 	trace_sk_data_ready(sock);
306 
307 	if (map == NULL)
308 		return;
309 
310 	iow = &map->ioworker;
311 	atomic_inc(&map->read);
312 	atomic_inc(&map->io);
313 	queue_work(iow->wq, &iow->register_work);
314 }
315 
316 static struct sock_mapping *pvcalls_new_active_socket(
317 		struct pvcalls_fedata *fedata,
318 		uint64_t id,
319 		grant_ref_t ref,
320 		evtchn_port_t evtchn,
321 		struct socket *sock)
322 {
323 	int ret;
324 	struct sock_mapping *map;
325 	void *page;
326 
327 	map = kzalloc(sizeof(*map), GFP_KERNEL);
328 	if (map == NULL) {
329 		sock_release(sock);
330 		return NULL;
331 	}
332 
333 	map->fedata = fedata;
334 	map->sock = sock;
335 	map->id = id;
336 	map->ref = ref;
337 
338 	ret = xenbus_map_ring_valloc(fedata->dev, &ref, 1, &page);
339 	if (ret < 0)
340 		goto out;
341 	map->ring = page;
342 	map->ring_order = map->ring->ring_order;
343 	/* first read the order, then map the data ring */
344 	virt_rmb();
345 	if (map->ring_order > MAX_RING_ORDER) {
346 		pr_warn("%s frontend requested ring_order %u, which is > MAX (%u)\n",
347 				__func__, map->ring_order, MAX_RING_ORDER);
348 		goto out;
349 	}
350 	ret = xenbus_map_ring_valloc(fedata->dev, map->ring->ref,
351 				     (1 << map->ring_order), &page);
352 	if (ret < 0)
353 		goto out;
354 	map->bytes = page;
355 
356 	ret = bind_interdomain_evtchn_to_irqhandler_lateeoi(
357 			fedata->dev, evtchn,
358 			pvcalls_back_conn_event, 0, "pvcalls-backend", map);
359 	if (ret < 0)
360 		goto out;
361 	map->irq = ret;
362 
363 	map->data.in = map->bytes;
364 	map->data.out = map->bytes + XEN_FLEX_RING_SIZE(map->ring_order);
365 
366 	map->ioworker.wq = alloc_ordered_workqueue("pvcalls_io", 0);
367 	if (!map->ioworker.wq)
368 		goto out;
369 	atomic_set(&map->io, 1);
370 	INIT_WORK(&map->ioworker.register_work,	pvcalls_back_ioworker);
371 
372 	down(&fedata->socket_lock);
373 	list_add_tail(&map->list, &fedata->socket_mappings);
374 	up(&fedata->socket_lock);
375 
376 	write_lock_bh(&map->sock->sk->sk_callback_lock);
377 	map->saved_data_ready = map->sock->sk->sk_data_ready;
378 	map->sock->sk->sk_user_data = map;
379 	map->sock->sk->sk_data_ready = pvcalls_sk_data_ready;
380 	map->sock->sk->sk_state_change = pvcalls_sk_state_change;
381 	write_unlock_bh(&map->sock->sk->sk_callback_lock);
382 
383 	return map;
384 out:
385 	down(&fedata->socket_lock);
386 	list_del(&map->list);
387 	pvcalls_back_release_active(fedata->dev, fedata, map);
388 	up(&fedata->socket_lock);
389 	return NULL;
390 }
391 
392 static int pvcalls_back_connect(struct xenbus_device *dev,
393 				struct xen_pvcalls_request *req)
394 {
395 	struct pvcalls_fedata *fedata;
396 	int ret = -EINVAL;
397 	struct socket *sock;
398 	struct sock_mapping *map;
399 	struct xen_pvcalls_response *rsp;
400 	struct sockaddr *sa = (struct sockaddr *)&req->u.connect.addr;
401 
402 	fedata = dev_get_drvdata(&dev->dev);
403 
404 	if (req->u.connect.len < sizeof(sa->sa_family) ||
405 	    req->u.connect.len > sizeof(req->u.connect.addr) ||
406 	    sa->sa_family != AF_INET)
407 		goto out;
408 
409 	ret = sock_create(AF_INET, SOCK_STREAM, 0, &sock);
410 	if (ret < 0)
411 		goto out;
412 	ret = inet_stream_connect(sock, sa, req->u.connect.len, 0);
413 	if (ret < 0) {
414 		sock_release(sock);
415 		goto out;
416 	}
417 
418 	map = pvcalls_new_active_socket(fedata,
419 					req->u.connect.id,
420 					req->u.connect.ref,
421 					req->u.connect.evtchn,
422 					sock);
423 	if (!map)
424 		ret = -EFAULT;
425 
426 out:
427 	rsp = RING_GET_RESPONSE(&fedata->ring, fedata->ring.rsp_prod_pvt++);
428 	rsp->req_id = req->req_id;
429 	rsp->cmd = req->cmd;
430 	rsp->u.connect.id = req->u.connect.id;
431 	rsp->ret = ret;
432 
433 	return 0;
434 }
435 
436 static int pvcalls_back_release_active(struct xenbus_device *dev,
437 				       struct pvcalls_fedata *fedata,
438 				       struct sock_mapping *map)
439 {
440 	disable_irq(map->irq);
441 	if (map->sock->sk != NULL) {
442 		write_lock_bh(&map->sock->sk->sk_callback_lock);
443 		map->sock->sk->sk_user_data = NULL;
444 		map->sock->sk->sk_data_ready = map->saved_data_ready;
445 		write_unlock_bh(&map->sock->sk->sk_callback_lock);
446 	}
447 
448 	atomic_set(&map->release, 1);
449 	flush_work(&map->ioworker.register_work);
450 
451 	xenbus_unmap_ring_vfree(dev, map->bytes);
452 	xenbus_unmap_ring_vfree(dev, (void *)map->ring);
453 	unbind_from_irqhandler(map->irq, map);
454 
455 	sock_release(map->sock);
456 	kfree(map);
457 
458 	return 0;
459 }
460 
461 static int pvcalls_back_release_passive(struct xenbus_device *dev,
462 					struct pvcalls_fedata *fedata,
463 					struct sockpass_mapping *mappass)
464 {
465 	if (mappass->sock->sk != NULL) {
466 		write_lock_bh(&mappass->sock->sk->sk_callback_lock);
467 		mappass->sock->sk->sk_user_data = NULL;
468 		mappass->sock->sk->sk_data_ready = mappass->saved_data_ready;
469 		write_unlock_bh(&mappass->sock->sk->sk_callback_lock);
470 	}
471 	sock_release(mappass->sock);
472 	destroy_workqueue(mappass->wq);
473 	kfree(mappass);
474 
475 	return 0;
476 }
477 
478 static int pvcalls_back_release(struct xenbus_device *dev,
479 				struct xen_pvcalls_request *req)
480 {
481 	struct pvcalls_fedata *fedata;
482 	struct sock_mapping *map, *n;
483 	struct sockpass_mapping *mappass;
484 	int ret = 0;
485 	struct xen_pvcalls_response *rsp;
486 
487 	fedata = dev_get_drvdata(&dev->dev);
488 
489 	down(&fedata->socket_lock);
490 	list_for_each_entry_safe(map, n, &fedata->socket_mappings, list) {
491 		if (map->id == req->u.release.id) {
492 			list_del(&map->list);
493 			up(&fedata->socket_lock);
494 			ret = pvcalls_back_release_active(dev, fedata, map);
495 			goto out;
496 		}
497 	}
498 	mappass = radix_tree_lookup(&fedata->socketpass_mappings,
499 				    req->u.release.id);
500 	if (mappass != NULL) {
501 		radix_tree_delete(&fedata->socketpass_mappings, mappass->id);
502 		up(&fedata->socket_lock);
503 		ret = pvcalls_back_release_passive(dev, fedata, mappass);
504 	} else
505 		up(&fedata->socket_lock);
506 
507 out:
508 	rsp = RING_GET_RESPONSE(&fedata->ring, fedata->ring.rsp_prod_pvt++);
509 	rsp->req_id = req->req_id;
510 	rsp->u.release.id = req->u.release.id;
511 	rsp->cmd = req->cmd;
512 	rsp->ret = ret;
513 	return 0;
514 }
515 
516 static void __pvcalls_back_accept(struct work_struct *work)
517 {
518 	struct sockpass_mapping *mappass = container_of(
519 		work, struct sockpass_mapping, register_work);
520 	struct proto_accept_arg arg = {
521 		.flags = O_NONBLOCK,
522 		.kern = true,
523 	};
524 	struct sock_mapping *map;
525 	struct pvcalls_ioworker *iow;
526 	struct pvcalls_fedata *fedata;
527 	struct socket *sock;
528 	struct xen_pvcalls_response *rsp;
529 	struct xen_pvcalls_request *req;
530 	int notify;
531 	int ret = -EINVAL;
532 	unsigned long flags;
533 
534 	fedata = mappass->fedata;
535 	/*
536 	 * __pvcalls_back_accept can race against pvcalls_back_accept.
537 	 * We only need to check the value of "cmd" on read. It could be
538 	 * done atomically, but to simplify the code on the write side, we
539 	 * use a spinlock.
540 	 */
541 	spin_lock_irqsave(&mappass->copy_lock, flags);
542 	req = &mappass->reqcopy;
543 	if (req->cmd != PVCALLS_ACCEPT) {
544 		spin_unlock_irqrestore(&mappass->copy_lock, flags);
545 		return;
546 	}
547 	spin_unlock_irqrestore(&mappass->copy_lock, flags);
548 
549 	sock = sock_alloc();
550 	if (sock == NULL)
551 		goto out_error;
552 	sock->type = mappass->sock->type;
553 	sock->ops = mappass->sock->ops;
554 
555 	ret = inet_accept(mappass->sock, sock, &arg);
556 	if (ret == -EAGAIN) {
557 		sock_release(sock);
558 		return;
559 	}
560 
561 	map = pvcalls_new_active_socket(fedata,
562 					req->u.accept.id_new,
563 					req->u.accept.ref,
564 					req->u.accept.evtchn,
565 					sock);
566 	if (!map) {
567 		ret = -EFAULT;
568 		goto out_error;
569 	}
570 
571 	map->sockpass = mappass;
572 	iow = &map->ioworker;
573 	atomic_inc(&map->read);
574 	atomic_inc(&map->io);
575 	queue_work(iow->wq, &iow->register_work);
576 
577 out_error:
578 	rsp = RING_GET_RESPONSE(&fedata->ring, fedata->ring.rsp_prod_pvt++);
579 	rsp->req_id = req->req_id;
580 	rsp->cmd = req->cmd;
581 	rsp->u.accept.id = req->u.accept.id;
582 	rsp->ret = ret;
583 	RING_PUSH_RESPONSES_AND_CHECK_NOTIFY(&fedata->ring, notify);
584 	if (notify)
585 		notify_remote_via_irq(fedata->irq);
586 
587 	mappass->reqcopy.cmd = 0;
588 }
589 
590 static void pvcalls_pass_sk_data_ready(struct sock *sock)
591 {
592 	struct sockpass_mapping *mappass = sock->sk_user_data;
593 	struct pvcalls_fedata *fedata;
594 	struct xen_pvcalls_response *rsp;
595 	unsigned long flags;
596 	int notify;
597 
598 	trace_sk_data_ready(sock);
599 
600 	if (mappass == NULL)
601 		return;
602 
603 	fedata = mappass->fedata;
604 	spin_lock_irqsave(&mappass->copy_lock, flags);
605 	if (mappass->reqcopy.cmd == PVCALLS_POLL) {
606 		rsp = RING_GET_RESPONSE(&fedata->ring,
607 					fedata->ring.rsp_prod_pvt++);
608 		rsp->req_id = mappass->reqcopy.req_id;
609 		rsp->u.poll.id = mappass->reqcopy.u.poll.id;
610 		rsp->cmd = mappass->reqcopy.cmd;
611 		rsp->ret = 0;
612 
613 		mappass->reqcopy.cmd = 0;
614 		spin_unlock_irqrestore(&mappass->copy_lock, flags);
615 
616 		RING_PUSH_RESPONSES_AND_CHECK_NOTIFY(&fedata->ring, notify);
617 		if (notify)
618 			notify_remote_via_irq(mappass->fedata->irq);
619 	} else {
620 		spin_unlock_irqrestore(&mappass->copy_lock, flags);
621 		queue_work(mappass->wq, &mappass->register_work);
622 	}
623 }
624 
625 static int pvcalls_back_bind(struct xenbus_device *dev,
626 			     struct xen_pvcalls_request *req)
627 {
628 	struct pvcalls_fedata *fedata;
629 	int ret;
630 	struct sockpass_mapping *map;
631 	struct xen_pvcalls_response *rsp;
632 
633 	fedata = dev_get_drvdata(&dev->dev);
634 
635 	map = kzalloc(sizeof(*map), GFP_KERNEL);
636 	if (map == NULL) {
637 		ret = -ENOMEM;
638 		goto out;
639 	}
640 
641 	INIT_WORK(&map->register_work, __pvcalls_back_accept);
642 	spin_lock_init(&map->copy_lock);
643 	map->wq = alloc_ordered_workqueue("pvcalls_wq", 0);
644 	if (!map->wq) {
645 		ret = -ENOMEM;
646 		goto out;
647 	}
648 
649 	ret = sock_create(AF_INET, SOCK_STREAM, 0, &map->sock);
650 	if (ret < 0)
651 		goto out;
652 
653 	ret = inet_bind(map->sock, (struct sockaddr *)&req->u.bind.addr,
654 			req->u.bind.len);
655 	if (ret < 0)
656 		goto out;
657 
658 	map->fedata = fedata;
659 	map->id = req->u.bind.id;
660 
661 	down(&fedata->socket_lock);
662 	ret = radix_tree_insert(&fedata->socketpass_mappings, map->id,
663 				map);
664 	up(&fedata->socket_lock);
665 	if (ret)
666 		goto out;
667 
668 	write_lock_bh(&map->sock->sk->sk_callback_lock);
669 	map->saved_data_ready = map->sock->sk->sk_data_ready;
670 	map->sock->sk->sk_user_data = map;
671 	map->sock->sk->sk_data_ready = pvcalls_pass_sk_data_ready;
672 	write_unlock_bh(&map->sock->sk->sk_callback_lock);
673 
674 out:
675 	if (ret) {
676 		if (map && map->sock)
677 			sock_release(map->sock);
678 		if (map && map->wq)
679 			destroy_workqueue(map->wq);
680 		kfree(map);
681 	}
682 	rsp = RING_GET_RESPONSE(&fedata->ring, fedata->ring.rsp_prod_pvt++);
683 	rsp->req_id = req->req_id;
684 	rsp->cmd = req->cmd;
685 	rsp->u.bind.id = req->u.bind.id;
686 	rsp->ret = ret;
687 	return 0;
688 }
689 
690 static int pvcalls_back_listen(struct xenbus_device *dev,
691 			       struct xen_pvcalls_request *req)
692 {
693 	struct pvcalls_fedata *fedata;
694 	int ret = -EINVAL;
695 	struct sockpass_mapping *map;
696 	struct xen_pvcalls_response *rsp;
697 
698 	fedata = dev_get_drvdata(&dev->dev);
699 
700 	down(&fedata->socket_lock);
701 	map = radix_tree_lookup(&fedata->socketpass_mappings, req->u.listen.id);
702 	up(&fedata->socket_lock);
703 	if (map == NULL)
704 		goto out;
705 
706 	ret = inet_listen(map->sock, req->u.listen.backlog);
707 
708 out:
709 	rsp = RING_GET_RESPONSE(&fedata->ring, fedata->ring.rsp_prod_pvt++);
710 	rsp->req_id = req->req_id;
711 	rsp->cmd = req->cmd;
712 	rsp->u.listen.id = req->u.listen.id;
713 	rsp->ret = ret;
714 	return 0;
715 }
716 
717 static int pvcalls_back_accept(struct xenbus_device *dev,
718 			       struct xen_pvcalls_request *req)
719 {
720 	struct pvcalls_fedata *fedata;
721 	struct sockpass_mapping *mappass;
722 	int ret = -EINVAL;
723 	struct xen_pvcalls_response *rsp;
724 	unsigned long flags;
725 
726 	fedata = dev_get_drvdata(&dev->dev);
727 
728 	down(&fedata->socket_lock);
729 	mappass = radix_tree_lookup(&fedata->socketpass_mappings,
730 		req->u.accept.id);
731 	up(&fedata->socket_lock);
732 	if (mappass == NULL)
733 		goto out_error;
734 
735 	/*
736 	 * Limitation of the current implementation: only support one
737 	 * concurrent accept or poll call on one socket.
738 	 */
739 	spin_lock_irqsave(&mappass->copy_lock, flags);
740 	if (mappass->reqcopy.cmd != 0) {
741 		spin_unlock_irqrestore(&mappass->copy_lock, flags);
742 		ret = -EINTR;
743 		goto out_error;
744 	}
745 
746 	mappass->reqcopy = *req;
747 	spin_unlock_irqrestore(&mappass->copy_lock, flags);
748 	queue_work(mappass->wq, &mappass->register_work);
749 
750 	/* Tell the caller we don't need to send back a notification yet */
751 	return -1;
752 
753 out_error:
754 	rsp = RING_GET_RESPONSE(&fedata->ring, fedata->ring.rsp_prod_pvt++);
755 	rsp->req_id = req->req_id;
756 	rsp->cmd = req->cmd;
757 	rsp->u.accept.id = req->u.accept.id;
758 	rsp->ret = ret;
759 	return 0;
760 }
761 
762 static int pvcalls_back_poll(struct xenbus_device *dev,
763 			     struct xen_pvcalls_request *req)
764 {
765 	struct pvcalls_fedata *fedata;
766 	struct sockpass_mapping *mappass;
767 	struct xen_pvcalls_response *rsp;
768 	struct inet_connection_sock *icsk;
769 	struct request_sock_queue *queue;
770 	unsigned long flags;
771 	int ret;
772 	bool data;
773 
774 	fedata = dev_get_drvdata(&dev->dev);
775 
776 	down(&fedata->socket_lock);
777 	mappass = radix_tree_lookup(&fedata->socketpass_mappings,
778 				    req->u.poll.id);
779 	up(&fedata->socket_lock);
780 	if (mappass == NULL)
781 		return -EINVAL;
782 
783 	/*
784 	 * Limitation of the current implementation: only support one
785 	 * concurrent accept or poll call on one socket.
786 	 */
787 	spin_lock_irqsave(&mappass->copy_lock, flags);
788 	if (mappass->reqcopy.cmd != 0) {
789 		ret = -EINTR;
790 		goto out;
791 	}
792 
793 	mappass->reqcopy = *req;
794 	icsk = inet_csk(mappass->sock->sk);
795 	queue = &icsk->icsk_accept_queue;
796 	data = READ_ONCE(queue->rskq_accept_head) != NULL;
797 	if (data) {
798 		mappass->reqcopy.cmd = 0;
799 		ret = 0;
800 		goto out;
801 	}
802 	spin_unlock_irqrestore(&mappass->copy_lock, flags);
803 
804 	/* Tell the caller we don't need to send back a notification yet */
805 	return -1;
806 
807 out:
808 	spin_unlock_irqrestore(&mappass->copy_lock, flags);
809 
810 	rsp = RING_GET_RESPONSE(&fedata->ring, fedata->ring.rsp_prod_pvt++);
811 	rsp->req_id = req->req_id;
812 	rsp->cmd = req->cmd;
813 	rsp->u.poll.id = req->u.poll.id;
814 	rsp->ret = ret;
815 	return 0;
816 }
817 
818 static int pvcalls_back_handle_cmd(struct xenbus_device *dev,
819 				   struct xen_pvcalls_request *req)
820 {
821 	int ret = 0;
822 
823 	switch (req->cmd) {
824 	case PVCALLS_SOCKET:
825 		ret = pvcalls_back_socket(dev, req);
826 		break;
827 	case PVCALLS_CONNECT:
828 		ret = pvcalls_back_connect(dev, req);
829 		break;
830 	case PVCALLS_RELEASE:
831 		ret = pvcalls_back_release(dev, req);
832 		break;
833 	case PVCALLS_BIND:
834 		ret = pvcalls_back_bind(dev, req);
835 		break;
836 	case PVCALLS_LISTEN:
837 		ret = pvcalls_back_listen(dev, req);
838 		break;
839 	case PVCALLS_ACCEPT:
840 		ret = pvcalls_back_accept(dev, req);
841 		break;
842 	case PVCALLS_POLL:
843 		ret = pvcalls_back_poll(dev, req);
844 		break;
845 	default:
846 	{
847 		struct pvcalls_fedata *fedata;
848 		struct xen_pvcalls_response *rsp;
849 
850 		fedata = dev_get_drvdata(&dev->dev);
851 		rsp = RING_GET_RESPONSE(
852 				&fedata->ring, fedata->ring.rsp_prod_pvt++);
853 		rsp->req_id = req->req_id;
854 		rsp->cmd = req->cmd;
855 		rsp->ret = -ENOTSUPP;
856 		break;
857 	}
858 	}
859 	return ret;
860 }
861 
862 static void pvcalls_back_work(struct pvcalls_fedata *fedata)
863 {
864 	int notify, notify_all = 0, more = 1;
865 	struct xen_pvcalls_request req;
866 	struct xenbus_device *dev = fedata->dev;
867 
868 	while (more) {
869 		while (RING_HAS_UNCONSUMED_REQUESTS(&fedata->ring)) {
870 			RING_COPY_REQUEST(&fedata->ring,
871 					  fedata->ring.req_cons++,
872 					  &req);
873 
874 			if (!pvcalls_back_handle_cmd(dev, &req)) {
875 				RING_PUSH_RESPONSES_AND_CHECK_NOTIFY(
876 					&fedata->ring, notify);
877 				notify_all += notify;
878 			}
879 		}
880 
881 		if (notify_all) {
882 			notify_remote_via_irq(fedata->irq);
883 			notify_all = 0;
884 		}
885 
886 		RING_FINAL_CHECK_FOR_REQUESTS(&fedata->ring, more);
887 	}
888 }
889 
890 static irqreturn_t pvcalls_back_event(int irq, void *dev_id)
891 {
892 	struct xenbus_device *dev = dev_id;
893 	struct pvcalls_fedata *fedata = NULL;
894 	unsigned int eoi_flags = XEN_EOI_FLAG_SPURIOUS;
895 
896 	if (dev) {
897 		fedata = dev_get_drvdata(&dev->dev);
898 		if (fedata) {
899 			pvcalls_back_work(fedata);
900 			eoi_flags = 0;
901 		}
902 	}
903 
904 	xen_irq_lateeoi(irq, eoi_flags);
905 
906 	return IRQ_HANDLED;
907 }
908 
909 static irqreturn_t pvcalls_back_conn_event(int irq, void *sock_map)
910 {
911 	struct sock_mapping *map = sock_map;
912 	struct pvcalls_ioworker *iow;
913 
914 	if (map == NULL || map->sock == NULL || map->sock->sk == NULL ||
915 		map->sock->sk->sk_user_data != map) {
916 		xen_irq_lateeoi(irq, 0);
917 		return IRQ_HANDLED;
918 	}
919 
920 	iow = &map->ioworker;
921 
922 	atomic_inc(&map->write);
923 	atomic_inc(&map->eoi);
924 	atomic_inc(&map->io);
925 	queue_work(iow->wq, &iow->register_work);
926 
927 	return IRQ_HANDLED;
928 }
929 
930 static int backend_connect(struct xenbus_device *dev)
931 {
932 	int err;
933 	evtchn_port_t evtchn;
934 	grant_ref_t ring_ref;
935 	struct pvcalls_fedata *fedata = NULL;
936 
937 	fedata = kzalloc(sizeof(struct pvcalls_fedata), GFP_KERNEL);
938 	if (!fedata)
939 		return -ENOMEM;
940 
941 	fedata->irq = -1;
942 	err = xenbus_scanf(XBT_NIL, dev->otherend, "port", "%u",
943 			   &evtchn);
944 	if (err != 1) {
945 		err = -EINVAL;
946 		xenbus_dev_fatal(dev, err, "reading %s/event-channel",
947 				 dev->otherend);
948 		goto error;
949 	}
950 
951 	err = xenbus_scanf(XBT_NIL, dev->otherend, "ring-ref", "%u", &ring_ref);
952 	if (err != 1) {
953 		err = -EINVAL;
954 		xenbus_dev_fatal(dev, err, "reading %s/ring-ref",
955 				 dev->otherend);
956 		goto error;
957 	}
958 
959 	err = bind_interdomain_evtchn_to_irq_lateeoi(dev, evtchn);
960 	if (err < 0)
961 		goto error;
962 	fedata->irq = err;
963 
964 	err = request_threaded_irq(fedata->irq, NULL, pvcalls_back_event,
965 				   IRQF_ONESHOT, "pvcalls-back", dev);
966 	if (err < 0)
967 		goto error;
968 
969 	err = xenbus_map_ring_valloc(dev, &ring_ref, 1,
970 				     (void **)&fedata->sring);
971 	if (err < 0)
972 		goto error;
973 
974 	BACK_RING_INIT(&fedata->ring, fedata->sring, XEN_PAGE_SIZE * 1);
975 	fedata->dev = dev;
976 
977 	INIT_LIST_HEAD(&fedata->socket_mappings);
978 	INIT_RADIX_TREE(&fedata->socketpass_mappings, GFP_KERNEL);
979 	sema_init(&fedata->socket_lock, 1);
980 	dev_set_drvdata(&dev->dev, fedata);
981 
982 	down(&pvcalls_back_global.frontends_lock);
983 	list_add_tail(&fedata->list, &pvcalls_back_global.frontends);
984 	up(&pvcalls_back_global.frontends_lock);
985 
986 	return 0;
987 
988  error:
989 	if (fedata->irq >= 0)
990 		unbind_from_irqhandler(fedata->irq, dev);
991 	if (fedata->sring != NULL)
992 		xenbus_unmap_ring_vfree(dev, fedata->sring);
993 	kfree(fedata);
994 	return err;
995 }
996 
997 static int backend_disconnect(struct xenbus_device *dev)
998 {
999 	struct pvcalls_fedata *fedata;
1000 	struct sock_mapping *map, *n;
1001 	struct sockpass_mapping *mappass;
1002 	struct radix_tree_iter iter;
1003 	void **slot;
1004 
1005 
1006 	fedata = dev_get_drvdata(&dev->dev);
1007 
1008 	down(&fedata->socket_lock);
1009 	list_for_each_entry_safe(map, n, &fedata->socket_mappings, list) {
1010 		list_del(&map->list);
1011 		pvcalls_back_release_active(dev, fedata, map);
1012 	}
1013 
1014 	radix_tree_for_each_slot(slot, &fedata->socketpass_mappings, &iter, 0) {
1015 		mappass = radix_tree_deref_slot(slot);
1016 		if (!mappass)
1017 			continue;
1018 		if (radix_tree_exception(mappass)) {
1019 			if (radix_tree_deref_retry(mappass))
1020 				slot = radix_tree_iter_retry(&iter);
1021 		} else {
1022 			radix_tree_delete(&fedata->socketpass_mappings,
1023 					  mappass->id);
1024 			pvcalls_back_release_passive(dev, fedata, mappass);
1025 		}
1026 	}
1027 	up(&fedata->socket_lock);
1028 
1029 	unbind_from_irqhandler(fedata->irq, dev);
1030 	xenbus_unmap_ring_vfree(dev, fedata->sring);
1031 
1032 	list_del(&fedata->list);
1033 	kfree(fedata);
1034 	dev_set_drvdata(&dev->dev, NULL);
1035 
1036 	return 0;
1037 }
1038 
1039 static int pvcalls_back_probe(struct xenbus_device *dev,
1040 			      const struct xenbus_device_id *id)
1041 {
1042 	int err, abort;
1043 	struct xenbus_transaction xbt;
1044 
1045 again:
1046 	abort = 1;
1047 
1048 	err = xenbus_transaction_start(&xbt);
1049 	if (err) {
1050 		pr_warn("%s cannot create xenstore transaction\n", __func__);
1051 		return err;
1052 	}
1053 
1054 	err = xenbus_printf(xbt, dev->nodename, "versions", "%s",
1055 			    PVCALLS_VERSIONS);
1056 	if (err) {
1057 		pr_warn("%s write out 'versions' failed\n", __func__);
1058 		goto abort;
1059 	}
1060 
1061 	err = xenbus_printf(xbt, dev->nodename, "max-page-order", "%u",
1062 			    MAX_RING_ORDER);
1063 	if (err) {
1064 		pr_warn("%s write out 'max-page-order' failed\n", __func__);
1065 		goto abort;
1066 	}
1067 
1068 	err = xenbus_printf(xbt, dev->nodename, "function-calls",
1069 			    XENBUS_FUNCTIONS_CALLS);
1070 	if (err) {
1071 		pr_warn("%s write out 'function-calls' failed\n", __func__);
1072 		goto abort;
1073 	}
1074 
1075 	abort = 0;
1076 abort:
1077 	err = xenbus_transaction_end(xbt, abort);
1078 	if (err) {
1079 		if (err == -EAGAIN && !abort)
1080 			goto again;
1081 		pr_warn("%s cannot complete xenstore transaction\n", __func__);
1082 		return err;
1083 	}
1084 
1085 	if (abort)
1086 		return -EFAULT;
1087 
1088 	xenbus_switch_state(dev, XenbusStateInitWait);
1089 
1090 	return 0;
1091 }
1092 
1093 static void set_backend_state(struct xenbus_device *dev,
1094 			      enum xenbus_state state)
1095 {
1096 	while (dev->state != state) {
1097 		switch (dev->state) {
1098 		case XenbusStateClosed:
1099 			switch (state) {
1100 			case XenbusStateInitWait:
1101 			case XenbusStateConnected:
1102 				xenbus_switch_state(dev, XenbusStateInitWait);
1103 				break;
1104 			case XenbusStateClosing:
1105 				xenbus_switch_state(dev, XenbusStateClosing);
1106 				break;
1107 			default:
1108 				WARN_ON(1);
1109 			}
1110 			break;
1111 		case XenbusStateInitWait:
1112 		case XenbusStateInitialised:
1113 			switch (state) {
1114 			case XenbusStateConnected:
1115 				if (backend_connect(dev))
1116 					return;
1117 				xenbus_switch_state(dev, XenbusStateConnected);
1118 				break;
1119 			case XenbusStateClosing:
1120 			case XenbusStateClosed:
1121 				xenbus_switch_state(dev, XenbusStateClosing);
1122 				break;
1123 			default:
1124 				WARN_ON(1);
1125 			}
1126 			break;
1127 		case XenbusStateConnected:
1128 			switch (state) {
1129 			case XenbusStateInitWait:
1130 			case XenbusStateClosing:
1131 			case XenbusStateClosed:
1132 				down(&pvcalls_back_global.frontends_lock);
1133 				backend_disconnect(dev);
1134 				up(&pvcalls_back_global.frontends_lock);
1135 				xenbus_switch_state(dev, XenbusStateClosing);
1136 				break;
1137 			default:
1138 				WARN_ON(1);
1139 			}
1140 			break;
1141 		case XenbusStateClosing:
1142 			switch (state) {
1143 			case XenbusStateInitWait:
1144 			case XenbusStateConnected:
1145 			case XenbusStateClosed:
1146 				xenbus_switch_state(dev, XenbusStateClosed);
1147 				break;
1148 			default:
1149 				WARN_ON(1);
1150 			}
1151 			break;
1152 		default:
1153 			WARN_ON(1);
1154 		}
1155 	}
1156 }
1157 
1158 static void pvcalls_back_changed(struct xenbus_device *dev,
1159 				 enum xenbus_state frontend_state)
1160 {
1161 	switch (frontend_state) {
1162 	case XenbusStateInitialising:
1163 		set_backend_state(dev, XenbusStateInitWait);
1164 		break;
1165 
1166 	case XenbusStateInitialised:
1167 	case XenbusStateConnected:
1168 		set_backend_state(dev, XenbusStateConnected);
1169 		break;
1170 
1171 	case XenbusStateClosing:
1172 		set_backend_state(dev, XenbusStateClosing);
1173 		break;
1174 
1175 	case XenbusStateClosed:
1176 		set_backend_state(dev, XenbusStateClosed);
1177 		if (xenbus_dev_is_online(dev))
1178 			break;
1179 		device_unregister(&dev->dev);
1180 		break;
1181 	case XenbusStateUnknown:
1182 		set_backend_state(dev, XenbusStateClosed);
1183 		device_unregister(&dev->dev);
1184 		break;
1185 
1186 	default:
1187 		xenbus_dev_fatal(dev, -EINVAL, "saw state %d at frontend",
1188 				 frontend_state);
1189 		break;
1190 	}
1191 }
1192 
1193 static void pvcalls_back_remove(struct xenbus_device *dev)
1194 {
1195 }
1196 
1197 static int pvcalls_back_uevent(const struct xenbus_device *xdev,
1198 			       struct kobj_uevent_env *env)
1199 {
1200 	return 0;
1201 }
1202 
1203 static const struct xenbus_device_id pvcalls_back_ids[] = {
1204 	{ "pvcalls" },
1205 	{ "" }
1206 };
1207 
1208 static struct xenbus_driver pvcalls_back_driver = {
1209 	.ids = pvcalls_back_ids,
1210 	.probe = pvcalls_back_probe,
1211 	.remove = pvcalls_back_remove,
1212 	.uevent = pvcalls_back_uevent,
1213 	.otherend_changed = pvcalls_back_changed,
1214 };
1215 
1216 static int __init pvcalls_back_init(void)
1217 {
1218 	int ret;
1219 
1220 	if (!xen_domain())
1221 		return -ENODEV;
1222 
1223 	ret = xenbus_register_backend(&pvcalls_back_driver);
1224 	if (ret < 0)
1225 		return ret;
1226 
1227 	sema_init(&pvcalls_back_global.frontends_lock, 1);
1228 	INIT_LIST_HEAD(&pvcalls_back_global.frontends);
1229 	return 0;
1230 }
1231 module_init(pvcalls_back_init);
1232 
1233 static void __exit pvcalls_back_fin(void)
1234 {
1235 	struct pvcalls_fedata *fedata, *nfedata;
1236 
1237 	down(&pvcalls_back_global.frontends_lock);
1238 	list_for_each_entry_safe(fedata, nfedata,
1239 				 &pvcalls_back_global.frontends, list) {
1240 		backend_disconnect(fedata->dev);
1241 	}
1242 	up(&pvcalls_back_global.frontends_lock);
1243 
1244 	xenbus_unregister_driver(&pvcalls_back_driver);
1245 }
1246 
1247 module_exit(pvcalls_back_fin);
1248 
1249 MODULE_DESCRIPTION("Xen PV Calls backend driver");
1250 MODULE_AUTHOR("Stefano Stabellini <sstabellini@kernel.org>");
1251 MODULE_LICENSE("GPL");
1252