xref: /linux/drivers/watchdog/octeon-wdt-main.c (revision ca55b2fef3a9373fcfc30f82fd26bc7fccbda732)
1 /*
2  * Octeon Watchdog driver
3  *
4  * Copyright (C) 2007, 2008, 2009, 2010 Cavium Networks
5  *
6  * Converted to use WATCHDOG_CORE by Aaro Koskinen <aaro.koskinen@iki.fi>.
7  *
8  * Some parts derived from wdt.c
9  *
10  *	(c) Copyright 1996-1997 Alan Cox <alan@lxorguk.ukuu.org.uk>,
11  *						All Rights Reserved.
12  *
13  *	This program is free software; you can redistribute it and/or
14  *	modify it under the terms of the GNU General Public License
15  *	as published by the Free Software Foundation; either version
16  *	2 of the License, or (at your option) any later version.
17  *
18  *	Neither Alan Cox nor CymruNet Ltd. admit liability nor provide
19  *	warranty for any of this software. This material is provided
20  *	"AS-IS" and at no charge.
21  *
22  *	(c) Copyright 1995    Alan Cox <alan@lxorguk.ukuu.org.uk>
23  *
24  * This file is subject to the terms and conditions of the GNU General Public
25  * License.  See the file "COPYING" in the main directory of this archive
26  * for more details.
27  *
28  *
29  * The OCTEON watchdog has a maximum timeout of 2^32 * io_clock.
30  * For most systems this is less than 10 seconds, so to allow for
31  * software to request longer watchdog heartbeats, we maintain software
32  * counters to count multiples of the base rate.  If the system locks
33  * up in such a manner that we can not run the software counters, the
34  * only result is a watchdog reset sooner than was requested.  But
35  * that is OK, because in this case userspace would likely not be able
36  * to do anything anyhow.
37  *
38  * The hardware watchdog interval we call the period.  The OCTEON
39  * watchdog goes through several stages, after the first period an
40  * irq is asserted, then if it is not reset, after the next period NMI
41  * is asserted, then after an additional period a chip wide soft reset.
42  * So for the software counters, we reset watchdog after each period
43  * and decrement the counter.  But for the last two periods we need to
44  * let the watchdog progress to the NMI stage so we disable the irq
45  * and let it proceed.  Once in the NMI, we print the register state
46  * to the serial port and then wait for the reset.
47  *
48  * A watchdog is maintained for each CPU in the system, that way if
49  * one CPU suffers a lockup, we also get a register dump and reset.
50  * The userspace ping resets the watchdog on all CPUs.
51  *
52  * Before userspace opens the watchdog device, we still run the
53  * watchdogs to catch any lockups that may be kernel related.
54  *
55  */
56 
57 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
58 
59 #include <linux/miscdevice.h>
60 #include <linux/interrupt.h>
61 #include <linux/watchdog.h>
62 #include <linux/cpumask.h>
63 #include <linux/bitops.h>
64 #include <linux/kernel.h>
65 #include <linux/module.h>
66 #include <linux/string.h>
67 #include <linux/delay.h>
68 #include <linux/cpu.h>
69 #include <linux/smp.h>
70 #include <linux/fs.h>
71 #include <linux/irq.h>
72 
73 #include <asm/mipsregs.h>
74 #include <asm/uasm.h>
75 
76 #include <asm/octeon/octeon.h>
77 
78 /* The count needed to achieve timeout_sec. */
79 static unsigned int timeout_cnt;
80 
81 /* The maximum period supported. */
82 static unsigned int max_timeout_sec;
83 
84 /* The current period.  */
85 static unsigned int timeout_sec;
86 
87 /* Set to non-zero when userspace countdown mode active */
88 static int do_coundown;
89 static unsigned int countdown_reset;
90 static unsigned int per_cpu_countdown[NR_CPUS];
91 
92 static cpumask_t irq_enabled_cpus;
93 
94 #define WD_TIMO 60			/* Default heartbeat = 60 seconds */
95 
96 static int heartbeat = WD_TIMO;
97 module_param(heartbeat, int, S_IRUGO);
98 MODULE_PARM_DESC(heartbeat,
99 	"Watchdog heartbeat in seconds. (0 < heartbeat, default="
100 				__MODULE_STRING(WD_TIMO) ")");
101 
102 static bool nowayout = WATCHDOG_NOWAYOUT;
103 module_param(nowayout, bool, S_IRUGO);
104 MODULE_PARM_DESC(nowayout,
105 	"Watchdog cannot be stopped once started (default="
106 				__MODULE_STRING(WATCHDOG_NOWAYOUT) ")");
107 
108 static u32 nmi_stage1_insns[64] __initdata;
109 /* We need one branch and therefore one relocation per target label. */
110 static struct uasm_label labels[5] __initdata;
111 static struct uasm_reloc relocs[5] __initdata;
112 
113 enum lable_id {
114 	label_enter_bootloader = 1
115 };
116 
117 /* Some CP0 registers */
118 #define K0		26
119 #define C0_CVMMEMCTL 11, 7
120 #define C0_STATUS 12, 0
121 #define C0_EBASE 15, 1
122 #define C0_DESAVE 31, 0
123 
124 void octeon_wdt_nmi_stage2(void);
125 
126 static void __init octeon_wdt_build_stage1(void)
127 {
128 	int i;
129 	int len;
130 	u32 *p = nmi_stage1_insns;
131 #ifdef CONFIG_HOTPLUG_CPU
132 	struct uasm_label *l = labels;
133 	struct uasm_reloc *r = relocs;
134 #endif
135 
136 	/*
137 	 * For the next few instructions running the debugger may
138 	 * cause corruption of k0 in the saved registers. Since we're
139 	 * about to crash, nobody probably cares.
140 	 *
141 	 * Save K0 into the debug scratch register
142 	 */
143 	uasm_i_dmtc0(&p, K0, C0_DESAVE);
144 
145 	uasm_i_mfc0(&p, K0, C0_STATUS);
146 #ifdef CONFIG_HOTPLUG_CPU
147 	if (octeon_bootloader_entry_addr)
148 		uasm_il_bbit0(&p, &r, K0, ilog2(ST0_NMI),
149 			      label_enter_bootloader);
150 #endif
151 	/* Force 64-bit addressing enabled */
152 	uasm_i_ori(&p, K0, K0, ST0_UX | ST0_SX | ST0_KX);
153 	uasm_i_mtc0(&p, K0, C0_STATUS);
154 
155 #ifdef CONFIG_HOTPLUG_CPU
156 	if (octeon_bootloader_entry_addr) {
157 		uasm_i_mfc0(&p, K0, C0_EBASE);
158 		/* Coreid number in K0 */
159 		uasm_i_andi(&p, K0, K0, 0xf);
160 		/* 8 * coreid in bits 16-31 */
161 		uasm_i_dsll_safe(&p, K0, K0, 3 + 16);
162 		uasm_i_ori(&p, K0, K0, 0x8001);
163 		uasm_i_dsll_safe(&p, K0, K0, 16);
164 		uasm_i_ori(&p, K0, K0, 0x0700);
165 		uasm_i_drotr_safe(&p, K0, K0, 32);
166 		/*
167 		 * Should result in: 0x8001,0700,0000,8*coreid which is
168 		 * CVMX_CIU_WDOGX(coreid) - 0x0500
169 		 *
170 		 * Now ld K0, CVMX_CIU_WDOGX(coreid)
171 		 */
172 		uasm_i_ld(&p, K0, 0x500, K0);
173 		/*
174 		 * If bit one set handle the NMI as a watchdog event.
175 		 * otherwise transfer control to bootloader.
176 		 */
177 		uasm_il_bbit0(&p, &r, K0, 1, label_enter_bootloader);
178 		uasm_i_nop(&p);
179 	}
180 #endif
181 
182 	/* Clear Dcache so cvmseg works right. */
183 	uasm_i_cache(&p, 1, 0, 0);
184 
185 	/* Use K0 to do a read/modify/write of CVMMEMCTL */
186 	uasm_i_dmfc0(&p, K0, C0_CVMMEMCTL);
187 	/* Clear out the size of CVMSEG	*/
188 	uasm_i_dins(&p, K0, 0, 0, 6);
189 	/* Set CVMSEG to its largest value */
190 	uasm_i_ori(&p, K0, K0, 0x1c0 | 54);
191 	/* Store the CVMMEMCTL value */
192 	uasm_i_dmtc0(&p, K0, C0_CVMMEMCTL);
193 
194 	/* Load the address of the second stage handler */
195 	UASM_i_LA(&p, K0, (long)octeon_wdt_nmi_stage2);
196 	uasm_i_jr(&p, K0);
197 	uasm_i_dmfc0(&p, K0, C0_DESAVE);
198 
199 #ifdef CONFIG_HOTPLUG_CPU
200 	if (octeon_bootloader_entry_addr) {
201 		uasm_build_label(&l, p, label_enter_bootloader);
202 		/* Jump to the bootloader and restore K0 */
203 		UASM_i_LA(&p, K0, (long)octeon_bootloader_entry_addr);
204 		uasm_i_jr(&p, K0);
205 		uasm_i_dmfc0(&p, K0, C0_DESAVE);
206 	}
207 #endif
208 	uasm_resolve_relocs(relocs, labels);
209 
210 	len = (int)(p - nmi_stage1_insns);
211 	pr_debug("Synthesized NMI stage 1 handler (%d instructions)\n", len);
212 
213 	pr_debug("\t.set push\n");
214 	pr_debug("\t.set noreorder\n");
215 	for (i = 0; i < len; i++)
216 		pr_debug("\t.word 0x%08x\n", nmi_stage1_insns[i]);
217 	pr_debug("\t.set pop\n");
218 
219 	if (len > 32)
220 		panic("NMI stage 1 handler exceeds 32 instructions, was %d\n",
221 		      len);
222 }
223 
224 static int cpu2core(int cpu)
225 {
226 #ifdef CONFIG_SMP
227 	return cpu_logical_map(cpu);
228 #else
229 	return cvmx_get_core_num();
230 #endif
231 }
232 
233 static int core2cpu(int coreid)
234 {
235 #ifdef CONFIG_SMP
236 	return cpu_number_map(coreid);
237 #else
238 	return 0;
239 #endif
240 }
241 
242 /**
243  * Poke the watchdog when an interrupt is received
244  *
245  * @cpl:
246  * @dev_id:
247  *
248  * Returns
249  */
250 static irqreturn_t octeon_wdt_poke_irq(int cpl, void *dev_id)
251 {
252 	unsigned int core = cvmx_get_core_num();
253 	int cpu = core2cpu(core);
254 
255 	if (do_coundown) {
256 		if (per_cpu_countdown[cpu] > 0) {
257 			/* We're alive, poke the watchdog */
258 			cvmx_write_csr(CVMX_CIU_PP_POKEX(core), 1);
259 			per_cpu_countdown[cpu]--;
260 		} else {
261 			/* Bad news, you are about to reboot. */
262 			disable_irq_nosync(cpl);
263 			cpumask_clear_cpu(cpu, &irq_enabled_cpus);
264 		}
265 	} else {
266 		/* Not open, just ping away... */
267 		cvmx_write_csr(CVMX_CIU_PP_POKEX(core), 1);
268 	}
269 	return IRQ_HANDLED;
270 }
271 
272 /* From setup.c */
273 extern int prom_putchar(char c);
274 
275 /**
276  * Write a string to the uart
277  *
278  * @str:        String to write
279  */
280 static void octeon_wdt_write_string(const char *str)
281 {
282 	/* Just loop writing one byte at a time */
283 	while (*str)
284 		prom_putchar(*str++);
285 }
286 
287 /**
288  * Write a hex number out of the uart
289  *
290  * @value:      Number to display
291  * @digits:     Number of digits to print (1 to 16)
292  */
293 static void octeon_wdt_write_hex(u64 value, int digits)
294 {
295 	int d;
296 	int v;
297 
298 	for (d = 0; d < digits; d++) {
299 		v = (value >> ((digits - d - 1) * 4)) & 0xf;
300 		if (v >= 10)
301 			prom_putchar('a' + v - 10);
302 		else
303 			prom_putchar('0' + v);
304 	}
305 }
306 
307 static const char reg_name[][3] = {
308 	"$0", "at", "v0", "v1", "a0", "a1", "a2", "a3",
309 	"a4", "a5", "a6", "a7", "t0", "t1", "t2", "t3",
310 	"s0", "s1", "s2", "s3", "s4", "s5", "s6", "s7",
311 	"t8", "t9", "k0", "k1", "gp", "sp", "s8", "ra"
312 };
313 
314 /**
315  * NMI stage 3 handler. NMIs are handled in the following manner:
316  * 1) The first NMI handler enables CVMSEG and transfers from
317  * the bootbus region into normal memory. It is careful to not
318  * destroy any registers.
319  * 2) The second stage handler uses CVMSEG to save the registers
320  * and create a stack for C code. It then calls the third level
321  * handler with one argument, a pointer to the register values.
322  * 3) The third, and final, level handler is the following C
323  * function that prints out some useful infomration.
324  *
325  * @reg:    Pointer to register state before the NMI
326  */
327 void octeon_wdt_nmi_stage3(u64 reg[32])
328 {
329 	u64 i;
330 
331 	unsigned int coreid = cvmx_get_core_num();
332 	/*
333 	 * Save status and cause early to get them before any changes
334 	 * might happen.
335 	 */
336 	u64 cp0_cause = read_c0_cause();
337 	u64 cp0_status = read_c0_status();
338 	u64 cp0_error_epc = read_c0_errorepc();
339 	u64 cp0_epc = read_c0_epc();
340 
341 	/* Delay so output from all cores output is not jumbled together. */
342 	__delay(100000000ull * coreid);
343 
344 	octeon_wdt_write_string("\r\n*** NMI Watchdog interrupt on Core 0x");
345 	octeon_wdt_write_hex(coreid, 1);
346 	octeon_wdt_write_string(" ***\r\n");
347 	for (i = 0; i < 32; i++) {
348 		octeon_wdt_write_string("\t");
349 		octeon_wdt_write_string(reg_name[i]);
350 		octeon_wdt_write_string("\t0x");
351 		octeon_wdt_write_hex(reg[i], 16);
352 		if (i & 1)
353 			octeon_wdt_write_string("\r\n");
354 	}
355 	octeon_wdt_write_string("\terr_epc\t0x");
356 	octeon_wdt_write_hex(cp0_error_epc, 16);
357 
358 	octeon_wdt_write_string("\tepc\t0x");
359 	octeon_wdt_write_hex(cp0_epc, 16);
360 	octeon_wdt_write_string("\r\n");
361 
362 	octeon_wdt_write_string("\tstatus\t0x");
363 	octeon_wdt_write_hex(cp0_status, 16);
364 	octeon_wdt_write_string("\tcause\t0x");
365 	octeon_wdt_write_hex(cp0_cause, 16);
366 	octeon_wdt_write_string("\r\n");
367 
368 	octeon_wdt_write_string("\tsum0\t0x");
369 	octeon_wdt_write_hex(cvmx_read_csr(CVMX_CIU_INTX_SUM0(coreid * 2)), 16);
370 	octeon_wdt_write_string("\ten0\t0x");
371 	octeon_wdt_write_hex(cvmx_read_csr(CVMX_CIU_INTX_EN0(coreid * 2)), 16);
372 	octeon_wdt_write_string("\r\n");
373 
374 	octeon_wdt_write_string("*** Chip soft reset soon ***\r\n");
375 }
376 
377 static void octeon_wdt_disable_interrupt(int cpu)
378 {
379 	unsigned int core;
380 	unsigned int irq;
381 	union cvmx_ciu_wdogx ciu_wdog;
382 
383 	core = cpu2core(cpu);
384 
385 	irq = OCTEON_IRQ_WDOG0 + core;
386 
387 	/* Poke the watchdog to clear out its state */
388 	cvmx_write_csr(CVMX_CIU_PP_POKEX(core), 1);
389 
390 	/* Disable the hardware. */
391 	ciu_wdog.u64 = 0;
392 	cvmx_write_csr(CVMX_CIU_WDOGX(core), ciu_wdog.u64);
393 
394 	free_irq(irq, octeon_wdt_poke_irq);
395 }
396 
397 static void octeon_wdt_setup_interrupt(int cpu)
398 {
399 	unsigned int core;
400 	unsigned int irq;
401 	union cvmx_ciu_wdogx ciu_wdog;
402 
403 	core = cpu2core(cpu);
404 
405 	/* Disable it before doing anything with the interrupts. */
406 	ciu_wdog.u64 = 0;
407 	cvmx_write_csr(CVMX_CIU_WDOGX(core), ciu_wdog.u64);
408 
409 	per_cpu_countdown[cpu] = countdown_reset;
410 
411 	irq = OCTEON_IRQ_WDOG0 + core;
412 
413 	if (request_irq(irq, octeon_wdt_poke_irq,
414 			IRQF_NO_THREAD, "octeon_wdt", octeon_wdt_poke_irq))
415 		panic("octeon_wdt: Couldn't obtain irq %d", irq);
416 
417 	cpumask_set_cpu(cpu, &irq_enabled_cpus);
418 
419 	/* Poke the watchdog to clear out its state */
420 	cvmx_write_csr(CVMX_CIU_PP_POKEX(core), 1);
421 
422 	/* Finally enable the watchdog now that all handlers are installed */
423 	ciu_wdog.u64 = 0;
424 	ciu_wdog.s.len = timeout_cnt;
425 	ciu_wdog.s.mode = 3;	/* 3 = Interrupt + NMI + Soft-Reset */
426 	cvmx_write_csr(CVMX_CIU_WDOGX(core), ciu_wdog.u64);
427 }
428 
429 static int octeon_wdt_cpu_callback(struct notifier_block *nfb,
430 					   unsigned long action, void *hcpu)
431 {
432 	unsigned int cpu = (unsigned long)hcpu;
433 
434 	switch (action) {
435 	case CPU_DOWN_PREPARE:
436 		octeon_wdt_disable_interrupt(cpu);
437 		break;
438 	case CPU_ONLINE:
439 	case CPU_DOWN_FAILED:
440 		octeon_wdt_setup_interrupt(cpu);
441 		break;
442 	default:
443 		break;
444 	}
445 	return NOTIFY_OK;
446 }
447 
448 static int octeon_wdt_ping(struct watchdog_device __always_unused *wdog)
449 {
450 	int cpu;
451 	int coreid;
452 
453 	for_each_online_cpu(cpu) {
454 		coreid = cpu2core(cpu);
455 		cvmx_write_csr(CVMX_CIU_PP_POKEX(coreid), 1);
456 		per_cpu_countdown[cpu] = countdown_reset;
457 		if ((countdown_reset || !do_coundown) &&
458 		    !cpumask_test_cpu(cpu, &irq_enabled_cpus)) {
459 			/* We have to enable the irq */
460 			int irq = OCTEON_IRQ_WDOG0 + coreid;
461 
462 			enable_irq(irq);
463 			cpumask_set_cpu(cpu, &irq_enabled_cpus);
464 		}
465 	}
466 	return 0;
467 }
468 
469 static void octeon_wdt_calc_parameters(int t)
470 {
471 	unsigned int periods;
472 
473 	timeout_sec = max_timeout_sec;
474 
475 
476 	/*
477 	 * Find the largest interrupt period, that can evenly divide
478 	 * the requested heartbeat time.
479 	 */
480 	while ((t % timeout_sec) != 0)
481 		timeout_sec--;
482 
483 	periods = t / timeout_sec;
484 
485 	/*
486 	 * The last two periods are after the irq is disabled, and
487 	 * then to the nmi, so we subtract them off.
488 	 */
489 
490 	countdown_reset = periods > 2 ? periods - 2 : 0;
491 	heartbeat = t;
492 	timeout_cnt = ((octeon_get_io_clock_rate() >> 8) * timeout_sec) >> 8;
493 }
494 
495 static int octeon_wdt_set_timeout(struct watchdog_device *wdog,
496 				  unsigned int t)
497 {
498 	int cpu;
499 	int coreid;
500 	union cvmx_ciu_wdogx ciu_wdog;
501 
502 	if (t <= 0)
503 		return -1;
504 
505 	octeon_wdt_calc_parameters(t);
506 
507 	for_each_online_cpu(cpu) {
508 		coreid = cpu2core(cpu);
509 		cvmx_write_csr(CVMX_CIU_PP_POKEX(coreid), 1);
510 		ciu_wdog.u64 = 0;
511 		ciu_wdog.s.len = timeout_cnt;
512 		ciu_wdog.s.mode = 3;	/* 3 = Interrupt + NMI + Soft-Reset */
513 		cvmx_write_csr(CVMX_CIU_WDOGX(coreid), ciu_wdog.u64);
514 		cvmx_write_csr(CVMX_CIU_PP_POKEX(coreid), 1);
515 	}
516 	octeon_wdt_ping(wdog); /* Get the irqs back on. */
517 	return 0;
518 }
519 
520 static int octeon_wdt_start(struct watchdog_device *wdog)
521 {
522 	octeon_wdt_ping(wdog);
523 	do_coundown = 1;
524 	return 0;
525 }
526 
527 static int octeon_wdt_stop(struct watchdog_device *wdog)
528 {
529 	do_coundown = 0;
530 	octeon_wdt_ping(wdog);
531 	return 0;
532 }
533 
534 static struct notifier_block octeon_wdt_cpu_notifier = {
535 	.notifier_call = octeon_wdt_cpu_callback,
536 };
537 
538 static const struct watchdog_info octeon_wdt_info = {
539 	.options = WDIOF_SETTIMEOUT | WDIOF_MAGICCLOSE | WDIOF_KEEPALIVEPING,
540 	.identity = "OCTEON",
541 };
542 
543 static const struct watchdog_ops octeon_wdt_ops = {
544 	.owner		= THIS_MODULE,
545 	.start		= octeon_wdt_start,
546 	.stop		= octeon_wdt_stop,
547 	.ping		= octeon_wdt_ping,
548 	.set_timeout	= octeon_wdt_set_timeout,
549 };
550 
551 static struct watchdog_device octeon_wdt = {
552 	.info	= &octeon_wdt_info,
553 	.ops	= &octeon_wdt_ops,
554 };
555 
556 /**
557  * Module/ driver initialization.
558  *
559  * Returns Zero on success
560  */
561 static int __init octeon_wdt_init(void)
562 {
563 	int i;
564 	int ret;
565 	int cpu;
566 	u64 *ptr;
567 
568 	/*
569 	 * Watchdog time expiration length = The 16 bits of LEN
570 	 * represent the most significant bits of a 24 bit decrementer
571 	 * that decrements every 256 cycles.
572 	 *
573 	 * Try for a timeout of 5 sec, if that fails a smaller number
574 	 * of even seconds,
575 	 */
576 	max_timeout_sec = 6;
577 	do {
578 		max_timeout_sec--;
579 		timeout_cnt = ((octeon_get_io_clock_rate() >> 8) *
580 			      max_timeout_sec) >> 8;
581 	} while (timeout_cnt > 65535);
582 
583 	BUG_ON(timeout_cnt == 0);
584 
585 	octeon_wdt_calc_parameters(heartbeat);
586 
587 	pr_info("Initial granularity %d Sec\n", timeout_sec);
588 
589 	octeon_wdt.timeout	= timeout_sec;
590 	octeon_wdt.max_timeout	= UINT_MAX;
591 
592 	watchdog_set_nowayout(&octeon_wdt, nowayout);
593 
594 	ret = watchdog_register_device(&octeon_wdt);
595 	if (ret) {
596 		pr_err("watchdog_register_device() failed: %d\n", ret);
597 		return ret;
598 	}
599 
600 	/* Build the NMI handler ... */
601 	octeon_wdt_build_stage1();
602 
603 	/* ... and install it. */
604 	ptr = (u64 *) nmi_stage1_insns;
605 	for (i = 0; i < 16; i++) {
606 		cvmx_write_csr(CVMX_MIO_BOOT_LOC_ADR, i * 8);
607 		cvmx_write_csr(CVMX_MIO_BOOT_LOC_DAT, ptr[i]);
608 	}
609 	cvmx_write_csr(CVMX_MIO_BOOT_LOC_CFGX(0), 0x81fc0000);
610 
611 	cpumask_clear(&irq_enabled_cpus);
612 
613 	cpu_notifier_register_begin();
614 	for_each_online_cpu(cpu)
615 		octeon_wdt_setup_interrupt(cpu);
616 
617 	__register_hotcpu_notifier(&octeon_wdt_cpu_notifier);
618 	cpu_notifier_register_done();
619 
620 	return 0;
621 }
622 
623 /**
624  * Module / driver shutdown
625  */
626 static void __exit octeon_wdt_cleanup(void)
627 {
628 	int cpu;
629 
630 	watchdog_unregister_device(&octeon_wdt);
631 
632 	cpu_notifier_register_begin();
633 	__unregister_hotcpu_notifier(&octeon_wdt_cpu_notifier);
634 
635 	for_each_online_cpu(cpu) {
636 		int core = cpu2core(cpu);
637 		/* Disable the watchdog */
638 		cvmx_write_csr(CVMX_CIU_WDOGX(core), 0);
639 		/* Free the interrupt handler */
640 		free_irq(OCTEON_IRQ_WDOG0 + core, octeon_wdt_poke_irq);
641 	}
642 
643 	cpu_notifier_register_done();
644 
645 	/*
646 	 * Disable the boot-bus memory, the code it points to is soon
647 	 * to go missing.
648 	 */
649 	cvmx_write_csr(CVMX_MIO_BOOT_LOC_CFGX(0), 0);
650 }
651 
652 MODULE_LICENSE("GPL");
653 MODULE_AUTHOR("Cavium Networks <support@caviumnetworks.com>");
654 MODULE_DESCRIPTION("Cavium Networks Octeon Watchdog driver.");
655 module_init(octeon_wdt_init);
656 module_exit(octeon_wdt_cleanup);
657