xref: /linux/drivers/watchdog/aspeed_wdt.c (revision 67f49869106f78882a8a09b736d4884be85aba18)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Copyright 2016 IBM Corporation
4  *
5  * Joel Stanley <joel@jms.id.au>
6  */
7 
8 #include <linux/bits.h>
9 #include <linux/delay.h>
10 #include <linux/interrupt.h>
11 #include <linux/io.h>
12 #include <linux/kernel.h>
13 #include <linux/module.h>
14 #include <linux/of.h>
15 #include <linux/of_irq.h>
16 #include <linux/platform_device.h>
17 #include <linux/watchdog.h>
18 
19 static bool nowayout = WATCHDOG_NOWAYOUT;
20 module_param(nowayout, bool, 0);
21 MODULE_PARM_DESC(nowayout, "Watchdog cannot be stopped once started (default="
22 				__MODULE_STRING(WATCHDOG_NOWAYOUT) ")");
23 
24 struct aspeed_wdt_config {
25 	u32 ext_pulse_width_mask;
26 	u32 irq_shift;
27 	u32 irq_mask;
28 };
29 
30 struct aspeed_wdt {
31 	struct watchdog_device	wdd;
32 	void __iomem		*base;
33 	u32			ctrl;
34 	const struct aspeed_wdt_config *cfg;
35 };
36 
37 static const struct aspeed_wdt_config ast2400_config = {
38 	.ext_pulse_width_mask = 0xff,
39 	.irq_shift = 0,
40 	.irq_mask = 0,
41 };
42 
43 static const struct aspeed_wdt_config ast2500_config = {
44 	.ext_pulse_width_mask = 0xfffff,
45 	.irq_shift = 12,
46 	.irq_mask = GENMASK(31, 12),
47 };
48 
49 static const struct aspeed_wdt_config ast2600_config = {
50 	.ext_pulse_width_mask = 0xfffff,
51 	.irq_shift = 0,
52 	.irq_mask = GENMASK(31, 10),
53 };
54 
55 static const struct of_device_id aspeed_wdt_of_table[] = {
56 	{ .compatible = "aspeed,ast2400-wdt", .data = &ast2400_config },
57 	{ .compatible = "aspeed,ast2500-wdt", .data = &ast2500_config },
58 	{ .compatible = "aspeed,ast2600-wdt", .data = &ast2600_config },
59 	{ },
60 };
61 MODULE_DEVICE_TABLE(of, aspeed_wdt_of_table);
62 
63 #define WDT_STATUS		0x00
64 #define WDT_RELOAD_VALUE	0x04
65 #define WDT_RESTART		0x08
66 #define WDT_CTRL		0x0C
67 #define   WDT_CTRL_BOOT_SECONDARY	BIT(7)
68 #define   WDT_CTRL_RESET_MODE_SOC	(0x00 << 5)
69 #define   WDT_CTRL_RESET_MODE_FULL_CHIP	(0x01 << 5)
70 #define   WDT_CTRL_RESET_MODE_ARM_CPU	(0x10 << 5)
71 #define   WDT_CTRL_1MHZ_CLK		BIT(4)
72 #define   WDT_CTRL_WDT_EXT		BIT(3)
73 #define   WDT_CTRL_WDT_INTR		BIT(2)
74 #define   WDT_CTRL_RESET_SYSTEM		BIT(1)
75 #define   WDT_CTRL_ENABLE		BIT(0)
76 #define WDT_TIMEOUT_STATUS	0x10
77 #define   WDT_TIMEOUT_STATUS_IRQ		BIT(2)
78 #define   WDT_TIMEOUT_STATUS_BOOT_SECONDARY	BIT(1)
79 #define WDT_CLEAR_TIMEOUT_STATUS	0x14
80 #define   WDT_CLEAR_TIMEOUT_AND_BOOT_CODE_SELECTION	BIT(0)
81 
82 /*
83  * WDT_RESET_WIDTH controls the characteristics of the external pulse (if
84  * enabled), specifically:
85  *
86  * * Pulse duration
87  * * Drive mode: push-pull vs open-drain
88  * * Polarity: Active high or active low
89  *
90  * Pulse duration configuration is available on both the AST2400 and AST2500,
91  * though the field changes between SoCs:
92  *
93  * AST2400: Bits 7:0
94  * AST2500: Bits 19:0
95  *
96  * This difference is captured in struct aspeed_wdt_config.
97  *
98  * The AST2500 exposes the drive mode and polarity options, but not in a
99  * regular fashion. For read purposes, bit 31 represents active high or low,
100  * and bit 30 represents push-pull or open-drain. With respect to write, magic
101  * values need to be written to the top byte to change the state of the drive
102  * mode and polarity bits. Any other value written to the top byte has no
103  * effect on the state of the drive mode or polarity bits. However, the pulse
104  * width value must be preserved (as desired) if written.
105  */
106 #define WDT_RESET_WIDTH		0x18
107 #define   WDT_RESET_WIDTH_ACTIVE_HIGH	BIT(31)
108 #define     WDT_ACTIVE_HIGH_MAGIC	(0xA5 << 24)
109 #define     WDT_ACTIVE_LOW_MAGIC	(0x5A << 24)
110 #define   WDT_RESET_WIDTH_PUSH_PULL	BIT(30)
111 #define     WDT_PUSH_PULL_MAGIC		(0xA8 << 24)
112 #define     WDT_OPEN_DRAIN_MAGIC	(0x8A << 24)
113 
114 #define WDT_RESTART_MAGIC	0x4755
115 
116 /* 32 bits at 1MHz, in milliseconds */
117 #define WDT_MAX_TIMEOUT_MS	4294967
118 #define WDT_DEFAULT_TIMEOUT	30
119 #define WDT_RATE_1MHZ		1000000
120 
121 static struct aspeed_wdt *to_aspeed_wdt(struct watchdog_device *wdd)
122 {
123 	return container_of(wdd, struct aspeed_wdt, wdd);
124 }
125 
126 static void aspeed_wdt_enable(struct aspeed_wdt *wdt, int count)
127 {
128 	wdt->ctrl |= WDT_CTRL_ENABLE;
129 
130 	writel(0, wdt->base + WDT_CTRL);
131 	writel(count, wdt->base + WDT_RELOAD_VALUE);
132 	writel(WDT_RESTART_MAGIC, wdt->base + WDT_RESTART);
133 	writel(wdt->ctrl, wdt->base + WDT_CTRL);
134 }
135 
136 static int aspeed_wdt_start(struct watchdog_device *wdd)
137 {
138 	struct aspeed_wdt *wdt = to_aspeed_wdt(wdd);
139 
140 	aspeed_wdt_enable(wdt, wdd->timeout * WDT_RATE_1MHZ);
141 
142 	return 0;
143 }
144 
145 static int aspeed_wdt_stop(struct watchdog_device *wdd)
146 {
147 	struct aspeed_wdt *wdt = to_aspeed_wdt(wdd);
148 
149 	wdt->ctrl &= ~WDT_CTRL_ENABLE;
150 	writel(wdt->ctrl, wdt->base + WDT_CTRL);
151 
152 	return 0;
153 }
154 
155 static int aspeed_wdt_ping(struct watchdog_device *wdd)
156 {
157 	struct aspeed_wdt *wdt = to_aspeed_wdt(wdd);
158 
159 	writel(WDT_RESTART_MAGIC, wdt->base + WDT_RESTART);
160 
161 	return 0;
162 }
163 
164 static int aspeed_wdt_set_timeout(struct watchdog_device *wdd,
165 				  unsigned int timeout)
166 {
167 	struct aspeed_wdt *wdt = to_aspeed_wdt(wdd);
168 	u32 actual;
169 
170 	wdd->timeout = timeout;
171 
172 	actual = min(timeout, wdd->max_hw_heartbeat_ms / 1000);
173 
174 	writel(actual * WDT_RATE_1MHZ, wdt->base + WDT_RELOAD_VALUE);
175 	writel(WDT_RESTART_MAGIC, wdt->base + WDT_RESTART);
176 
177 	return 0;
178 }
179 
180 static int aspeed_wdt_set_pretimeout(struct watchdog_device *wdd,
181 				     unsigned int pretimeout)
182 {
183 	struct aspeed_wdt *wdt = to_aspeed_wdt(wdd);
184 	u32 actual = pretimeout * WDT_RATE_1MHZ;
185 	u32 s = wdt->cfg->irq_shift;
186 	u32 m = wdt->cfg->irq_mask;
187 
188 	wdd->pretimeout = pretimeout;
189 	wdt->ctrl &= ~m;
190 	if (pretimeout)
191 		wdt->ctrl |= ((actual << s) & m) | WDT_CTRL_WDT_INTR;
192 	else
193 		wdt->ctrl &= ~WDT_CTRL_WDT_INTR;
194 
195 	writel(wdt->ctrl, wdt->base + WDT_CTRL);
196 
197 	return 0;
198 }
199 
200 static int aspeed_wdt_restart(struct watchdog_device *wdd,
201 			      unsigned long action, void *data)
202 {
203 	struct aspeed_wdt *wdt = to_aspeed_wdt(wdd);
204 
205 	wdt->ctrl &= ~WDT_CTRL_BOOT_SECONDARY;
206 	aspeed_wdt_enable(wdt, 128 * WDT_RATE_1MHZ / 1000);
207 
208 	mdelay(1000);
209 
210 	return 0;
211 }
212 
213 /* access_cs0 shows if cs0 is accessible, hence the reverted bit */
214 static ssize_t access_cs0_show(struct device *dev,
215 			       struct device_attribute *attr, char *buf)
216 {
217 	struct aspeed_wdt *wdt = dev_get_drvdata(dev);
218 	u32 status = readl(wdt->base + WDT_TIMEOUT_STATUS);
219 
220 	return sysfs_emit(buf, "%u\n",
221 			  !(status & WDT_TIMEOUT_STATUS_BOOT_SECONDARY));
222 }
223 
224 static ssize_t access_cs0_store(struct device *dev,
225 				struct device_attribute *attr, const char *buf,
226 				size_t size)
227 {
228 	struct aspeed_wdt *wdt = dev_get_drvdata(dev);
229 	unsigned long val;
230 
231 	if (kstrtoul(buf, 10, &val))
232 		return -EINVAL;
233 
234 	if (val)
235 		writel(WDT_CLEAR_TIMEOUT_AND_BOOT_CODE_SELECTION,
236 		       wdt->base + WDT_CLEAR_TIMEOUT_STATUS);
237 
238 	return size;
239 }
240 
241 /*
242  * This attribute exists only if the system has booted from the alternate
243  * flash with 'alt-boot' option.
244  *
245  * At alternate flash the 'access_cs0' sysfs node provides:
246  *   ast2400: a way to get access to the primary SPI flash chip at CS0
247  *            after booting from the alternate chip at CS1.
248  *   ast2500: a way to restore the normal address mapping from
249  *            (CS0->CS1, CS1->CS0) to (CS0->CS0, CS1->CS1).
250  *
251  * Clearing the boot code selection and timeout counter also resets to the
252  * initial state the chip select line mapping. When the SoC is in normal
253  * mapping state (i.e. booted from CS0), clearing those bits does nothing for
254  * both versions of the SoC. For alternate boot mode (booted from CS1 due to
255  * wdt2 expiration) the behavior differs as described above.
256  *
257  * This option can be used with wdt2 (watchdog1) only.
258  */
259 static DEVICE_ATTR_RW(access_cs0);
260 
261 static struct attribute *bswitch_attrs[] = {
262 	&dev_attr_access_cs0.attr,
263 	NULL
264 };
265 ATTRIBUTE_GROUPS(bswitch);
266 
267 static const struct watchdog_ops aspeed_wdt_ops = {
268 	.start		= aspeed_wdt_start,
269 	.stop		= aspeed_wdt_stop,
270 	.ping		= aspeed_wdt_ping,
271 	.set_timeout	= aspeed_wdt_set_timeout,
272 	.set_pretimeout = aspeed_wdt_set_pretimeout,
273 	.restart	= aspeed_wdt_restart,
274 	.owner		= THIS_MODULE,
275 };
276 
277 static const struct watchdog_info aspeed_wdt_info = {
278 	.options	= WDIOF_KEEPALIVEPING
279 			| WDIOF_MAGICCLOSE
280 			| WDIOF_SETTIMEOUT,
281 	.identity	= KBUILD_MODNAME,
282 };
283 
284 static const struct watchdog_info aspeed_wdt_pretimeout_info = {
285 	.options	= WDIOF_KEEPALIVEPING
286 			| WDIOF_PRETIMEOUT
287 			| WDIOF_MAGICCLOSE
288 			| WDIOF_SETTIMEOUT,
289 	.identity	= KBUILD_MODNAME,
290 };
291 
292 static irqreturn_t aspeed_wdt_irq(int irq, void *arg)
293 {
294 	struct watchdog_device *wdd = arg;
295 	struct aspeed_wdt *wdt = to_aspeed_wdt(wdd);
296 	u32 status = readl(wdt->base + WDT_TIMEOUT_STATUS);
297 
298 	if (status & WDT_TIMEOUT_STATUS_IRQ)
299 		watchdog_notify_pretimeout(wdd);
300 
301 	return IRQ_HANDLED;
302 }
303 
304 static int aspeed_wdt_probe(struct platform_device *pdev)
305 {
306 	struct device *dev = &pdev->dev;
307 	const struct of_device_id *ofdid;
308 	struct aspeed_wdt *wdt;
309 	struct device_node *np;
310 	const char *reset_type;
311 	u32 duration;
312 	u32 status;
313 	int ret;
314 
315 	wdt = devm_kzalloc(dev, sizeof(*wdt), GFP_KERNEL);
316 	if (!wdt)
317 		return -ENOMEM;
318 
319 	np = dev->of_node;
320 
321 	ofdid = of_match_node(aspeed_wdt_of_table, np);
322 	if (!ofdid)
323 		return -EINVAL;
324 	wdt->cfg = ofdid->data;
325 
326 	wdt->base = devm_platform_ioremap_resource(pdev, 0);
327 	if (IS_ERR(wdt->base))
328 		return PTR_ERR(wdt->base);
329 
330 	wdt->wdd.info = &aspeed_wdt_info;
331 
332 	if (wdt->cfg->irq_mask) {
333 		int irq = platform_get_irq_optional(pdev, 0);
334 
335 		if (irq > 0) {
336 			ret = devm_request_irq(dev, irq, aspeed_wdt_irq,
337 					       IRQF_SHARED, dev_name(dev),
338 					       wdt);
339 			if (ret)
340 				return ret;
341 
342 			wdt->wdd.info = &aspeed_wdt_pretimeout_info;
343 		}
344 	}
345 
346 	wdt->wdd.ops = &aspeed_wdt_ops;
347 	wdt->wdd.max_hw_heartbeat_ms = WDT_MAX_TIMEOUT_MS;
348 	wdt->wdd.parent = dev;
349 
350 	wdt->wdd.timeout = WDT_DEFAULT_TIMEOUT;
351 	watchdog_init_timeout(&wdt->wdd, 0, dev);
352 
353 	watchdog_set_nowayout(&wdt->wdd, nowayout);
354 
355 	/*
356 	 * On clock rates:
357 	 *  - ast2400 wdt can run at PCLK, or 1MHz
358 	 *  - ast2500 only runs at 1MHz, hard coding bit 4 to 1
359 	 *  - ast2600 always runs at 1MHz
360 	 *
361 	 * Set the ast2400 to run at 1MHz as it simplifies the driver.
362 	 */
363 	if (of_device_is_compatible(np, "aspeed,ast2400-wdt"))
364 		wdt->ctrl = WDT_CTRL_1MHZ_CLK;
365 
366 	/*
367 	 * Control reset on a per-device basis to ensure the
368 	 * host is not affected by a BMC reboot
369 	 */
370 	ret = of_property_read_string(np, "aspeed,reset-type", &reset_type);
371 	if (ret) {
372 		wdt->ctrl |= WDT_CTRL_RESET_MODE_SOC | WDT_CTRL_RESET_SYSTEM;
373 	} else {
374 		if (!strcmp(reset_type, "cpu"))
375 			wdt->ctrl |= WDT_CTRL_RESET_MODE_ARM_CPU |
376 				     WDT_CTRL_RESET_SYSTEM;
377 		else if (!strcmp(reset_type, "soc"))
378 			wdt->ctrl |= WDT_CTRL_RESET_MODE_SOC |
379 				     WDT_CTRL_RESET_SYSTEM;
380 		else if (!strcmp(reset_type, "system"))
381 			wdt->ctrl |= WDT_CTRL_RESET_MODE_FULL_CHIP |
382 				     WDT_CTRL_RESET_SYSTEM;
383 		else if (strcmp(reset_type, "none"))
384 			return -EINVAL;
385 	}
386 	if (of_property_read_bool(np, "aspeed,external-signal"))
387 		wdt->ctrl |= WDT_CTRL_WDT_EXT;
388 	if (of_property_read_bool(np, "aspeed,alt-boot"))
389 		wdt->ctrl |= WDT_CTRL_BOOT_SECONDARY;
390 
391 	if (readl(wdt->base + WDT_CTRL) & WDT_CTRL_ENABLE)  {
392 		/*
393 		 * The watchdog is running, but invoke aspeed_wdt_start() to
394 		 * write wdt->ctrl to WDT_CTRL to ensure the watchdog's
395 		 * configuration conforms to the driver's expectations.
396 		 * Primarily, ensure we're using the 1MHz clock source.
397 		 */
398 		aspeed_wdt_start(&wdt->wdd);
399 		set_bit(WDOG_HW_RUNNING, &wdt->wdd.status);
400 	}
401 
402 	if ((of_device_is_compatible(np, "aspeed,ast2500-wdt")) ||
403 		(of_device_is_compatible(np, "aspeed,ast2600-wdt"))) {
404 		u32 reg = readl(wdt->base + WDT_RESET_WIDTH);
405 
406 		reg &= wdt->cfg->ext_pulse_width_mask;
407 		if (of_property_read_bool(np, "aspeed,ext-active-high"))
408 			reg |= WDT_ACTIVE_HIGH_MAGIC;
409 		else
410 			reg |= WDT_ACTIVE_LOW_MAGIC;
411 
412 		writel(reg, wdt->base + WDT_RESET_WIDTH);
413 
414 		reg &= wdt->cfg->ext_pulse_width_mask;
415 		if (of_property_read_bool(np, "aspeed,ext-push-pull"))
416 			reg |= WDT_PUSH_PULL_MAGIC;
417 		else
418 			reg |= WDT_OPEN_DRAIN_MAGIC;
419 
420 		writel(reg, wdt->base + WDT_RESET_WIDTH);
421 	}
422 
423 	if (!of_property_read_u32(np, "aspeed,ext-pulse-duration", &duration)) {
424 		u32 max_duration = wdt->cfg->ext_pulse_width_mask + 1;
425 
426 		if (duration == 0 || duration > max_duration) {
427 			dev_err(dev, "Invalid pulse duration: %uus\n",
428 				duration);
429 			duration = max(1U, min(max_duration, duration));
430 			dev_info(dev, "Pulse duration set to %uus\n",
431 				 duration);
432 		}
433 
434 		/*
435 		 * The watchdog is always configured with a 1MHz source, so
436 		 * there is no need to scale the microsecond value. However we
437 		 * need to offset it - from the datasheet:
438 		 *
439 		 * "This register decides the asserting duration of wdt_ext and
440 		 * wdt_rstarm signal. The default value is 0xFF. It means the
441 		 * default asserting duration of wdt_ext and wdt_rstarm is
442 		 * 256us."
443 		 *
444 		 * This implies a value of 0 gives a 1us pulse.
445 		 */
446 		writel(duration - 1, wdt->base + WDT_RESET_WIDTH);
447 	}
448 
449 	status = readl(wdt->base + WDT_TIMEOUT_STATUS);
450 	if (status & WDT_TIMEOUT_STATUS_BOOT_SECONDARY) {
451 		wdt->wdd.bootstatus = WDIOF_CARDRESET;
452 
453 		if (of_device_is_compatible(np, "aspeed,ast2400-wdt") ||
454 		    of_device_is_compatible(np, "aspeed,ast2500-wdt"))
455 			wdt->wdd.groups = bswitch_groups;
456 	}
457 
458 	dev_set_drvdata(dev, wdt);
459 
460 	return devm_watchdog_register_device(dev, &wdt->wdd);
461 }
462 
463 static struct platform_driver aspeed_watchdog_driver = {
464 	.probe = aspeed_wdt_probe,
465 	.driver = {
466 		.name = KBUILD_MODNAME,
467 		.of_match_table = of_match_ptr(aspeed_wdt_of_table),
468 	},
469 };
470 
471 static int __init aspeed_wdt_init(void)
472 {
473 	return platform_driver_register(&aspeed_watchdog_driver);
474 }
475 arch_initcall(aspeed_wdt_init);
476 
477 static void __exit aspeed_wdt_exit(void)
478 {
479 	platform_driver_unregister(&aspeed_watchdog_driver);
480 }
481 module_exit(aspeed_wdt_exit);
482 
483 MODULE_DESCRIPTION("Aspeed Watchdog Driver");
484 MODULE_LICENSE("GPL");
485