xref: /linux/drivers/watchdog/stm32_iwdg.c (revision ab75170520d4964f3acf8bb1f91d34cbc650688e)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Driver for STM32 Independent Watchdog
4  *
5  * Copyright (C) STMicroelectronics 2017
6  * Author: Yannick Fertre <yannick.fertre@st.com> for STMicroelectronics.
7  *
8  * This driver is based on tegra_wdt.c
9  *
10  */
11 
12 #include <linux/clk.h>
13 #include <linux/delay.h>
14 #include <linux/interrupt.h>
15 #include <linux/io.h>
16 #include <linux/iopoll.h>
17 #include <linux/kernel.h>
18 #include <linux/module.h>
19 #include <linux/of.h>
20 #include <linux/platform_device.h>
21 #include <linux/pm_wakeirq.h>
22 #include <linux/watchdog.h>
23 
24 #define DEFAULT_TIMEOUT 10
25 
26 /* IWDG registers */
27 #define IWDG_KR		0x00 /* Key register */
28 #define IWDG_PR		0x04 /* Prescaler Register */
29 #define IWDG_RLR	0x08 /* ReLoad Register */
30 #define IWDG_SR		0x0C /* Status Register */
31 #define IWDG_WINR	0x10 /* Windows Register */
32 #define IWDG_EWCR	0x14 /* Early Wake-up Register */
33 
34 /* IWDG_KR register bit mask */
35 #define KR_KEY_RELOAD	0xAAAA /* reload counter enable */
36 #define KR_KEY_ENABLE	0xCCCC /* peripheral enable */
37 #define KR_KEY_EWA	0x5555 /* write access enable */
38 #define KR_KEY_DWA	0x0000 /* write access disable */
39 
40 /* IWDG_PR register */
41 #define PR_SHIFT	2
42 #define PR_MIN		BIT(PR_SHIFT)
43 
44 /* IWDG_RLR register values */
45 #define RLR_MIN		0x2		/* min value recommended */
46 #define RLR_MAX		GENMASK(11, 0)	/* max value of reload register */
47 
48 /* IWDG_SR register bit mask */
49 #define SR_PVU	BIT(0) /* Watchdog prescaler value update */
50 #define SR_RVU	BIT(1) /* Watchdog counter reload value update */
51 
52 #define EWCR_EWIT	GENMASK(11, 0) /* Watchdog counter window value */
53 #define EWCR_EWIC	BIT(14) /* Watchdog early interrupt acknowledge */
54 #define EWCR_EWIE	BIT(15) /* Watchdog early interrupt enable */
55 
56 /* set timeout to 100000 us */
57 #define TIMEOUT_US	100000
58 #define SLEEP_US	1000
59 
60 struct stm32_iwdg_data {
61 	bool has_pclk;
62 	bool has_early_wakeup;
63 	u32 max_prescaler;
64 };
65 
66 static const struct stm32_iwdg_data stm32_iwdg_data = {
67 	.has_pclk = false,
68 	.has_early_wakeup = false,
69 	.max_prescaler = 256,
70 };
71 
72 static const struct stm32_iwdg_data stm32mp1_iwdg_data = {
73 	.has_pclk = true,
74 	.has_early_wakeup = true,
75 	.max_prescaler = 1024,
76 };
77 
78 struct stm32_iwdg {
79 	struct watchdog_device	wdd;
80 	const struct stm32_iwdg_data *data;
81 	void __iomem		*regs;
82 	struct clk		*clk_lsi;
83 	struct clk		*clk_pclk;
84 	unsigned int		rate;
85 };
86 
reg_read(void __iomem * base,u32 reg)87 static inline u32 reg_read(void __iomem *base, u32 reg)
88 {
89 	return readl_relaxed(base + reg);
90 }
91 
reg_write(void __iomem * base,u32 reg,u32 val)92 static inline void reg_write(void __iomem *base, u32 reg, u32 val)
93 {
94 	writel_relaxed(val, base + reg);
95 }
96 
stm32_iwdg_start(struct watchdog_device * wdd)97 static int stm32_iwdg_start(struct watchdog_device *wdd)
98 {
99 	struct stm32_iwdg *wdt = watchdog_get_drvdata(wdd);
100 	u32 tout, ptot, presc, iwdg_rlr, iwdg_ewcr, iwdg_pr, iwdg_sr;
101 	int ret;
102 
103 	dev_dbg(wdd->parent, "%s\n", __func__);
104 
105 	if (!wdd->pretimeout)
106 		wdd->pretimeout = 3 * wdd->timeout / 4;
107 
108 	tout = clamp_t(unsigned int, wdd->timeout,
109 		       wdd->min_timeout, wdd->max_hw_heartbeat_ms / 1000);
110 	ptot = clamp_t(unsigned int, tout - wdd->pretimeout,
111 		       wdd->min_timeout, tout);
112 
113 	presc = DIV_ROUND_UP(tout * wdt->rate, RLR_MAX + 1);
114 
115 	/* The prescaler is align on power of 2 and start at 2 ^ PR_SHIFT. */
116 	presc = roundup_pow_of_two(presc);
117 	iwdg_pr = presc <= 1 << PR_SHIFT ? 0 : ilog2(presc) - PR_SHIFT;
118 	iwdg_rlr = ((tout * wdt->rate) / presc) - 1;
119 	iwdg_ewcr = ((ptot * wdt->rate) / presc) - 1;
120 
121 	/* enable write access */
122 	reg_write(wdt->regs, IWDG_KR, KR_KEY_EWA);
123 
124 	/* set prescaler & reload registers */
125 	reg_write(wdt->regs, IWDG_PR, iwdg_pr);
126 	reg_write(wdt->regs, IWDG_RLR, iwdg_rlr);
127 	if (wdt->data->has_early_wakeup)
128 		reg_write(wdt->regs, IWDG_EWCR, iwdg_ewcr | EWCR_EWIE);
129 	reg_write(wdt->regs, IWDG_KR, KR_KEY_ENABLE);
130 
131 	/* wait for the registers to be updated (max 100ms) */
132 	ret = readl_relaxed_poll_timeout(wdt->regs + IWDG_SR, iwdg_sr,
133 					 !(iwdg_sr & (SR_PVU | SR_RVU)),
134 					 SLEEP_US, TIMEOUT_US);
135 	if (ret) {
136 		dev_err(wdd->parent, "Fail to set prescaler, reload regs\n");
137 		return ret;
138 	}
139 
140 	/* reload watchdog */
141 	reg_write(wdt->regs, IWDG_KR, KR_KEY_RELOAD);
142 
143 	return 0;
144 }
145 
stm32_iwdg_ping(struct watchdog_device * wdd)146 static int stm32_iwdg_ping(struct watchdog_device *wdd)
147 {
148 	struct stm32_iwdg *wdt = watchdog_get_drvdata(wdd);
149 
150 	dev_dbg(wdd->parent, "%s\n", __func__);
151 
152 	/* reload watchdog */
153 	reg_write(wdt->regs, IWDG_KR, KR_KEY_RELOAD);
154 
155 	return 0;
156 }
157 
stm32_iwdg_set_timeout(struct watchdog_device * wdd,unsigned int timeout)158 static int stm32_iwdg_set_timeout(struct watchdog_device *wdd,
159 				  unsigned int timeout)
160 {
161 	dev_dbg(wdd->parent, "%s timeout: %d sec\n", __func__, timeout);
162 
163 	wdd->timeout = timeout;
164 
165 	if (watchdog_active(wdd))
166 		return stm32_iwdg_start(wdd);
167 
168 	return 0;
169 }
170 
stm32_iwdg_set_pretimeout(struct watchdog_device * wdd,unsigned int pretimeout)171 static int stm32_iwdg_set_pretimeout(struct watchdog_device *wdd,
172 				     unsigned int pretimeout)
173 {
174 	dev_dbg(wdd->parent, "%s pretimeout: %d sec\n", __func__, pretimeout);
175 
176 	wdd->pretimeout = pretimeout;
177 
178 	if (watchdog_active(wdd))
179 		return stm32_iwdg_start(wdd);
180 
181 	return 0;
182 }
183 
stm32_iwdg_isr(int irq,void * wdog_arg)184 static irqreturn_t stm32_iwdg_isr(int irq, void *wdog_arg)
185 {
186 	struct watchdog_device *wdd = wdog_arg;
187 	struct stm32_iwdg *wdt = watchdog_get_drvdata(wdd);
188 	u32 reg;
189 
190 	reg = reg_read(wdt->regs, IWDG_EWCR);
191 	reg |= EWCR_EWIC;
192 	reg_write(wdt->regs, IWDG_EWCR, reg);
193 
194 	watchdog_notify_pretimeout(wdd);
195 
196 	return IRQ_HANDLED;
197 }
198 
stm32_clk_disable_unprepare(void * data)199 static void stm32_clk_disable_unprepare(void *data)
200 {
201 	clk_disable_unprepare(data);
202 }
203 
stm32_iwdg_clk_init(struct platform_device * pdev,struct stm32_iwdg * wdt)204 static int stm32_iwdg_clk_init(struct platform_device *pdev,
205 			       struct stm32_iwdg *wdt)
206 {
207 	struct device *dev = &pdev->dev;
208 	u32 ret;
209 
210 	wdt->clk_lsi = devm_clk_get(dev, "lsi");
211 	if (IS_ERR(wdt->clk_lsi))
212 		return dev_err_probe(dev, PTR_ERR(wdt->clk_lsi), "Unable to get lsi clock\n");
213 
214 	/* optional peripheral clock */
215 	if (wdt->data->has_pclk) {
216 		wdt->clk_pclk = devm_clk_get(dev, "pclk");
217 		if (IS_ERR(wdt->clk_pclk))
218 			return dev_err_probe(dev, PTR_ERR(wdt->clk_pclk),
219 					     "Unable to get pclk clock\n");
220 
221 		ret = clk_prepare_enable(wdt->clk_pclk);
222 		if (ret) {
223 			dev_err(dev, "Unable to prepare pclk clock\n");
224 			return ret;
225 		}
226 		ret = devm_add_action_or_reset(dev,
227 					       stm32_clk_disable_unprepare,
228 					       wdt->clk_pclk);
229 		if (ret)
230 			return ret;
231 	}
232 
233 	ret = clk_prepare_enable(wdt->clk_lsi);
234 	if (ret) {
235 		dev_err(dev, "Unable to prepare lsi clock\n");
236 		return ret;
237 	}
238 	ret = devm_add_action_or_reset(dev, stm32_clk_disable_unprepare,
239 				       wdt->clk_lsi);
240 	if (ret)
241 		return ret;
242 
243 	wdt->rate = clk_get_rate(wdt->clk_lsi);
244 
245 	return 0;
246 }
247 
248 static const struct watchdog_info stm32_iwdg_info = {
249 	.options	= WDIOF_SETTIMEOUT |
250 			  WDIOF_MAGICCLOSE |
251 			  WDIOF_KEEPALIVEPING,
252 	.identity	= "STM32 Independent Watchdog",
253 };
254 
255 static const struct watchdog_info stm32_iwdg_preinfo = {
256 	.options	= WDIOF_SETTIMEOUT |
257 			  WDIOF_MAGICCLOSE |
258 			  WDIOF_KEEPALIVEPING |
259 			  WDIOF_PRETIMEOUT,
260 	.identity	= "STM32 Independent Watchdog",
261 };
262 
263 static const struct watchdog_ops stm32_iwdg_ops = {
264 	.owner		= THIS_MODULE,
265 	.start		= stm32_iwdg_start,
266 	.ping		= stm32_iwdg_ping,
267 	.set_timeout	= stm32_iwdg_set_timeout,
268 	.set_pretimeout	= stm32_iwdg_set_pretimeout,
269 };
270 
271 static const struct of_device_id stm32_iwdg_of_match[] = {
272 	{ .compatible = "st,stm32-iwdg", .data = &stm32_iwdg_data },
273 	{ .compatible = "st,stm32mp1-iwdg", .data = &stm32mp1_iwdg_data },
274 	{ /* end node */ }
275 };
276 MODULE_DEVICE_TABLE(of, stm32_iwdg_of_match);
277 
stm32_iwdg_irq_init(struct platform_device * pdev,struct stm32_iwdg * wdt)278 static int stm32_iwdg_irq_init(struct platform_device *pdev,
279 			       struct stm32_iwdg *wdt)
280 {
281 	struct device_node *np = pdev->dev.of_node;
282 	struct watchdog_device *wdd = &wdt->wdd;
283 	struct device *dev = &pdev->dev;
284 	int irq, ret;
285 
286 	if (!wdt->data->has_early_wakeup)
287 		return 0;
288 
289 	irq = platform_get_irq_optional(pdev, 0);
290 	if (irq <= 0)
291 		return 0;
292 
293 	if (of_property_read_bool(np, "wakeup-source")) {
294 		ret = device_init_wakeup(dev, true);
295 		if (ret)
296 			return ret;
297 
298 		ret = dev_pm_set_wake_irq(dev, irq);
299 		if (ret)
300 			return ret;
301 	}
302 
303 	ret = devm_request_irq(dev, irq, stm32_iwdg_isr, 0,
304 			       dev_name(dev), wdd);
305 	if (ret)
306 		return ret;
307 
308 	wdd->info = &stm32_iwdg_preinfo;
309 	return 0;
310 }
311 
stm32_iwdg_probe(struct platform_device * pdev)312 static int stm32_iwdg_probe(struct platform_device *pdev)
313 {
314 	struct device *dev = &pdev->dev;
315 	struct watchdog_device *wdd;
316 	struct stm32_iwdg *wdt;
317 	int ret;
318 
319 	wdt = devm_kzalloc(dev, sizeof(*wdt), GFP_KERNEL);
320 	if (!wdt)
321 		return -ENOMEM;
322 
323 	wdt->data = of_device_get_match_data(&pdev->dev);
324 	if (!wdt->data)
325 		return -ENODEV;
326 
327 	/* This is the timer base. */
328 	wdt->regs = devm_platform_ioremap_resource(pdev, 0);
329 	if (IS_ERR(wdt->regs))
330 		return PTR_ERR(wdt->regs);
331 
332 	ret = stm32_iwdg_clk_init(pdev, wdt);
333 	if (ret)
334 		return ret;
335 
336 	/* Initialize struct watchdog_device. */
337 	wdd = &wdt->wdd;
338 	wdd->parent = dev;
339 	wdd->info = &stm32_iwdg_info;
340 	wdd->ops = &stm32_iwdg_ops;
341 	wdd->timeout = DEFAULT_TIMEOUT;
342 	wdd->min_timeout = DIV_ROUND_UP((RLR_MIN + 1) * PR_MIN, wdt->rate);
343 	wdd->max_hw_heartbeat_ms = ((RLR_MAX + 1) * wdt->data->max_prescaler *
344 				    1000) / wdt->rate;
345 
346 	/* Initialize IRQ, this might override wdd->info, hence it is here. */
347 	ret = stm32_iwdg_irq_init(pdev, wdt);
348 	if (ret)
349 		return ret;
350 
351 	watchdog_set_drvdata(wdd, wdt);
352 	watchdog_set_nowayout(wdd, WATCHDOG_NOWAYOUT);
353 	watchdog_init_timeout(wdd, 0, dev);
354 
355 	/*
356 	 * In case of CONFIG_WATCHDOG_HANDLE_BOOT_ENABLED is set
357 	 * (Means U-Boot/bootloaders leaves the watchdog running)
358 	 * When we get here we should make a decision to prevent
359 	 * any side effects before user space daemon will take care of it.
360 	 * The best option, taking into consideration that there is no
361 	 * way to read values back from hardware, is to enforce watchdog
362 	 * being run with deterministic values.
363 	 */
364 	if (IS_ENABLED(CONFIG_WATCHDOG_HANDLE_BOOT_ENABLED)) {
365 		ret = stm32_iwdg_start(wdd);
366 		if (ret)
367 			return ret;
368 
369 		/* Make sure the watchdog is serviced */
370 		set_bit(WDOG_HW_RUNNING, &wdd->status);
371 	}
372 
373 	ret = devm_watchdog_register_device(dev, wdd);
374 	if (ret)
375 		return ret;
376 
377 	platform_set_drvdata(pdev, wdt);
378 
379 	return 0;
380 }
381 
382 static struct platform_driver stm32_iwdg_driver = {
383 	.probe		= stm32_iwdg_probe,
384 	.driver = {
385 		.name	= "iwdg",
386 		.of_match_table = stm32_iwdg_of_match,
387 	},
388 };
389 module_platform_driver(stm32_iwdg_driver);
390 
391 MODULE_AUTHOR("Yannick Fertre <yannick.fertre@st.com>");
392 MODULE_DESCRIPTION("STMicroelectronics STM32 Independent Watchdog Driver");
393 MODULE_LICENSE("GPL v2");
394