1 // SPDX-License-Identifier: GPL-2.0+ 2 /* 3 * watchdog_dev.c 4 * 5 * (c) Copyright 2008-2011 Alan Cox <alan@lxorguk.ukuu.org.uk>, 6 * All Rights Reserved. 7 * 8 * (c) Copyright 2008-2011 Wim Van Sebroeck <wim@iguana.be>. 9 * 10 * (c) Copyright 2021 Hewlett Packard Enterprise Development LP. 11 * 12 * This source code is part of the generic code that can be used 13 * by all the watchdog timer drivers. 14 * 15 * This part of the generic code takes care of the following 16 * misc device: /dev/watchdog. 17 * 18 * Based on source code of the following authors: 19 * Matt Domsch <Matt_Domsch@dell.com>, 20 * Rob Radez <rob@osinvestor.com>, 21 * Rusty Lynch <rusty@linux.co.intel.com> 22 * Satyam Sharma <satyam@infradead.org> 23 * Randy Dunlap <randy.dunlap@oracle.com> 24 * 25 * Neither Alan Cox, CymruNet Ltd., Wim Van Sebroeck nor Iguana vzw. 26 * admit liability nor provide warranty for any of this software. 27 * This material is provided "AS-IS" and at no charge. 28 */ 29 30 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 31 32 #include <linux/cdev.h> /* For character device */ 33 #include <linux/errno.h> /* For the -ENODEV/... values */ 34 #include <linux/fs.h> /* For file operations */ 35 #include <linux/init.h> /* For __init/__exit/... */ 36 #include <linux/hrtimer.h> /* For hrtimers */ 37 #include <linux/kernel.h> /* For printk/panic/... */ 38 #include <linux/kstrtox.h> /* For kstrto* */ 39 #include <linux/kthread.h> /* For kthread_work */ 40 #include <linux/miscdevice.h> /* For handling misc devices */ 41 #include <linux/module.h> /* For module stuff/... */ 42 #include <linux/mutex.h> /* For mutexes */ 43 #include <linux/slab.h> /* For memory functions */ 44 #include <linux/types.h> /* For standard types (like size_t) */ 45 #include <linux/watchdog.h> /* For watchdog specific items */ 46 #include <linux/uaccess.h> /* For copy_to_user/put_user/... */ 47 48 #include "watchdog_core.h" 49 #include "watchdog_pretimeout.h" 50 51 #include <trace/events/watchdog.h> 52 53 /* the dev_t structure to store the dynamically allocated watchdog devices */ 54 static dev_t watchdog_devt; 55 /* Reference to watchdog device behind /dev/watchdog */ 56 static struct watchdog_core_data *old_wd_data; 57 58 static struct kthread_worker *watchdog_kworker; 59 60 static bool handle_boot_enabled = 61 IS_ENABLED(CONFIG_WATCHDOG_HANDLE_BOOT_ENABLED); 62 63 static unsigned open_timeout = CONFIG_WATCHDOG_OPEN_TIMEOUT; 64 65 static bool watchdog_past_open_deadline(struct watchdog_core_data *data) 66 { 67 return ktime_after(ktime_get(), data->open_deadline); 68 } 69 70 static void watchdog_set_open_deadline(struct watchdog_core_data *data) 71 { 72 data->open_deadline = open_timeout ? 73 ktime_get() + ktime_set(open_timeout, 0) : KTIME_MAX; 74 } 75 76 static inline bool watchdog_need_worker(struct watchdog_device *wdd) 77 { 78 /* All variables in milli-seconds */ 79 unsigned int hm = wdd->max_hw_heartbeat_ms; 80 unsigned int t = wdd->timeout * 1000; 81 82 /* 83 * A worker to generate heartbeat requests is needed if all of the 84 * following conditions are true. 85 * - Userspace activated the watchdog. 86 * - The driver provided a value for the maximum hardware timeout, and 87 * thus is aware that the framework supports generating heartbeat 88 * requests. 89 * - Userspace requests a longer timeout than the hardware can handle. 90 * 91 * Alternatively, if userspace has not opened the watchdog 92 * device, we take care of feeding the watchdog if it is 93 * running. 94 */ 95 return (hm && watchdog_active(wdd) && t > hm) || 96 (t && !watchdog_active(wdd) && watchdog_hw_running(wdd)); 97 } 98 99 static ktime_t watchdog_next_keepalive(struct watchdog_device *wdd) 100 { 101 struct watchdog_core_data *wd_data = wdd->wd_data; 102 unsigned int timeout_ms = wdd->timeout * 1000; 103 ktime_t keepalive_interval; 104 ktime_t last_heartbeat, latest_heartbeat; 105 ktime_t virt_timeout; 106 unsigned int hw_heartbeat_ms; 107 108 if (watchdog_active(wdd)) 109 virt_timeout = ktime_add(wd_data->last_keepalive, 110 ms_to_ktime(timeout_ms)); 111 else 112 virt_timeout = wd_data->open_deadline; 113 114 hw_heartbeat_ms = min_not_zero(timeout_ms, wdd->max_hw_heartbeat_ms); 115 keepalive_interval = ms_to_ktime(hw_heartbeat_ms / 2); 116 117 /* 118 * To ensure that the watchdog times out wdd->timeout seconds 119 * after the most recent ping from userspace, the last 120 * worker ping has to come in hw_heartbeat_ms before this timeout. 121 */ 122 last_heartbeat = ktime_sub(virt_timeout, ms_to_ktime(hw_heartbeat_ms)); 123 latest_heartbeat = ktime_sub(last_heartbeat, ktime_get()); 124 if (ktime_before(latest_heartbeat, keepalive_interval)) 125 return latest_heartbeat; 126 return keepalive_interval; 127 } 128 129 static inline void watchdog_update_worker(struct watchdog_device *wdd) 130 { 131 struct watchdog_core_data *wd_data = wdd->wd_data; 132 133 if (watchdog_need_worker(wdd)) { 134 ktime_t t = watchdog_next_keepalive(wdd); 135 136 if (t > 0) 137 hrtimer_start(&wd_data->timer, t, 138 HRTIMER_MODE_REL_HARD); 139 } else { 140 hrtimer_cancel(&wd_data->timer); 141 } 142 } 143 144 static int __watchdog_ping(struct watchdog_device *wdd) 145 { 146 struct watchdog_core_data *wd_data = wdd->wd_data; 147 ktime_t earliest_keepalive, now; 148 int err; 149 150 earliest_keepalive = ktime_add(wd_data->last_hw_keepalive, 151 ms_to_ktime(wdd->min_hw_heartbeat_ms)); 152 now = ktime_get(); 153 154 if (ktime_after(earliest_keepalive, now)) { 155 hrtimer_start(&wd_data->timer, 156 ktime_sub(earliest_keepalive, now), 157 HRTIMER_MODE_REL_HARD); 158 return 0; 159 } 160 161 wd_data->last_hw_keepalive = now; 162 163 if (wdd->ops->ping) { 164 err = wdd->ops->ping(wdd); /* ping the watchdog */ 165 trace_watchdog_ping(wdd, err); 166 } else { 167 err = wdd->ops->start(wdd); /* restart watchdog */ 168 trace_watchdog_start(wdd, err); 169 } 170 171 if (err == 0) 172 watchdog_hrtimer_pretimeout_start(wdd); 173 174 watchdog_update_worker(wdd); 175 176 return err; 177 } 178 179 /* 180 * watchdog_ping - ping the watchdog 181 * @wdd: The watchdog device to ping 182 * 183 * If the watchdog has no own ping operation then it needs to be 184 * restarted via the start operation. This wrapper function does 185 * exactly that. 186 * We only ping when the watchdog device is running. 187 * The caller must hold wd_data->lock. 188 * 189 * Return: 0 on success, error otherwise. 190 */ 191 static int watchdog_ping(struct watchdog_device *wdd) 192 { 193 struct watchdog_core_data *wd_data = wdd->wd_data; 194 195 if (!watchdog_hw_running(wdd)) 196 return 0; 197 198 set_bit(_WDOG_KEEPALIVE, &wd_data->status); 199 200 wd_data->last_keepalive = ktime_get(); 201 return __watchdog_ping(wdd); 202 } 203 204 static bool watchdog_worker_should_ping(struct watchdog_core_data *wd_data) 205 { 206 struct watchdog_device *wdd = wd_data->wdd; 207 208 if (!wdd) 209 return false; 210 211 if (watchdog_active(wdd)) 212 return true; 213 214 return watchdog_hw_running(wdd) && !watchdog_past_open_deadline(wd_data); 215 } 216 217 static void watchdog_ping_work(struct kthread_work *work) 218 { 219 struct watchdog_core_data *wd_data; 220 221 wd_data = container_of(work, struct watchdog_core_data, work); 222 223 mutex_lock(&wd_data->lock); 224 if (watchdog_worker_should_ping(wd_data)) 225 __watchdog_ping(wd_data->wdd); 226 mutex_unlock(&wd_data->lock); 227 } 228 229 static enum hrtimer_restart watchdog_timer_expired(struct hrtimer *timer) 230 { 231 struct watchdog_core_data *wd_data; 232 233 wd_data = container_of(timer, struct watchdog_core_data, timer); 234 235 kthread_queue_work(watchdog_kworker, &wd_data->work); 236 return HRTIMER_NORESTART; 237 } 238 239 /* 240 * watchdog_start - wrapper to start the watchdog 241 * @wdd: The watchdog device to start 242 * 243 * Start the watchdog if it is not active and mark it active. 244 * The caller must hold wd_data->lock. 245 * 246 * Return: 0 on success or a negative errno code for failure. 247 */ 248 static int watchdog_start(struct watchdog_device *wdd) 249 { 250 struct watchdog_core_data *wd_data = wdd->wd_data; 251 ktime_t started_at; 252 int err; 253 254 if (watchdog_active(wdd)) 255 return 0; 256 257 set_bit(_WDOG_KEEPALIVE, &wd_data->status); 258 259 started_at = ktime_get(); 260 if (watchdog_hw_running(wdd) && wdd->ops->ping) { 261 err = __watchdog_ping(wdd); 262 if (err == 0) { 263 set_bit(WDOG_ACTIVE, &wdd->status); 264 watchdog_hrtimer_pretimeout_start(wdd); 265 } 266 } else { 267 err = wdd->ops->start(wdd); 268 trace_watchdog_start(wdd, err); 269 if (err == 0) { 270 set_bit(WDOG_ACTIVE, &wdd->status); 271 set_bit(WDOG_HW_RUNNING, &wdd->status); 272 wd_data->last_keepalive = started_at; 273 wd_data->last_hw_keepalive = started_at; 274 watchdog_update_worker(wdd); 275 watchdog_hrtimer_pretimeout_start(wdd); 276 } 277 } 278 279 return err; 280 } 281 282 /* 283 * watchdog_stop - wrapper to stop the watchdog 284 * @wdd: The watchdog device to stop 285 * 286 * Stop the watchdog if it is still active and unmark it active. 287 * If the 'nowayout' feature was set, the watchdog cannot be stopped. 288 * The caller must hold wd_data->lock. 289 * 290 * Return: 0 on success or a negative errno code for failure. 291 */ 292 static int watchdog_stop(struct watchdog_device *wdd) 293 { 294 int err = 0; 295 296 if (!watchdog_active(wdd)) 297 return 0; 298 299 if (test_bit(WDOG_NO_WAY_OUT, &wdd->status)) { 300 pr_info("watchdog%d: nowayout prevents watchdog being stopped!\n", 301 wdd->id); 302 return -EBUSY; 303 } 304 305 if (wdd->ops->stop) { 306 clear_bit(WDOG_HW_RUNNING, &wdd->status); 307 err = wdd->ops->stop(wdd); 308 trace_watchdog_stop(wdd, err); 309 } else { 310 set_bit(WDOG_HW_RUNNING, &wdd->status); 311 } 312 313 if (err == 0) { 314 clear_bit(WDOG_ACTIVE, &wdd->status); 315 watchdog_update_worker(wdd); 316 watchdog_hrtimer_pretimeout_stop(wdd); 317 } 318 319 return err; 320 } 321 322 /* 323 * watchdog_get_status - wrapper to get the watchdog status 324 * @wdd: The watchdog device to get the status from 325 * 326 * Get the watchdog's status flags. 327 * The caller must hold wd_data->lock. 328 * 329 * Return: watchdog's status flags. 330 */ 331 static unsigned int watchdog_get_status(struct watchdog_device *wdd) 332 { 333 struct watchdog_core_data *wd_data = wdd->wd_data; 334 unsigned int status; 335 336 if (wdd->ops->status) 337 status = wdd->ops->status(wdd); 338 else 339 status = wdd->bootstatus & (WDIOF_CARDRESET | 340 WDIOF_OVERHEAT | 341 WDIOF_FANFAULT | 342 WDIOF_EXTERN1 | 343 WDIOF_EXTERN2 | 344 WDIOF_POWERUNDER | 345 WDIOF_POWEROVER); 346 347 if (test_bit(_WDOG_ALLOW_RELEASE, &wd_data->status)) 348 status |= WDIOF_MAGICCLOSE; 349 350 if (test_and_clear_bit(_WDOG_KEEPALIVE, &wd_data->status)) 351 status |= WDIOF_KEEPALIVEPING; 352 353 if (IS_ENABLED(CONFIG_WATCHDOG_HRTIMER_PRETIMEOUT)) 354 status |= WDIOF_PRETIMEOUT; 355 356 return status; 357 } 358 359 /* 360 * watchdog_set_timeout - set the watchdog timer timeout 361 * @wdd: The watchdog device to set the timeout for 362 * @timeout: Timeout to set in seconds 363 * 364 * The caller must hold wd_data->lock. 365 * 366 * Return: 0 if successful, error otherwise. 367 */ 368 static int watchdog_set_timeout(struct watchdog_device *wdd, 369 unsigned int timeout) 370 { 371 int err = 0; 372 373 if (!(wdd->info->options & WDIOF_SETTIMEOUT)) 374 return -EOPNOTSUPP; 375 376 if (watchdog_timeout_invalid(wdd, timeout)) 377 return -EINVAL; 378 379 if (wdd->ops->set_timeout) { 380 err = wdd->ops->set_timeout(wdd, timeout); 381 trace_watchdog_set_timeout(wdd, timeout, err); 382 } else { 383 wdd->timeout = timeout; 384 /* Disable pretimeout if it doesn't fit the new timeout */ 385 if (wdd->pretimeout >= wdd->timeout) 386 wdd->pretimeout = 0; 387 } 388 389 watchdog_update_worker(wdd); 390 391 return err; 392 } 393 394 /* 395 * watchdog_set_pretimeout - set the watchdog timer pretimeout 396 * @wdd: The watchdog device to set the timeout for 397 * @timeout: pretimeout to set in seconds 398 * 399 * Return: 0 if successful, error otherwise. 400 */ 401 static int watchdog_set_pretimeout(struct watchdog_device *wdd, 402 unsigned int timeout) 403 { 404 int err = 0; 405 406 if (!watchdog_have_pretimeout(wdd)) 407 return -EOPNOTSUPP; 408 409 if (watchdog_pretimeout_invalid(wdd, timeout)) 410 return -EINVAL; 411 412 if (wdd->ops->set_pretimeout && (wdd->info->options & WDIOF_PRETIMEOUT)) 413 err = wdd->ops->set_pretimeout(wdd, timeout); 414 else 415 wdd->pretimeout = timeout; 416 417 return err; 418 } 419 420 /* 421 * watchdog_get_timeleft - wrapper to get the time left before a reboot 422 * @wdd: The watchdog device to get the remaining time from 423 * @timeleft: The time that's left 424 * 425 * Get the time before a watchdog will reboot (if not pinged). 426 * The caller must hold wd_data->lock. 427 * 428 * Return: 0 if successful, error otherwise. 429 */ 430 static int watchdog_get_timeleft(struct watchdog_device *wdd, 431 unsigned int *timeleft) 432 { 433 *timeleft = 0; 434 435 if (!wdd->ops->get_timeleft) 436 return -EOPNOTSUPP; 437 438 *timeleft = wdd->ops->get_timeleft(wdd); 439 440 return 0; 441 } 442 443 #ifdef CONFIG_WATCHDOG_SYSFS 444 static ssize_t nowayout_show(struct device *dev, struct device_attribute *attr, 445 char *buf) 446 { 447 struct watchdog_device *wdd = dev_get_drvdata(dev); 448 449 return sysfs_emit(buf, "%d\n", !!test_bit(WDOG_NO_WAY_OUT, 450 &wdd->status)); 451 } 452 453 static ssize_t nowayout_store(struct device *dev, struct device_attribute *attr, 454 const char *buf, size_t len) 455 { 456 struct watchdog_device *wdd = dev_get_drvdata(dev); 457 unsigned int value; 458 int ret; 459 460 ret = kstrtouint(buf, 0, &value); 461 if (ret) 462 return ret; 463 if (value > 1) 464 return -EINVAL; 465 /* nowayout cannot be disabled once set */ 466 if (test_bit(WDOG_NO_WAY_OUT, &wdd->status) && !value) 467 return -EPERM; 468 watchdog_set_nowayout(wdd, value); 469 return len; 470 } 471 static DEVICE_ATTR_RW(nowayout); 472 473 static ssize_t status_show(struct device *dev, struct device_attribute *attr, 474 char *buf) 475 { 476 struct watchdog_device *wdd = dev_get_drvdata(dev); 477 struct watchdog_core_data *wd_data = wdd->wd_data; 478 unsigned int status; 479 480 mutex_lock(&wd_data->lock); 481 status = watchdog_get_status(wdd); 482 mutex_unlock(&wd_data->lock); 483 484 return sysfs_emit(buf, "0x%x\n", status); 485 } 486 static DEVICE_ATTR_RO(status); 487 488 static ssize_t bootstatus_show(struct device *dev, 489 struct device_attribute *attr, char *buf) 490 { 491 struct watchdog_device *wdd = dev_get_drvdata(dev); 492 493 return sysfs_emit(buf, "%u\n", wdd->bootstatus); 494 } 495 static DEVICE_ATTR_RO(bootstatus); 496 497 static ssize_t timeleft_show(struct device *dev, struct device_attribute *attr, 498 char *buf) 499 { 500 struct watchdog_device *wdd = dev_get_drvdata(dev); 501 struct watchdog_core_data *wd_data = wdd->wd_data; 502 ssize_t status; 503 unsigned int val; 504 505 mutex_lock(&wd_data->lock); 506 status = watchdog_get_timeleft(wdd, &val); 507 mutex_unlock(&wd_data->lock); 508 if (!status) 509 status = sysfs_emit(buf, "%u\n", val); 510 511 return status; 512 } 513 static DEVICE_ATTR_RO(timeleft); 514 515 static ssize_t timeout_show(struct device *dev, struct device_attribute *attr, 516 char *buf) 517 { 518 struct watchdog_device *wdd = dev_get_drvdata(dev); 519 520 return sysfs_emit(buf, "%u\n", wdd->timeout); 521 } 522 static DEVICE_ATTR_RO(timeout); 523 524 static ssize_t min_timeout_show(struct device *dev, 525 struct device_attribute *attr, char *buf) 526 { 527 struct watchdog_device *wdd = dev_get_drvdata(dev); 528 529 return sysfs_emit(buf, "%u\n", wdd->min_timeout); 530 } 531 static DEVICE_ATTR_RO(min_timeout); 532 533 static ssize_t max_timeout_show(struct device *dev, 534 struct device_attribute *attr, char *buf) 535 { 536 struct watchdog_device *wdd = dev_get_drvdata(dev); 537 538 return sysfs_emit(buf, "%u\n", wdd->max_timeout); 539 } 540 static DEVICE_ATTR_RO(max_timeout); 541 542 static ssize_t pretimeout_show(struct device *dev, 543 struct device_attribute *attr, char *buf) 544 { 545 struct watchdog_device *wdd = dev_get_drvdata(dev); 546 547 return sysfs_emit(buf, "%u\n", wdd->pretimeout); 548 } 549 static DEVICE_ATTR_RO(pretimeout); 550 551 static ssize_t options_show(struct device *dev, struct device_attribute *attr, 552 char *buf) 553 { 554 struct watchdog_device *wdd = dev_get_drvdata(dev); 555 556 return sysfs_emit(buf, "0x%x\n", wdd->info->options); 557 } 558 static DEVICE_ATTR_RO(options); 559 560 static ssize_t fw_version_show(struct device *dev, struct device_attribute *attr, 561 char *buf) 562 { 563 struct watchdog_device *wdd = dev_get_drvdata(dev); 564 565 return sysfs_emit(buf, "%d\n", wdd->info->firmware_version); 566 } 567 static DEVICE_ATTR_RO(fw_version); 568 569 static ssize_t identity_show(struct device *dev, struct device_attribute *attr, 570 char *buf) 571 { 572 struct watchdog_device *wdd = dev_get_drvdata(dev); 573 574 return sysfs_emit(buf, "%s\n", wdd->info->identity); 575 } 576 static DEVICE_ATTR_RO(identity); 577 578 static ssize_t state_show(struct device *dev, struct device_attribute *attr, 579 char *buf) 580 { 581 struct watchdog_device *wdd = dev_get_drvdata(dev); 582 583 if (watchdog_active(wdd)) 584 return sysfs_emit(buf, "active\n"); 585 586 return sysfs_emit(buf, "inactive\n"); 587 } 588 static DEVICE_ATTR_RO(state); 589 590 static ssize_t pretimeout_available_governors_show(struct device *dev, 591 struct device_attribute *attr, char *buf) 592 { 593 return watchdog_pretimeout_available_governors_get(buf); 594 } 595 static DEVICE_ATTR_RO(pretimeout_available_governors); 596 597 static ssize_t pretimeout_governor_show(struct device *dev, 598 struct device_attribute *attr, 599 char *buf) 600 { 601 struct watchdog_device *wdd = dev_get_drvdata(dev); 602 603 return watchdog_pretimeout_governor_get(wdd, buf); 604 } 605 606 static ssize_t pretimeout_governor_store(struct device *dev, 607 struct device_attribute *attr, 608 const char *buf, size_t count) 609 { 610 struct watchdog_device *wdd = dev_get_drvdata(dev); 611 int ret = watchdog_pretimeout_governor_set(wdd, buf); 612 613 if (!ret) 614 ret = count; 615 616 return ret; 617 } 618 static DEVICE_ATTR_RW(pretimeout_governor); 619 620 static umode_t wdt_is_visible(struct kobject *kobj, struct attribute *attr, 621 int n) 622 { 623 struct device *dev = kobj_to_dev(kobj); 624 struct watchdog_device *wdd = dev_get_drvdata(dev); 625 umode_t mode = attr->mode; 626 627 if (attr == &dev_attr_timeleft.attr && !wdd->ops->get_timeleft) 628 mode = 0; 629 else if (attr == &dev_attr_pretimeout.attr && !watchdog_have_pretimeout(wdd)) 630 mode = 0; 631 else if ((attr == &dev_attr_pretimeout_governor.attr || 632 attr == &dev_attr_pretimeout_available_governors.attr) && 633 (!watchdog_have_pretimeout(wdd) || !IS_ENABLED(CONFIG_WATCHDOG_PRETIMEOUT_GOV))) 634 mode = 0; 635 636 return mode; 637 } 638 static struct attribute *wdt_attrs[] = { 639 &dev_attr_state.attr, 640 &dev_attr_options.attr, 641 &dev_attr_fw_version.attr, 642 &dev_attr_identity.attr, 643 &dev_attr_timeout.attr, 644 &dev_attr_min_timeout.attr, 645 &dev_attr_max_timeout.attr, 646 &dev_attr_pretimeout.attr, 647 &dev_attr_timeleft.attr, 648 &dev_attr_bootstatus.attr, 649 &dev_attr_status.attr, 650 &dev_attr_nowayout.attr, 651 &dev_attr_pretimeout_governor.attr, 652 &dev_attr_pretimeout_available_governors.attr, 653 NULL, 654 }; 655 656 static const struct attribute_group wdt_group = { 657 .attrs = wdt_attrs, 658 .is_visible = wdt_is_visible, 659 }; 660 __ATTRIBUTE_GROUPS(wdt); 661 #else 662 #define wdt_groups NULL 663 #endif 664 665 /* 666 * watchdog_ioctl_op - call the watchdog drivers ioctl op if defined 667 * @wdd: The watchdog device to do the ioctl on 668 * @cmd: Watchdog command 669 * @arg: Argument pointer 670 * 671 * The caller must hold wd_data->lock. 672 * 673 * Return: 0 if successful, error otherwise. 674 */ 675 static int watchdog_ioctl_op(struct watchdog_device *wdd, unsigned int cmd, 676 unsigned long arg) 677 { 678 if (!wdd->ops->ioctl) 679 return -ENOIOCTLCMD; 680 681 return wdd->ops->ioctl(wdd, cmd, arg); 682 } 683 684 /* 685 * watchdog_write - writes to the watchdog 686 * @file: File from VFS 687 * @data: User address of data 688 * @len: Length of data 689 * @ppos: Pointer to the file offset 690 * 691 * A write to a watchdog device is defined as a keepalive ping. 692 * Writing the magic 'V' sequence allows the next close to turn 693 * off the watchdog (if 'nowayout' is not set). 694 * 695 * Return: @len if successful, error otherwise. 696 */ 697 static ssize_t watchdog_write(struct file *file, const char __user *data, 698 size_t len, loff_t *ppos) 699 { 700 struct watchdog_core_data *wd_data = file->private_data; 701 struct watchdog_device *wdd; 702 int err; 703 size_t i; 704 char c; 705 706 if (len == 0) 707 return 0; 708 709 /* 710 * Note: just in case someone wrote the magic character 711 * five months ago... 712 */ 713 clear_bit(_WDOG_ALLOW_RELEASE, &wd_data->status); 714 715 /* scan to see whether or not we got the magic character */ 716 for (i = 0; i != len; i++) { 717 if (get_user(c, data + i)) 718 return -EFAULT; 719 if (c == 'V') 720 set_bit(_WDOG_ALLOW_RELEASE, &wd_data->status); 721 } 722 723 /* someone wrote to us, so we send the watchdog a keepalive ping */ 724 725 err = -ENODEV; 726 mutex_lock(&wd_data->lock); 727 wdd = wd_data->wdd; 728 if (wdd) 729 err = watchdog_ping(wdd); 730 mutex_unlock(&wd_data->lock); 731 732 if (err < 0) 733 return err; 734 735 return len; 736 } 737 738 /* 739 * watchdog_ioctl - handle the different ioctl's for the watchdog device 740 * @file: File handle to the device 741 * @cmd: Watchdog command 742 * @arg: Argument pointer 743 * 744 * The watchdog API defines a common set of functions for all watchdogs 745 * according to their available features. 746 * 747 * Return: 0 if successful, error otherwise. 748 */ 749 750 static long watchdog_ioctl(struct file *file, unsigned int cmd, 751 unsigned long arg) 752 { 753 struct watchdog_core_data *wd_data = file->private_data; 754 void __user *argp = (void __user *)arg; 755 struct watchdog_device *wdd; 756 int __user *p = argp; 757 unsigned int val; 758 int err; 759 760 mutex_lock(&wd_data->lock); 761 762 wdd = wd_data->wdd; 763 if (!wdd) { 764 err = -ENODEV; 765 goto out_ioctl; 766 } 767 768 err = watchdog_ioctl_op(wdd, cmd, arg); 769 if (err != -ENOIOCTLCMD) 770 goto out_ioctl; 771 772 switch (cmd) { 773 case WDIOC_GETSUPPORT: 774 err = copy_to_user(argp, wdd->info, 775 sizeof(struct watchdog_info)) ? -EFAULT : 0; 776 break; 777 case WDIOC_GETSTATUS: 778 val = watchdog_get_status(wdd); 779 err = put_user(val, p); 780 break; 781 case WDIOC_GETBOOTSTATUS: 782 err = put_user(wdd->bootstatus, p); 783 break; 784 case WDIOC_SETOPTIONS: 785 if (get_user(val, p)) { 786 err = -EFAULT; 787 break; 788 } 789 if (val & WDIOS_DISABLECARD) { 790 err = watchdog_stop(wdd); 791 if (err < 0) 792 break; 793 } 794 if (val & WDIOS_ENABLECARD) 795 err = watchdog_start(wdd); 796 break; 797 case WDIOC_KEEPALIVE: 798 if (!(wdd->info->options & WDIOF_KEEPALIVEPING)) { 799 err = -EOPNOTSUPP; 800 break; 801 } 802 err = watchdog_ping(wdd); 803 break; 804 case WDIOC_SETTIMEOUT: 805 if (get_user(val, p)) { 806 err = -EFAULT; 807 break; 808 } 809 err = watchdog_set_timeout(wdd, val); 810 if (err < 0) 811 break; 812 /* If the watchdog is active then we send a keepalive ping 813 * to make sure that the watchdog keep's running (and if 814 * possible that it takes the new timeout) */ 815 err = watchdog_ping(wdd); 816 if (err < 0) 817 break; 818 fallthrough; 819 case WDIOC_GETTIMEOUT: 820 /* timeout == 0 means that we don't know the timeout */ 821 if (wdd->timeout == 0) { 822 err = -EOPNOTSUPP; 823 break; 824 } 825 err = put_user(wdd->timeout, p); 826 break; 827 case WDIOC_GETTIMELEFT: 828 err = watchdog_get_timeleft(wdd, &val); 829 if (err < 0) 830 break; 831 err = put_user(val, p); 832 break; 833 case WDIOC_SETPRETIMEOUT: 834 if (get_user(val, p)) { 835 err = -EFAULT; 836 break; 837 } 838 err = watchdog_set_pretimeout(wdd, val); 839 break; 840 case WDIOC_GETPRETIMEOUT: 841 err = put_user(wdd->pretimeout, p); 842 break; 843 default: 844 err = -ENOTTY; 845 break; 846 } 847 848 out_ioctl: 849 mutex_unlock(&wd_data->lock); 850 return err; 851 } 852 853 /* 854 * watchdog_open - open the /dev/watchdog* devices 855 * @inode: Inode of device 856 * @file: File handle to device 857 * 858 * When the /dev/watchdog* device gets opened, we start the watchdog. 859 * Watch out: the /dev/watchdog device is single open, so we make sure 860 * it can only be opened once. 861 * 862 * Return: 0 if successful, error otherwise. 863 */ 864 static int watchdog_open(struct inode *inode, struct file *file) 865 { 866 struct watchdog_core_data *wd_data; 867 struct watchdog_device *wdd; 868 bool hw_running; 869 int err; 870 871 /* Get the corresponding watchdog device */ 872 if (imajor(inode) == MISC_MAJOR) 873 wd_data = old_wd_data; 874 else 875 wd_data = container_of(inode->i_cdev, struct watchdog_core_data, 876 cdev); 877 878 /* the watchdog is single open! */ 879 if (test_and_set_bit(_WDOG_DEV_OPEN, &wd_data->status)) 880 return -EBUSY; 881 882 wdd = wd_data->wdd; 883 884 /* 885 * If the /dev/watchdog device is open, we don't want the module 886 * to be unloaded. 887 */ 888 hw_running = watchdog_hw_running(wdd); 889 if (!hw_running && !try_module_get(wdd->ops->owner)) { 890 err = -EBUSY; 891 goto out_clear; 892 } 893 894 err = watchdog_start(wdd); 895 if (err < 0) 896 goto out_mod; 897 898 file->private_data = wd_data; 899 900 if (!hw_running) 901 get_device(&wd_data->dev); 902 903 /* 904 * open_timeout only applies for the first open from 905 * userspace. Set open_deadline to infinity so that the kernel 906 * will take care of an always-running hardware watchdog in 907 * case the device gets magic-closed or WDIOS_DISABLECARD is 908 * applied. 909 */ 910 wd_data->open_deadline = KTIME_MAX; 911 912 /* dev/watchdog is a virtual (and thus non-seekable) filesystem */ 913 return stream_open(inode, file); 914 915 out_mod: 916 module_put(wd_data->wdd->ops->owner); 917 out_clear: 918 clear_bit(_WDOG_DEV_OPEN, &wd_data->status); 919 return err; 920 } 921 922 static void watchdog_core_data_release(struct device *dev) 923 { 924 struct watchdog_core_data *wd_data; 925 926 wd_data = container_of(dev, struct watchdog_core_data, dev); 927 928 kfree(wd_data); 929 } 930 931 /* 932 * watchdog_release - release the watchdog device 933 * @inode: Inode of device 934 * @file: File handle to device 935 * 936 * This is the code for when /dev/watchdog gets closed. We will only 937 * stop the watchdog when we have received the magic char (and nowayout 938 * was not set), else the watchdog will keep running. 939 * 940 * Always returns 0. 941 */ 942 static int watchdog_release(struct inode *inode, struct file *file) 943 { 944 struct watchdog_core_data *wd_data = file->private_data; 945 struct watchdog_device *wdd; 946 int err = -EBUSY; 947 bool running; 948 949 mutex_lock(&wd_data->lock); 950 951 wdd = wd_data->wdd; 952 if (!wdd) 953 goto done; 954 955 /* 956 * We only stop the watchdog if we received the magic character 957 * or if WDIOF_MAGICCLOSE is not set. If nowayout was set then 958 * watchdog_stop will fail. 959 */ 960 if (!watchdog_active(wdd)) 961 err = 0; 962 else if (test_and_clear_bit(_WDOG_ALLOW_RELEASE, &wd_data->status) || 963 !(wdd->info->options & WDIOF_MAGICCLOSE)) 964 err = watchdog_stop(wdd); 965 966 /* If the watchdog was not stopped, send a keepalive ping */ 967 if (err < 0) { 968 pr_crit("watchdog%d: watchdog did not stop!\n", wdd->id); 969 watchdog_ping(wdd); 970 } 971 972 watchdog_update_worker(wdd); 973 974 /* make sure that /dev/watchdog can be re-opened */ 975 clear_bit(_WDOG_DEV_OPEN, &wd_data->status); 976 977 done: 978 running = wdd && watchdog_hw_running(wdd); 979 mutex_unlock(&wd_data->lock); 980 /* 981 * Allow the owner module to be unloaded again unless the watchdog 982 * is still running. If the watchdog is still running, it can not 983 * be stopped, and its driver must not be unloaded. 984 */ 985 if (!running) { 986 module_put(wd_data->cdev.owner); 987 put_device(&wd_data->dev); 988 } 989 return 0; 990 } 991 992 static const struct file_operations watchdog_fops = { 993 .owner = THIS_MODULE, 994 .write = watchdog_write, 995 .unlocked_ioctl = watchdog_ioctl, 996 .compat_ioctl = compat_ptr_ioctl, 997 .open = watchdog_open, 998 .release = watchdog_release, 999 }; 1000 1001 static struct miscdevice watchdog_miscdev = { 1002 .minor = WATCHDOG_MINOR, 1003 .name = "watchdog", 1004 .fops = &watchdog_fops, 1005 }; 1006 1007 static const struct class watchdog_class = { 1008 .name = "watchdog", 1009 .dev_groups = wdt_groups, 1010 }; 1011 1012 /* 1013 * watchdog_cdev_register - register watchdog character device 1014 * @wdd: Watchdog device 1015 * 1016 * Register a watchdog character device including handling the legacy 1017 * /dev/watchdog node. /dev/watchdog is actually a miscdevice and 1018 * thus we set it up like that. 1019 * 1020 * Return: 0 if successful, error otherwise. 1021 */ 1022 static int watchdog_cdev_register(struct watchdog_device *wdd) 1023 { 1024 struct watchdog_core_data *wd_data; 1025 int err; 1026 1027 wd_data = kzalloc(sizeof(struct watchdog_core_data), GFP_KERNEL); 1028 if (!wd_data) 1029 return -ENOMEM; 1030 mutex_init(&wd_data->lock); 1031 1032 wd_data->wdd = wdd; 1033 wdd->wd_data = wd_data; 1034 1035 if (IS_ERR_OR_NULL(watchdog_kworker)) { 1036 kfree(wd_data); 1037 return -ENODEV; 1038 } 1039 1040 device_initialize(&wd_data->dev); 1041 wd_data->dev.devt = MKDEV(MAJOR(watchdog_devt), wdd->id); 1042 wd_data->dev.class = &watchdog_class; 1043 wd_data->dev.parent = wdd->parent; 1044 wd_data->dev.groups = wdd->groups; 1045 wd_data->dev.release = watchdog_core_data_release; 1046 dev_set_drvdata(&wd_data->dev, wdd); 1047 err = dev_set_name(&wd_data->dev, "watchdog%d", wdd->id); 1048 if (err) { 1049 put_device(&wd_data->dev); 1050 return err; 1051 } 1052 1053 kthread_init_work(&wd_data->work, watchdog_ping_work); 1054 hrtimer_init(&wd_data->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_HARD); 1055 wd_data->timer.function = watchdog_timer_expired; 1056 watchdog_hrtimer_pretimeout_init(wdd); 1057 1058 if (wdd->id == 0) { 1059 old_wd_data = wd_data; 1060 watchdog_miscdev.parent = wdd->parent; 1061 err = misc_register(&watchdog_miscdev); 1062 if (err != 0) { 1063 pr_err("%s: cannot register miscdev on minor=%d (err=%d).\n", 1064 wdd->info->identity, WATCHDOG_MINOR, err); 1065 if (err == -EBUSY) 1066 pr_err("%s: a legacy watchdog module is probably present.\n", 1067 wdd->info->identity); 1068 old_wd_data = NULL; 1069 put_device(&wd_data->dev); 1070 return err; 1071 } 1072 } 1073 1074 /* Fill in the data structures */ 1075 cdev_init(&wd_data->cdev, &watchdog_fops); 1076 wd_data->cdev.owner = wdd->ops->owner; 1077 1078 /* Add the device */ 1079 err = cdev_device_add(&wd_data->cdev, &wd_data->dev); 1080 if (err) { 1081 pr_err("watchdog%d unable to add device %d:%d\n", 1082 wdd->id, MAJOR(watchdog_devt), wdd->id); 1083 if (wdd->id == 0) { 1084 misc_deregister(&watchdog_miscdev); 1085 old_wd_data = NULL; 1086 } 1087 put_device(&wd_data->dev); 1088 return err; 1089 } 1090 1091 /* Record time of most recent heartbeat as 'just before now'. */ 1092 wd_data->last_hw_keepalive = ktime_sub(ktime_get(), 1); 1093 watchdog_set_open_deadline(wd_data); 1094 1095 /* 1096 * If the watchdog is running, prevent its driver from being unloaded, 1097 * and schedule an immediate ping. 1098 */ 1099 if (watchdog_hw_running(wdd)) { 1100 __module_get(wdd->ops->owner); 1101 get_device(&wd_data->dev); 1102 if (handle_boot_enabled) 1103 hrtimer_start(&wd_data->timer, 0, 1104 HRTIMER_MODE_REL_HARD); 1105 else 1106 pr_info("watchdog%d running and kernel based pre-userspace handler disabled\n", 1107 wdd->id); 1108 } 1109 1110 return 0; 1111 } 1112 1113 /* 1114 * watchdog_cdev_unregister - unregister watchdog character device 1115 * @wdd: Watchdog device 1116 * 1117 * Unregister watchdog character device and if needed the legacy 1118 * /dev/watchdog device. 1119 */ 1120 static void watchdog_cdev_unregister(struct watchdog_device *wdd) 1121 { 1122 struct watchdog_core_data *wd_data = wdd->wd_data; 1123 1124 cdev_device_del(&wd_data->cdev, &wd_data->dev); 1125 if (wdd->id == 0) { 1126 misc_deregister(&watchdog_miscdev); 1127 old_wd_data = NULL; 1128 } 1129 1130 if (watchdog_active(wdd) && 1131 test_bit(WDOG_STOP_ON_UNREGISTER, &wdd->status)) { 1132 watchdog_stop(wdd); 1133 } 1134 1135 watchdog_hrtimer_pretimeout_stop(wdd); 1136 1137 mutex_lock(&wd_data->lock); 1138 wd_data->wdd = NULL; 1139 wdd->wd_data = NULL; 1140 mutex_unlock(&wd_data->lock); 1141 1142 hrtimer_cancel(&wd_data->timer); 1143 kthread_cancel_work_sync(&wd_data->work); 1144 1145 put_device(&wd_data->dev); 1146 } 1147 1148 /** 1149 * watchdog_dev_register - register a watchdog device 1150 * @wdd: Watchdog device 1151 * 1152 * Register a watchdog device including handling the legacy 1153 * /dev/watchdog node. /dev/watchdog is actually a miscdevice and 1154 * thus we set it up like that. 1155 * 1156 * Return: 0 if successful, error otherwise. 1157 */ 1158 int watchdog_dev_register(struct watchdog_device *wdd) 1159 { 1160 int ret; 1161 1162 ret = watchdog_cdev_register(wdd); 1163 if (ret) 1164 return ret; 1165 1166 ret = watchdog_register_pretimeout(wdd); 1167 if (ret) 1168 watchdog_cdev_unregister(wdd); 1169 1170 return ret; 1171 } 1172 1173 /** 1174 * watchdog_dev_unregister - unregister a watchdog device 1175 * @wdd: watchdog device 1176 * 1177 * Unregister watchdog device and if needed the legacy 1178 * /dev/watchdog device. 1179 */ 1180 void watchdog_dev_unregister(struct watchdog_device *wdd) 1181 { 1182 watchdog_unregister_pretimeout(wdd); 1183 watchdog_cdev_unregister(wdd); 1184 } 1185 1186 /** 1187 * watchdog_set_last_hw_keepalive - set last HW keepalive time for watchdog 1188 * @wdd: Watchdog device 1189 * @last_ping_ms: Time since last HW heartbeat 1190 * 1191 * Adjusts the last known HW keepalive time for a watchdog timer. 1192 * This is needed if the watchdog is already running when the probe 1193 * function is called, and it can't be pinged immediately. This 1194 * function must be called immediately after watchdog registration, 1195 * and min_hw_heartbeat_ms must be set for this to be useful. 1196 * 1197 * Return: 0 if successful, error otherwise. 1198 */ 1199 int watchdog_set_last_hw_keepalive(struct watchdog_device *wdd, 1200 unsigned int last_ping_ms) 1201 { 1202 struct watchdog_core_data *wd_data; 1203 ktime_t now; 1204 1205 if (!wdd) 1206 return -EINVAL; 1207 1208 wd_data = wdd->wd_data; 1209 1210 now = ktime_get(); 1211 1212 wd_data->last_hw_keepalive = ktime_sub(now, ms_to_ktime(last_ping_ms)); 1213 1214 if (watchdog_hw_running(wdd) && handle_boot_enabled) 1215 return __watchdog_ping(wdd); 1216 1217 return 0; 1218 } 1219 EXPORT_SYMBOL_GPL(watchdog_set_last_hw_keepalive); 1220 1221 /** 1222 * watchdog_dev_init - init dev part of watchdog core 1223 * 1224 * Allocate a range of chardev nodes to use for watchdog devices. 1225 * 1226 * Return: 0 if successful, error otherwise. 1227 */ 1228 int __init watchdog_dev_init(void) 1229 { 1230 int err; 1231 1232 watchdog_kworker = kthread_create_worker(0, "watchdogd"); 1233 if (IS_ERR(watchdog_kworker)) { 1234 pr_err("Failed to create watchdog kworker\n"); 1235 return PTR_ERR(watchdog_kworker); 1236 } 1237 sched_set_fifo(watchdog_kworker->task); 1238 1239 err = class_register(&watchdog_class); 1240 if (err < 0) { 1241 pr_err("couldn't register class\n"); 1242 goto err_register; 1243 } 1244 1245 err = alloc_chrdev_region(&watchdog_devt, 0, MAX_DOGS, "watchdog"); 1246 if (err < 0) { 1247 pr_err("watchdog: unable to allocate char dev region\n"); 1248 goto err_alloc; 1249 } 1250 1251 return 0; 1252 1253 err_alloc: 1254 class_unregister(&watchdog_class); 1255 err_register: 1256 kthread_destroy_worker(watchdog_kworker); 1257 return err; 1258 } 1259 1260 /** 1261 * watchdog_dev_exit - exit dev part of watchdog core 1262 * 1263 * Release the range of chardev nodes used for watchdog devices. 1264 */ 1265 void __exit watchdog_dev_exit(void) 1266 { 1267 unregister_chrdev_region(watchdog_devt, MAX_DOGS); 1268 class_unregister(&watchdog_class); 1269 kthread_destroy_worker(watchdog_kworker); 1270 } 1271 1272 int watchdog_dev_suspend(struct watchdog_device *wdd) 1273 { 1274 struct watchdog_core_data *wd_data = wdd->wd_data; 1275 int ret = 0; 1276 1277 if (!wdd->wd_data) 1278 return -ENODEV; 1279 1280 /* ping for the last time before suspend */ 1281 mutex_lock(&wd_data->lock); 1282 if (watchdog_worker_should_ping(wd_data)) 1283 ret = __watchdog_ping(wd_data->wdd); 1284 mutex_unlock(&wd_data->lock); 1285 1286 if (ret) 1287 return ret; 1288 1289 /* 1290 * make sure that watchdog worker will not kick in when the wdog is 1291 * suspended 1292 */ 1293 hrtimer_cancel(&wd_data->timer); 1294 kthread_cancel_work_sync(&wd_data->work); 1295 1296 return 0; 1297 } 1298 1299 int watchdog_dev_resume(struct watchdog_device *wdd) 1300 { 1301 struct watchdog_core_data *wd_data = wdd->wd_data; 1302 int ret = 0; 1303 1304 if (!wdd->wd_data) 1305 return -ENODEV; 1306 1307 /* 1308 * __watchdog_ping will also retrigger hrtimer and therefore restore the 1309 * ping worker if needed. 1310 */ 1311 mutex_lock(&wd_data->lock); 1312 if (watchdog_worker_should_ping(wd_data)) 1313 ret = __watchdog_ping(wd_data->wdd); 1314 mutex_unlock(&wd_data->lock); 1315 1316 return ret; 1317 } 1318 1319 module_param(handle_boot_enabled, bool, 0444); 1320 MODULE_PARM_DESC(handle_boot_enabled, 1321 "Watchdog core auto-updates boot enabled watchdogs before userspace takes over (default=" 1322 __MODULE_STRING(IS_ENABLED(CONFIG_WATCHDOG_HANDLE_BOOT_ENABLED)) ")"); 1323 1324 module_param(open_timeout, uint, 0644); 1325 MODULE_PARM_DESC(open_timeout, 1326 "Maximum time (in seconds, 0 means infinity) for userspace to take over a running watchdog (default=" 1327 __MODULE_STRING(CONFIG_WATCHDOG_OPEN_TIMEOUT) ")"); 1328