xref: /linux/drivers/watchdog/aspeed_wdt.c (revision eb01fe7abbe2d0b38824d2a93fdb4cc3eaf2ccc1)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Copyright 2016 IBM Corporation
4  *
5  * Joel Stanley <joel@jms.id.au>
6  */
7 
8 #include <linux/bits.h>
9 #include <linux/delay.h>
10 #include <linux/interrupt.h>
11 #include <linux/io.h>
12 #include <linux/kernel.h>
13 #include <linux/kstrtox.h>
14 #include <linux/module.h>
15 #include <linux/of.h>
16 #include <linux/of_irq.h>
17 #include <linux/platform_device.h>
18 #include <linux/watchdog.h>
19 
20 static bool nowayout = WATCHDOG_NOWAYOUT;
21 module_param(nowayout, bool, 0);
22 MODULE_PARM_DESC(nowayout, "Watchdog cannot be stopped once started (default="
23 				__MODULE_STRING(WATCHDOG_NOWAYOUT) ")");
24 
25 struct aspeed_wdt_config {
26 	u32 ext_pulse_width_mask;
27 	u32 irq_shift;
28 	u32 irq_mask;
29 };
30 
31 struct aspeed_wdt {
32 	struct watchdog_device	wdd;
33 	void __iomem		*base;
34 	u32			ctrl;
35 	const struct aspeed_wdt_config *cfg;
36 };
37 
38 static const struct aspeed_wdt_config ast2400_config = {
39 	.ext_pulse_width_mask = 0xff,
40 	.irq_shift = 0,
41 	.irq_mask = 0,
42 };
43 
44 static const struct aspeed_wdt_config ast2500_config = {
45 	.ext_pulse_width_mask = 0xfffff,
46 	.irq_shift = 12,
47 	.irq_mask = GENMASK(31, 12),
48 };
49 
50 static const struct aspeed_wdt_config ast2600_config = {
51 	.ext_pulse_width_mask = 0xfffff,
52 	.irq_shift = 0,
53 	.irq_mask = GENMASK(31, 10),
54 };
55 
56 static const struct of_device_id aspeed_wdt_of_table[] = {
57 	{ .compatible = "aspeed,ast2400-wdt", .data = &ast2400_config },
58 	{ .compatible = "aspeed,ast2500-wdt", .data = &ast2500_config },
59 	{ .compatible = "aspeed,ast2600-wdt", .data = &ast2600_config },
60 	{ },
61 };
62 MODULE_DEVICE_TABLE(of, aspeed_wdt_of_table);
63 
64 #define WDT_STATUS		0x00
65 #define WDT_RELOAD_VALUE	0x04
66 #define WDT_RESTART		0x08
67 #define WDT_CTRL		0x0C
68 #define   WDT_CTRL_BOOT_SECONDARY	BIT(7)
69 #define   WDT_CTRL_RESET_MODE_SOC	(0x00 << 5)
70 #define   WDT_CTRL_RESET_MODE_FULL_CHIP	(0x01 << 5)
71 #define   WDT_CTRL_RESET_MODE_ARM_CPU	(0x10 << 5)
72 #define   WDT_CTRL_1MHZ_CLK		BIT(4)
73 #define   WDT_CTRL_WDT_EXT		BIT(3)
74 #define   WDT_CTRL_WDT_INTR		BIT(2)
75 #define   WDT_CTRL_RESET_SYSTEM		BIT(1)
76 #define   WDT_CTRL_ENABLE		BIT(0)
77 #define WDT_TIMEOUT_STATUS	0x10
78 #define   WDT_TIMEOUT_STATUS_IRQ		BIT(2)
79 #define   WDT_TIMEOUT_STATUS_BOOT_SECONDARY	BIT(1)
80 #define WDT_CLEAR_TIMEOUT_STATUS	0x14
81 #define   WDT_CLEAR_TIMEOUT_AND_BOOT_CODE_SELECTION	BIT(0)
82 #define WDT_RESET_MASK1		0x1c
83 #define WDT_RESET_MASK2		0x20
84 
85 /*
86  * WDT_RESET_WIDTH controls the characteristics of the external pulse (if
87  * enabled), specifically:
88  *
89  * * Pulse duration
90  * * Drive mode: push-pull vs open-drain
91  * * Polarity: Active high or active low
92  *
93  * Pulse duration configuration is available on both the AST2400 and AST2500,
94  * though the field changes between SoCs:
95  *
96  * AST2400: Bits 7:0
97  * AST2500: Bits 19:0
98  *
99  * This difference is captured in struct aspeed_wdt_config.
100  *
101  * The AST2500 exposes the drive mode and polarity options, but not in a
102  * regular fashion. For read purposes, bit 31 represents active high or low,
103  * and bit 30 represents push-pull or open-drain. With respect to write, magic
104  * values need to be written to the top byte to change the state of the drive
105  * mode and polarity bits. Any other value written to the top byte has no
106  * effect on the state of the drive mode or polarity bits. However, the pulse
107  * width value must be preserved (as desired) if written.
108  */
109 #define WDT_RESET_WIDTH		0x18
110 #define   WDT_RESET_WIDTH_ACTIVE_HIGH	BIT(31)
111 #define     WDT_ACTIVE_HIGH_MAGIC	(0xA5 << 24)
112 #define     WDT_ACTIVE_LOW_MAGIC	(0x5A << 24)
113 #define   WDT_RESET_WIDTH_PUSH_PULL	BIT(30)
114 #define     WDT_PUSH_PULL_MAGIC		(0xA8 << 24)
115 #define     WDT_OPEN_DRAIN_MAGIC	(0x8A << 24)
116 
117 #define WDT_RESTART_MAGIC	0x4755
118 
119 /* 32 bits at 1MHz, in milliseconds */
120 #define WDT_MAX_TIMEOUT_MS	4294967
121 #define WDT_DEFAULT_TIMEOUT	30
122 #define WDT_RATE_1MHZ		1000000
123 
124 static struct aspeed_wdt *to_aspeed_wdt(struct watchdog_device *wdd)
125 {
126 	return container_of(wdd, struct aspeed_wdt, wdd);
127 }
128 
129 static void aspeed_wdt_enable(struct aspeed_wdt *wdt, int count)
130 {
131 	wdt->ctrl |= WDT_CTRL_ENABLE;
132 
133 	writel(0, wdt->base + WDT_CTRL);
134 	writel(count, wdt->base + WDT_RELOAD_VALUE);
135 	writel(WDT_RESTART_MAGIC, wdt->base + WDT_RESTART);
136 	writel(wdt->ctrl, wdt->base + WDT_CTRL);
137 }
138 
139 static int aspeed_wdt_start(struct watchdog_device *wdd)
140 {
141 	struct aspeed_wdt *wdt = to_aspeed_wdt(wdd);
142 
143 	aspeed_wdt_enable(wdt, wdd->timeout * WDT_RATE_1MHZ);
144 
145 	return 0;
146 }
147 
148 static int aspeed_wdt_stop(struct watchdog_device *wdd)
149 {
150 	struct aspeed_wdt *wdt = to_aspeed_wdt(wdd);
151 
152 	wdt->ctrl &= ~WDT_CTRL_ENABLE;
153 	writel(wdt->ctrl, wdt->base + WDT_CTRL);
154 
155 	return 0;
156 }
157 
158 static int aspeed_wdt_ping(struct watchdog_device *wdd)
159 {
160 	struct aspeed_wdt *wdt = to_aspeed_wdt(wdd);
161 
162 	writel(WDT_RESTART_MAGIC, wdt->base + WDT_RESTART);
163 
164 	return 0;
165 }
166 
167 static int aspeed_wdt_set_timeout(struct watchdog_device *wdd,
168 				  unsigned int timeout)
169 {
170 	struct aspeed_wdt *wdt = to_aspeed_wdt(wdd);
171 	u32 actual;
172 
173 	wdd->timeout = timeout;
174 
175 	actual = min(timeout, wdd->max_hw_heartbeat_ms / 1000);
176 
177 	writel(actual * WDT_RATE_1MHZ, wdt->base + WDT_RELOAD_VALUE);
178 	writel(WDT_RESTART_MAGIC, wdt->base + WDT_RESTART);
179 
180 	return 0;
181 }
182 
183 static int aspeed_wdt_set_pretimeout(struct watchdog_device *wdd,
184 				     unsigned int pretimeout)
185 {
186 	struct aspeed_wdt *wdt = to_aspeed_wdt(wdd);
187 	u32 actual = pretimeout * WDT_RATE_1MHZ;
188 	u32 s = wdt->cfg->irq_shift;
189 	u32 m = wdt->cfg->irq_mask;
190 
191 	wdd->pretimeout = pretimeout;
192 	wdt->ctrl &= ~m;
193 	if (pretimeout)
194 		wdt->ctrl |= ((actual << s) & m) | WDT_CTRL_WDT_INTR;
195 	else
196 		wdt->ctrl &= ~WDT_CTRL_WDT_INTR;
197 
198 	writel(wdt->ctrl, wdt->base + WDT_CTRL);
199 
200 	return 0;
201 }
202 
203 static int aspeed_wdt_restart(struct watchdog_device *wdd,
204 			      unsigned long action, void *data)
205 {
206 	struct aspeed_wdt *wdt = to_aspeed_wdt(wdd);
207 
208 	wdt->ctrl &= ~WDT_CTRL_BOOT_SECONDARY;
209 	aspeed_wdt_enable(wdt, 128 * WDT_RATE_1MHZ / 1000);
210 
211 	mdelay(1000);
212 
213 	return 0;
214 }
215 
216 /* access_cs0 shows if cs0 is accessible, hence the reverted bit */
217 static ssize_t access_cs0_show(struct device *dev,
218 			       struct device_attribute *attr, char *buf)
219 {
220 	struct aspeed_wdt *wdt = dev_get_drvdata(dev);
221 	u32 status = readl(wdt->base + WDT_TIMEOUT_STATUS);
222 
223 	return sysfs_emit(buf, "%u\n",
224 			  !(status & WDT_TIMEOUT_STATUS_BOOT_SECONDARY));
225 }
226 
227 static ssize_t access_cs0_store(struct device *dev,
228 				struct device_attribute *attr, const char *buf,
229 				size_t size)
230 {
231 	struct aspeed_wdt *wdt = dev_get_drvdata(dev);
232 	unsigned long val;
233 
234 	if (kstrtoul(buf, 10, &val))
235 		return -EINVAL;
236 
237 	if (val)
238 		writel(WDT_CLEAR_TIMEOUT_AND_BOOT_CODE_SELECTION,
239 		       wdt->base + WDT_CLEAR_TIMEOUT_STATUS);
240 
241 	return size;
242 }
243 
244 /*
245  * This attribute exists only if the system has booted from the alternate
246  * flash with 'alt-boot' option.
247  *
248  * At alternate flash the 'access_cs0' sysfs node provides:
249  *   ast2400: a way to get access to the primary SPI flash chip at CS0
250  *            after booting from the alternate chip at CS1.
251  *   ast2500: a way to restore the normal address mapping from
252  *            (CS0->CS1, CS1->CS0) to (CS0->CS0, CS1->CS1).
253  *
254  * Clearing the boot code selection and timeout counter also resets to the
255  * initial state the chip select line mapping. When the SoC is in normal
256  * mapping state (i.e. booted from CS0), clearing those bits does nothing for
257  * both versions of the SoC. For alternate boot mode (booted from CS1 due to
258  * wdt2 expiration) the behavior differs as described above.
259  *
260  * This option can be used with wdt2 (watchdog1) only.
261  */
262 static DEVICE_ATTR_RW(access_cs0);
263 
264 static struct attribute *bswitch_attrs[] = {
265 	&dev_attr_access_cs0.attr,
266 	NULL
267 };
268 ATTRIBUTE_GROUPS(bswitch);
269 
270 static const struct watchdog_ops aspeed_wdt_ops = {
271 	.start		= aspeed_wdt_start,
272 	.stop		= aspeed_wdt_stop,
273 	.ping		= aspeed_wdt_ping,
274 	.set_timeout	= aspeed_wdt_set_timeout,
275 	.set_pretimeout = aspeed_wdt_set_pretimeout,
276 	.restart	= aspeed_wdt_restart,
277 	.owner		= THIS_MODULE,
278 };
279 
280 static const struct watchdog_info aspeed_wdt_info = {
281 	.options	= WDIOF_KEEPALIVEPING
282 			| WDIOF_MAGICCLOSE
283 			| WDIOF_SETTIMEOUT,
284 	.identity	= KBUILD_MODNAME,
285 };
286 
287 static const struct watchdog_info aspeed_wdt_pretimeout_info = {
288 	.options	= WDIOF_KEEPALIVEPING
289 			| WDIOF_PRETIMEOUT
290 			| WDIOF_MAGICCLOSE
291 			| WDIOF_SETTIMEOUT,
292 	.identity	= KBUILD_MODNAME,
293 };
294 
295 static irqreturn_t aspeed_wdt_irq(int irq, void *arg)
296 {
297 	struct watchdog_device *wdd = arg;
298 	struct aspeed_wdt *wdt = to_aspeed_wdt(wdd);
299 	u32 status = readl(wdt->base + WDT_TIMEOUT_STATUS);
300 
301 	if (status & WDT_TIMEOUT_STATUS_IRQ)
302 		watchdog_notify_pretimeout(wdd);
303 
304 	return IRQ_HANDLED;
305 }
306 
307 static int aspeed_wdt_probe(struct platform_device *pdev)
308 {
309 	struct device *dev = &pdev->dev;
310 	const struct of_device_id *ofdid;
311 	struct aspeed_wdt *wdt;
312 	struct device_node *np;
313 	const char *reset_type;
314 	u32 duration;
315 	u32 status;
316 	int ret;
317 
318 	wdt = devm_kzalloc(dev, sizeof(*wdt), GFP_KERNEL);
319 	if (!wdt)
320 		return -ENOMEM;
321 
322 	np = dev->of_node;
323 
324 	ofdid = of_match_node(aspeed_wdt_of_table, np);
325 	if (!ofdid)
326 		return -EINVAL;
327 	wdt->cfg = ofdid->data;
328 
329 	wdt->base = devm_platform_ioremap_resource(pdev, 0);
330 	if (IS_ERR(wdt->base))
331 		return PTR_ERR(wdt->base);
332 
333 	wdt->wdd.info = &aspeed_wdt_info;
334 
335 	if (wdt->cfg->irq_mask) {
336 		int irq = platform_get_irq_optional(pdev, 0);
337 
338 		if (irq > 0) {
339 			ret = devm_request_irq(dev, irq, aspeed_wdt_irq,
340 					       IRQF_SHARED, dev_name(dev),
341 					       wdt);
342 			if (ret)
343 				return ret;
344 
345 			wdt->wdd.info = &aspeed_wdt_pretimeout_info;
346 		}
347 	}
348 
349 	wdt->wdd.ops = &aspeed_wdt_ops;
350 	wdt->wdd.max_hw_heartbeat_ms = WDT_MAX_TIMEOUT_MS;
351 	wdt->wdd.parent = dev;
352 
353 	wdt->wdd.timeout = WDT_DEFAULT_TIMEOUT;
354 	watchdog_init_timeout(&wdt->wdd, 0, dev);
355 
356 	watchdog_set_nowayout(&wdt->wdd, nowayout);
357 
358 	/*
359 	 * On clock rates:
360 	 *  - ast2400 wdt can run at PCLK, or 1MHz
361 	 *  - ast2500 only runs at 1MHz, hard coding bit 4 to 1
362 	 *  - ast2600 always runs at 1MHz
363 	 *
364 	 * Set the ast2400 to run at 1MHz as it simplifies the driver.
365 	 */
366 	if (of_device_is_compatible(np, "aspeed,ast2400-wdt"))
367 		wdt->ctrl = WDT_CTRL_1MHZ_CLK;
368 
369 	/*
370 	 * Control reset on a per-device basis to ensure the
371 	 * host is not affected by a BMC reboot
372 	 */
373 	ret = of_property_read_string(np, "aspeed,reset-type", &reset_type);
374 	if (ret) {
375 		wdt->ctrl |= WDT_CTRL_RESET_MODE_SOC | WDT_CTRL_RESET_SYSTEM;
376 	} else {
377 		if (!strcmp(reset_type, "cpu"))
378 			wdt->ctrl |= WDT_CTRL_RESET_MODE_ARM_CPU |
379 				     WDT_CTRL_RESET_SYSTEM;
380 		else if (!strcmp(reset_type, "soc"))
381 			wdt->ctrl |= WDT_CTRL_RESET_MODE_SOC |
382 				     WDT_CTRL_RESET_SYSTEM;
383 		else if (!strcmp(reset_type, "system"))
384 			wdt->ctrl |= WDT_CTRL_RESET_MODE_FULL_CHIP |
385 				     WDT_CTRL_RESET_SYSTEM;
386 		else if (strcmp(reset_type, "none"))
387 			return -EINVAL;
388 	}
389 	if (of_property_read_bool(np, "aspeed,external-signal"))
390 		wdt->ctrl |= WDT_CTRL_WDT_EXT;
391 	if (of_property_read_bool(np, "aspeed,alt-boot"))
392 		wdt->ctrl |= WDT_CTRL_BOOT_SECONDARY;
393 
394 	if (readl(wdt->base + WDT_CTRL) & WDT_CTRL_ENABLE)  {
395 		/*
396 		 * The watchdog is running, but invoke aspeed_wdt_start() to
397 		 * write wdt->ctrl to WDT_CTRL to ensure the watchdog's
398 		 * configuration conforms to the driver's expectations.
399 		 * Primarily, ensure we're using the 1MHz clock source.
400 		 */
401 		aspeed_wdt_start(&wdt->wdd);
402 		set_bit(WDOG_HW_RUNNING, &wdt->wdd.status);
403 	}
404 
405 	if ((of_device_is_compatible(np, "aspeed,ast2500-wdt")) ||
406 		(of_device_is_compatible(np, "aspeed,ast2600-wdt"))) {
407 		u32 reset_mask[2];
408 		size_t nrstmask = of_device_is_compatible(np, "aspeed,ast2600-wdt") ? 2 : 1;
409 		u32 reg = readl(wdt->base + WDT_RESET_WIDTH);
410 
411 		reg &= wdt->cfg->ext_pulse_width_mask;
412 		if (of_property_read_bool(np, "aspeed,ext-active-high"))
413 			reg |= WDT_ACTIVE_HIGH_MAGIC;
414 		else
415 			reg |= WDT_ACTIVE_LOW_MAGIC;
416 
417 		writel(reg, wdt->base + WDT_RESET_WIDTH);
418 
419 		reg &= wdt->cfg->ext_pulse_width_mask;
420 		if (of_property_read_bool(np, "aspeed,ext-push-pull"))
421 			reg |= WDT_PUSH_PULL_MAGIC;
422 		else
423 			reg |= WDT_OPEN_DRAIN_MAGIC;
424 
425 		writel(reg, wdt->base + WDT_RESET_WIDTH);
426 
427 		ret = of_property_read_u32_array(np, "aspeed,reset-mask", reset_mask, nrstmask);
428 		if (!ret) {
429 			writel(reset_mask[0], wdt->base + WDT_RESET_MASK1);
430 			if (nrstmask > 1)
431 				writel(reset_mask[1], wdt->base + WDT_RESET_MASK2);
432 		}
433 	}
434 
435 	if (!of_property_read_u32(np, "aspeed,ext-pulse-duration", &duration)) {
436 		u32 max_duration = wdt->cfg->ext_pulse_width_mask + 1;
437 
438 		if (duration == 0 || duration > max_duration) {
439 			dev_err(dev, "Invalid pulse duration: %uus\n",
440 				duration);
441 			duration = max(1U, min(max_duration, duration));
442 			dev_info(dev, "Pulse duration set to %uus\n",
443 				 duration);
444 		}
445 
446 		/*
447 		 * The watchdog is always configured with a 1MHz source, so
448 		 * there is no need to scale the microsecond value. However we
449 		 * need to offset it - from the datasheet:
450 		 *
451 		 * "This register decides the asserting duration of wdt_ext and
452 		 * wdt_rstarm signal. The default value is 0xFF. It means the
453 		 * default asserting duration of wdt_ext and wdt_rstarm is
454 		 * 256us."
455 		 *
456 		 * This implies a value of 0 gives a 1us pulse.
457 		 */
458 		writel(duration - 1, wdt->base + WDT_RESET_WIDTH);
459 	}
460 
461 	status = readl(wdt->base + WDT_TIMEOUT_STATUS);
462 	if (status & WDT_TIMEOUT_STATUS_BOOT_SECONDARY) {
463 		wdt->wdd.bootstatus = WDIOF_CARDRESET;
464 
465 		if (of_device_is_compatible(np, "aspeed,ast2400-wdt") ||
466 		    of_device_is_compatible(np, "aspeed,ast2500-wdt"))
467 			wdt->wdd.groups = bswitch_groups;
468 	}
469 
470 	dev_set_drvdata(dev, wdt);
471 
472 	return devm_watchdog_register_device(dev, &wdt->wdd);
473 }
474 
475 static struct platform_driver aspeed_watchdog_driver = {
476 	.probe = aspeed_wdt_probe,
477 	.driver = {
478 		.name = KBUILD_MODNAME,
479 		.of_match_table = aspeed_wdt_of_table,
480 	},
481 };
482 
483 static int __init aspeed_wdt_init(void)
484 {
485 	return platform_driver_register(&aspeed_watchdog_driver);
486 }
487 arch_initcall(aspeed_wdt_init);
488 
489 static void __exit aspeed_wdt_exit(void)
490 {
491 	platform_driver_unregister(&aspeed_watchdog_driver);
492 }
493 module_exit(aspeed_wdt_exit);
494 
495 MODULE_DESCRIPTION("Aspeed Watchdog Driver");
496 MODULE_LICENSE("GPL");
497