xref: /linux/drivers/watchdog/octeon-wdt-main.c (revision ec63e2a4897075e427c121d863bd89c44578094f)
1 /*
2  * Octeon Watchdog driver
3  *
4  * Copyright (C) 2007-2017 Cavium, Inc.
5  *
6  * Converted to use WATCHDOG_CORE by Aaro Koskinen <aaro.koskinen@iki.fi>.
7  *
8  * Some parts derived from wdt.c
9  *
10  *	(c) Copyright 1996-1997 Alan Cox <alan@lxorguk.ukuu.org.uk>,
11  *						All Rights Reserved.
12  *
13  *	This program is free software; you can redistribute it and/or
14  *	modify it under the terms of the GNU General Public License
15  *	as published by the Free Software Foundation; either version
16  *	2 of the License, or (at your option) any later version.
17  *
18  *	Neither Alan Cox nor CymruNet Ltd. admit liability nor provide
19  *	warranty for any of this software. This material is provided
20  *	"AS-IS" and at no charge.
21  *
22  *	(c) Copyright 1995    Alan Cox <alan@lxorguk.ukuu.org.uk>
23  *
24  * This file is subject to the terms and conditions of the GNU General Public
25  * License.  See the file "COPYING" in the main directory of this archive
26  * for more details.
27  *
28  *
29  * The OCTEON watchdog has a maximum timeout of 2^32 * io_clock.
30  * For most systems this is less than 10 seconds, so to allow for
31  * software to request longer watchdog heartbeats, we maintain software
32  * counters to count multiples of the base rate.  If the system locks
33  * up in such a manner that we can not run the software counters, the
34  * only result is a watchdog reset sooner than was requested.  But
35  * that is OK, because in this case userspace would likely not be able
36  * to do anything anyhow.
37  *
38  * The hardware watchdog interval we call the period.  The OCTEON
39  * watchdog goes through several stages, after the first period an
40  * irq is asserted, then if it is not reset, after the next period NMI
41  * is asserted, then after an additional period a chip wide soft reset.
42  * So for the software counters, we reset watchdog after each period
43  * and decrement the counter.  But for the last two periods we need to
44  * let the watchdog progress to the NMI stage so we disable the irq
45  * and let it proceed.  Once in the NMI, we print the register state
46  * to the serial port and then wait for the reset.
47  *
48  * A watchdog is maintained for each CPU in the system, that way if
49  * one CPU suffers a lockup, we also get a register dump and reset.
50  * The userspace ping resets the watchdog on all CPUs.
51  *
52  * Before userspace opens the watchdog device, we still run the
53  * watchdogs to catch any lockups that may be kernel related.
54  *
55  */
56 
57 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
58 
59 #include <linux/interrupt.h>
60 #include <linux/watchdog.h>
61 #include <linux/cpumask.h>
62 #include <linux/module.h>
63 #include <linux/delay.h>
64 #include <linux/cpu.h>
65 #include <linux/irq.h>
66 
67 #include <asm/mipsregs.h>
68 #include <asm/uasm.h>
69 
70 #include <asm/octeon/octeon.h>
71 #include <asm/octeon/cvmx-boot-vector.h>
72 #include <asm/octeon/cvmx-ciu2-defs.h>
73 #include <asm/octeon/cvmx-rst-defs.h>
74 
75 /* Watchdog interrupt major block number (8 MSBs of intsn) */
76 #define WD_BLOCK_NUMBER		0x01
77 
78 static int divisor;
79 
80 /* The count needed to achieve timeout_sec. */
81 static unsigned int timeout_cnt;
82 
83 /* The maximum period supported. */
84 static unsigned int max_timeout_sec;
85 
86 /* The current period.  */
87 static unsigned int timeout_sec;
88 
89 /* Set to non-zero when userspace countdown mode active */
90 static bool do_countdown;
91 static unsigned int countdown_reset;
92 static unsigned int per_cpu_countdown[NR_CPUS];
93 
94 static cpumask_t irq_enabled_cpus;
95 
96 #define WD_TIMO 60			/* Default heartbeat = 60 seconds */
97 
98 #define CVMX_GSERX_SCRATCH(offset) (CVMX_ADD_IO_SEG(0x0001180090000020ull) + ((offset) & 15) * 0x1000000ull)
99 
100 static int heartbeat = WD_TIMO;
101 module_param(heartbeat, int, 0444);
102 MODULE_PARM_DESC(heartbeat,
103 	"Watchdog heartbeat in seconds. (0 < heartbeat, default="
104 				__MODULE_STRING(WD_TIMO) ")");
105 
106 static bool nowayout = WATCHDOG_NOWAYOUT;
107 module_param(nowayout, bool, 0444);
108 MODULE_PARM_DESC(nowayout,
109 	"Watchdog cannot be stopped once started (default="
110 				__MODULE_STRING(WATCHDOG_NOWAYOUT) ")");
111 
112 static int disable;
113 module_param(disable, int, 0444);
114 MODULE_PARM_DESC(disable,
115 	"Disable the watchdog entirely (default=0)");
116 
117 static struct cvmx_boot_vector_element *octeon_wdt_bootvector;
118 
119 void octeon_wdt_nmi_stage2(void);
120 
121 static int cpu2core(int cpu)
122 {
123 #ifdef CONFIG_SMP
124 	return cpu_logical_map(cpu) & 0x3f;
125 #else
126 	return cvmx_get_core_num();
127 #endif
128 }
129 
130 /**
131  * Poke the watchdog when an interrupt is received
132  *
133  * @cpl:
134  * @dev_id:
135  *
136  * Returns
137  */
138 static irqreturn_t octeon_wdt_poke_irq(int cpl, void *dev_id)
139 {
140 	int cpu = raw_smp_processor_id();
141 	unsigned int core = cpu2core(cpu);
142 	int node = cpu_to_node(cpu);
143 
144 	if (do_countdown) {
145 		if (per_cpu_countdown[cpu] > 0) {
146 			/* We're alive, poke the watchdog */
147 			cvmx_write_csr_node(node, CVMX_CIU_PP_POKEX(core), 1);
148 			per_cpu_countdown[cpu]--;
149 		} else {
150 			/* Bad news, you are about to reboot. */
151 			disable_irq_nosync(cpl);
152 			cpumask_clear_cpu(cpu, &irq_enabled_cpus);
153 		}
154 	} else {
155 		/* Not open, just ping away... */
156 		cvmx_write_csr_node(node, CVMX_CIU_PP_POKEX(core), 1);
157 	}
158 	return IRQ_HANDLED;
159 }
160 
161 /* From setup.c */
162 extern int prom_putchar(char c);
163 
164 /**
165  * Write a string to the uart
166  *
167  * @str:        String to write
168  */
169 static void octeon_wdt_write_string(const char *str)
170 {
171 	/* Just loop writing one byte at a time */
172 	while (*str)
173 		prom_putchar(*str++);
174 }
175 
176 /**
177  * Write a hex number out of the uart
178  *
179  * @value:      Number to display
180  * @digits:     Number of digits to print (1 to 16)
181  */
182 static void octeon_wdt_write_hex(u64 value, int digits)
183 {
184 	int d;
185 	int v;
186 
187 	for (d = 0; d < digits; d++) {
188 		v = (value >> ((digits - d - 1) * 4)) & 0xf;
189 		if (v >= 10)
190 			prom_putchar('a' + v - 10);
191 		else
192 			prom_putchar('0' + v);
193 	}
194 }
195 
196 static const char reg_name[][3] = {
197 	"$0", "at", "v0", "v1", "a0", "a1", "a2", "a3",
198 	"a4", "a5", "a6", "a7", "t0", "t1", "t2", "t3",
199 	"s0", "s1", "s2", "s3", "s4", "s5", "s6", "s7",
200 	"t8", "t9", "k0", "k1", "gp", "sp", "s8", "ra"
201 };
202 
203 /**
204  * NMI stage 3 handler. NMIs are handled in the following manner:
205  * 1) The first NMI handler enables CVMSEG and transfers from
206  * the bootbus region into normal memory. It is careful to not
207  * destroy any registers.
208  * 2) The second stage handler uses CVMSEG to save the registers
209  * and create a stack for C code. It then calls the third level
210  * handler with one argument, a pointer to the register values.
211  * 3) The third, and final, level handler is the following C
212  * function that prints out some useful infomration.
213  *
214  * @reg:    Pointer to register state before the NMI
215  */
216 void octeon_wdt_nmi_stage3(u64 reg[32])
217 {
218 	u64 i;
219 
220 	unsigned int coreid = cvmx_get_core_num();
221 	/*
222 	 * Save status and cause early to get them before any changes
223 	 * might happen.
224 	 */
225 	u64 cp0_cause = read_c0_cause();
226 	u64 cp0_status = read_c0_status();
227 	u64 cp0_error_epc = read_c0_errorepc();
228 	u64 cp0_epc = read_c0_epc();
229 
230 	/* Delay so output from all cores output is not jumbled together. */
231 	udelay(85000 * coreid);
232 
233 	octeon_wdt_write_string("\r\n*** NMI Watchdog interrupt on Core 0x");
234 	octeon_wdt_write_hex(coreid, 2);
235 	octeon_wdt_write_string(" ***\r\n");
236 	for (i = 0; i < 32; i++) {
237 		octeon_wdt_write_string("\t");
238 		octeon_wdt_write_string(reg_name[i]);
239 		octeon_wdt_write_string("\t0x");
240 		octeon_wdt_write_hex(reg[i], 16);
241 		if (i & 1)
242 			octeon_wdt_write_string("\r\n");
243 	}
244 	octeon_wdt_write_string("\terr_epc\t0x");
245 	octeon_wdt_write_hex(cp0_error_epc, 16);
246 
247 	octeon_wdt_write_string("\tepc\t0x");
248 	octeon_wdt_write_hex(cp0_epc, 16);
249 	octeon_wdt_write_string("\r\n");
250 
251 	octeon_wdt_write_string("\tstatus\t0x");
252 	octeon_wdt_write_hex(cp0_status, 16);
253 	octeon_wdt_write_string("\tcause\t0x");
254 	octeon_wdt_write_hex(cp0_cause, 16);
255 	octeon_wdt_write_string("\r\n");
256 
257 	/* The CIU register is different for each Octeon model. */
258 	if (OCTEON_IS_MODEL(OCTEON_CN68XX)) {
259 		octeon_wdt_write_string("\tsrc_wd\t0x");
260 		octeon_wdt_write_hex(cvmx_read_csr(CVMX_CIU2_SRC_PPX_IP2_WDOG(coreid)), 16);
261 		octeon_wdt_write_string("\ten_wd\t0x");
262 		octeon_wdt_write_hex(cvmx_read_csr(CVMX_CIU2_EN_PPX_IP2_WDOG(coreid)), 16);
263 		octeon_wdt_write_string("\r\n");
264 		octeon_wdt_write_string("\tsrc_rml\t0x");
265 		octeon_wdt_write_hex(cvmx_read_csr(CVMX_CIU2_SRC_PPX_IP2_RML(coreid)), 16);
266 		octeon_wdt_write_string("\ten_rml\t0x");
267 		octeon_wdt_write_hex(cvmx_read_csr(CVMX_CIU2_EN_PPX_IP2_RML(coreid)), 16);
268 		octeon_wdt_write_string("\r\n");
269 		octeon_wdt_write_string("\tsum\t0x");
270 		octeon_wdt_write_hex(cvmx_read_csr(CVMX_CIU2_SUM_PPX_IP2(coreid)), 16);
271 		octeon_wdt_write_string("\r\n");
272 	} else if (!octeon_has_feature(OCTEON_FEATURE_CIU3)) {
273 		octeon_wdt_write_string("\tsum0\t0x");
274 		octeon_wdt_write_hex(cvmx_read_csr(CVMX_CIU_INTX_SUM0(coreid * 2)), 16);
275 		octeon_wdt_write_string("\ten0\t0x");
276 		octeon_wdt_write_hex(cvmx_read_csr(CVMX_CIU_INTX_EN0(coreid * 2)), 16);
277 		octeon_wdt_write_string("\r\n");
278 	}
279 
280 	octeon_wdt_write_string("*** Chip soft reset soon ***\r\n");
281 
282 	/*
283 	 * G-30204: We must trigger a soft reset before watchdog
284 	 * does an incomplete job of doing it.
285 	 */
286 	if (OCTEON_IS_OCTEON3() && !OCTEON_IS_MODEL(OCTEON_CN70XX)) {
287 		u64 scr;
288 		unsigned int node = cvmx_get_node_num();
289 		unsigned int lcore = cvmx_get_local_core_num();
290 		union cvmx_ciu_wdogx ciu_wdog;
291 
292 		/*
293 		 * Wait for other cores to print out information, but
294 		 * not too long.  Do the soft reset before watchdog
295 		 * can trigger it.
296 		 */
297 		do {
298 			ciu_wdog.u64 = cvmx_read_csr_node(node, CVMX_CIU_WDOGX(lcore));
299 		} while (ciu_wdog.s.cnt > 0x10000);
300 
301 		scr = cvmx_read_csr_node(0, CVMX_GSERX_SCRATCH(0));
302 		scr |= 1 << 11; /* Indicate watchdog in bit 11 */
303 		cvmx_write_csr_node(0, CVMX_GSERX_SCRATCH(0), scr);
304 		cvmx_write_csr_node(0, CVMX_RST_SOFT_RST, 1);
305 	}
306 }
307 
308 static int octeon_wdt_cpu_to_irq(int cpu)
309 {
310 	unsigned int coreid;
311 	int node;
312 	int irq;
313 
314 	coreid = cpu2core(cpu);
315 	node = cpu_to_node(cpu);
316 
317 	if (octeon_has_feature(OCTEON_FEATURE_CIU3)) {
318 		struct irq_domain *domain;
319 		int hwirq;
320 
321 		domain = octeon_irq_get_block_domain(node,
322 						     WD_BLOCK_NUMBER);
323 		hwirq = WD_BLOCK_NUMBER << 12 | 0x200 | coreid;
324 		irq = irq_find_mapping(domain, hwirq);
325 	} else {
326 		irq = OCTEON_IRQ_WDOG0 + coreid;
327 	}
328 	return irq;
329 }
330 
331 static int octeon_wdt_cpu_pre_down(unsigned int cpu)
332 {
333 	unsigned int core;
334 	int node;
335 	union cvmx_ciu_wdogx ciu_wdog;
336 
337 	core = cpu2core(cpu);
338 
339 	node = cpu_to_node(cpu);
340 
341 	/* Poke the watchdog to clear out its state */
342 	cvmx_write_csr_node(node, CVMX_CIU_PP_POKEX(core), 1);
343 
344 	/* Disable the hardware. */
345 	ciu_wdog.u64 = 0;
346 	cvmx_write_csr_node(node, CVMX_CIU_WDOGX(core), ciu_wdog.u64);
347 
348 	free_irq(octeon_wdt_cpu_to_irq(cpu), octeon_wdt_poke_irq);
349 	return 0;
350 }
351 
352 static int octeon_wdt_cpu_online(unsigned int cpu)
353 {
354 	unsigned int core;
355 	unsigned int irq;
356 	union cvmx_ciu_wdogx ciu_wdog;
357 	int node;
358 	struct irq_domain *domain;
359 	int hwirq;
360 
361 	core = cpu2core(cpu);
362 	node = cpu_to_node(cpu);
363 
364 	octeon_wdt_bootvector[core].target_ptr = (u64)octeon_wdt_nmi_stage2;
365 
366 	/* Disable it before doing anything with the interrupts. */
367 	ciu_wdog.u64 = 0;
368 	cvmx_write_csr_node(node, CVMX_CIU_WDOGX(core), ciu_wdog.u64);
369 
370 	per_cpu_countdown[cpu] = countdown_reset;
371 
372 	if (octeon_has_feature(OCTEON_FEATURE_CIU3)) {
373 		/* Must get the domain for the watchdog block */
374 		domain = octeon_irq_get_block_domain(node, WD_BLOCK_NUMBER);
375 
376 		/* Get a irq for the wd intsn (hardware interrupt) */
377 		hwirq = WD_BLOCK_NUMBER << 12 | 0x200 | core;
378 		irq = irq_create_mapping(domain, hwirq);
379 		irqd_set_trigger_type(irq_get_irq_data(irq),
380 				      IRQ_TYPE_EDGE_RISING);
381 	} else
382 		irq = OCTEON_IRQ_WDOG0 + core;
383 
384 	if (request_irq(irq, octeon_wdt_poke_irq,
385 			IRQF_NO_THREAD, "octeon_wdt", octeon_wdt_poke_irq))
386 		panic("octeon_wdt: Couldn't obtain irq %d", irq);
387 
388 	/* Must set the irq affinity here */
389 	if (octeon_has_feature(OCTEON_FEATURE_CIU3)) {
390 		cpumask_t mask;
391 
392 		cpumask_clear(&mask);
393 		cpumask_set_cpu(cpu, &mask);
394 		irq_set_affinity(irq, &mask);
395 	}
396 
397 	cpumask_set_cpu(cpu, &irq_enabled_cpus);
398 
399 	/* Poke the watchdog to clear out its state */
400 	cvmx_write_csr_node(node, CVMX_CIU_PP_POKEX(core), 1);
401 
402 	/* Finally enable the watchdog now that all handlers are installed */
403 	ciu_wdog.u64 = 0;
404 	ciu_wdog.s.len = timeout_cnt;
405 	ciu_wdog.s.mode = 3;	/* 3 = Interrupt + NMI + Soft-Reset */
406 	cvmx_write_csr_node(node, CVMX_CIU_WDOGX(core), ciu_wdog.u64);
407 
408 	return 0;
409 }
410 
411 static int octeon_wdt_ping(struct watchdog_device __always_unused *wdog)
412 {
413 	int cpu;
414 	int coreid;
415 	int node;
416 
417 	if (disable)
418 		return 0;
419 
420 	for_each_online_cpu(cpu) {
421 		coreid = cpu2core(cpu);
422 		node = cpu_to_node(cpu);
423 		cvmx_write_csr_node(node, CVMX_CIU_PP_POKEX(coreid), 1);
424 		per_cpu_countdown[cpu] = countdown_reset;
425 		if ((countdown_reset || !do_countdown) &&
426 		    !cpumask_test_cpu(cpu, &irq_enabled_cpus)) {
427 			/* We have to enable the irq */
428 			enable_irq(octeon_wdt_cpu_to_irq(cpu));
429 			cpumask_set_cpu(cpu, &irq_enabled_cpus);
430 		}
431 	}
432 	return 0;
433 }
434 
435 static void octeon_wdt_calc_parameters(int t)
436 {
437 	unsigned int periods;
438 
439 	timeout_sec = max_timeout_sec;
440 
441 
442 	/*
443 	 * Find the largest interrupt period, that can evenly divide
444 	 * the requested heartbeat time.
445 	 */
446 	while ((t % timeout_sec) != 0)
447 		timeout_sec--;
448 
449 	periods = t / timeout_sec;
450 
451 	/*
452 	 * The last two periods are after the irq is disabled, and
453 	 * then to the nmi, so we subtract them off.
454 	 */
455 
456 	countdown_reset = periods > 2 ? periods - 2 : 0;
457 	heartbeat = t;
458 	timeout_cnt = ((octeon_get_io_clock_rate() / divisor) * timeout_sec) >> 8;
459 }
460 
461 static int octeon_wdt_set_timeout(struct watchdog_device *wdog,
462 				  unsigned int t)
463 {
464 	int cpu;
465 	int coreid;
466 	union cvmx_ciu_wdogx ciu_wdog;
467 	int node;
468 
469 	if (t <= 0)
470 		return -1;
471 
472 	octeon_wdt_calc_parameters(t);
473 
474 	if (disable)
475 		return 0;
476 
477 	for_each_online_cpu(cpu) {
478 		coreid = cpu2core(cpu);
479 		node = cpu_to_node(cpu);
480 		cvmx_write_csr_node(node, CVMX_CIU_PP_POKEX(coreid), 1);
481 		ciu_wdog.u64 = 0;
482 		ciu_wdog.s.len = timeout_cnt;
483 		ciu_wdog.s.mode = 3;	/* 3 = Interrupt + NMI + Soft-Reset */
484 		cvmx_write_csr_node(node, CVMX_CIU_WDOGX(coreid), ciu_wdog.u64);
485 		cvmx_write_csr_node(node, CVMX_CIU_PP_POKEX(coreid), 1);
486 	}
487 	octeon_wdt_ping(wdog); /* Get the irqs back on. */
488 	return 0;
489 }
490 
491 static int octeon_wdt_start(struct watchdog_device *wdog)
492 {
493 	octeon_wdt_ping(wdog);
494 	do_countdown = 1;
495 	return 0;
496 }
497 
498 static int octeon_wdt_stop(struct watchdog_device *wdog)
499 {
500 	do_countdown = 0;
501 	octeon_wdt_ping(wdog);
502 	return 0;
503 }
504 
505 static const struct watchdog_info octeon_wdt_info = {
506 	.options = WDIOF_SETTIMEOUT | WDIOF_MAGICCLOSE | WDIOF_KEEPALIVEPING,
507 	.identity = "OCTEON",
508 };
509 
510 static const struct watchdog_ops octeon_wdt_ops = {
511 	.owner		= THIS_MODULE,
512 	.start		= octeon_wdt_start,
513 	.stop		= octeon_wdt_stop,
514 	.ping		= octeon_wdt_ping,
515 	.set_timeout	= octeon_wdt_set_timeout,
516 };
517 
518 static struct watchdog_device octeon_wdt = {
519 	.info	= &octeon_wdt_info,
520 	.ops	= &octeon_wdt_ops,
521 };
522 
523 static enum cpuhp_state octeon_wdt_online;
524 /**
525  * Module/ driver initialization.
526  *
527  * Returns Zero on success
528  */
529 static int __init octeon_wdt_init(void)
530 {
531 	int ret;
532 
533 	octeon_wdt_bootvector = cvmx_boot_vector_get();
534 	if (!octeon_wdt_bootvector) {
535 		pr_err("Error: Cannot allocate boot vector.\n");
536 		return -ENOMEM;
537 	}
538 
539 	if (OCTEON_IS_MODEL(OCTEON_CN68XX))
540 		divisor = 0x200;
541 	else if (OCTEON_IS_MODEL(OCTEON_CN78XX))
542 		divisor = 0x400;
543 	else
544 		divisor = 0x100;
545 
546 	/*
547 	 * Watchdog time expiration length = The 16 bits of LEN
548 	 * represent the most significant bits of a 24 bit decrementer
549 	 * that decrements every divisor cycle.
550 	 *
551 	 * Try for a timeout of 5 sec, if that fails a smaller number
552 	 * of even seconds,
553 	 */
554 	max_timeout_sec = 6;
555 	do {
556 		max_timeout_sec--;
557 		timeout_cnt = ((octeon_get_io_clock_rate() / divisor) * max_timeout_sec) >> 8;
558 	} while (timeout_cnt > 65535);
559 
560 	BUG_ON(timeout_cnt == 0);
561 
562 	octeon_wdt_calc_parameters(heartbeat);
563 
564 	pr_info("Initial granularity %d Sec\n", timeout_sec);
565 
566 	octeon_wdt.timeout	= timeout_sec;
567 	octeon_wdt.max_timeout	= UINT_MAX;
568 
569 	watchdog_set_nowayout(&octeon_wdt, nowayout);
570 
571 	ret = watchdog_register_device(&octeon_wdt);
572 	if (ret) {
573 		pr_err("watchdog_register_device() failed: %d\n", ret);
574 		return ret;
575 	}
576 
577 	if (disable) {
578 		pr_notice("disabled\n");
579 		return 0;
580 	}
581 
582 	cpumask_clear(&irq_enabled_cpus);
583 
584 	ret = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "watchdog/octeon:online",
585 				octeon_wdt_cpu_online, octeon_wdt_cpu_pre_down);
586 	if (ret < 0)
587 		goto err;
588 	octeon_wdt_online = ret;
589 	return 0;
590 err:
591 	cvmx_write_csr(CVMX_MIO_BOOT_LOC_CFGX(0), 0);
592 	watchdog_unregister_device(&octeon_wdt);
593 	return ret;
594 }
595 
596 /**
597  * Module / driver shutdown
598  */
599 static void __exit octeon_wdt_cleanup(void)
600 {
601 	watchdog_unregister_device(&octeon_wdt);
602 
603 	if (disable)
604 		return;
605 
606 	cpuhp_remove_state(octeon_wdt_online);
607 
608 	/*
609 	 * Disable the boot-bus memory, the code it points to is soon
610 	 * to go missing.
611 	 */
612 	cvmx_write_csr(CVMX_MIO_BOOT_LOC_CFGX(0), 0);
613 }
614 
615 MODULE_LICENSE("GPL");
616 MODULE_AUTHOR("Cavium Inc. <support@cavium.com>");
617 MODULE_DESCRIPTION("Cavium Inc. OCTEON Watchdog driver.");
618 module_init(octeon_wdt_init);
619 module_exit(octeon_wdt_cleanup);
620