xref: /linux/drivers/watchdog/aspeed_wdt.c (revision 122333d6bd229af279cdb35d1b874b71b3b9ccfb)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Copyright 2016 IBM Corporation
4  *
5  * Joel Stanley <joel@jms.id.au>
6  */
7 
8 #include <linux/bits.h>
9 #include <linux/delay.h>
10 #include <linux/interrupt.h>
11 #include <linux/io.h>
12 #include <linux/kernel.h>
13 #include <linux/kstrtox.h>
14 #include <linux/module.h>
15 #include <linux/of.h>
16 #include <linux/of_irq.h>
17 #include <linux/platform_device.h>
18 #include <linux/watchdog.h>
19 
20 static bool nowayout = WATCHDOG_NOWAYOUT;
21 module_param(nowayout, bool, 0);
22 MODULE_PARM_DESC(nowayout, "Watchdog cannot be stopped once started (default="
23 				__MODULE_STRING(WATCHDOG_NOWAYOUT) ")");
24 
25 struct aspeed_wdt_config {
26 	u32 ext_pulse_width_mask;
27 	u32 irq_shift;
28 	u32 irq_mask;
29 };
30 
31 struct aspeed_wdt {
32 	struct watchdog_device	wdd;
33 	void __iomem		*base;
34 	u32			ctrl;
35 	const struct aspeed_wdt_config *cfg;
36 };
37 
38 static const struct aspeed_wdt_config ast2400_config = {
39 	.ext_pulse_width_mask = 0xff,
40 	.irq_shift = 0,
41 	.irq_mask = 0,
42 };
43 
44 static const struct aspeed_wdt_config ast2500_config = {
45 	.ext_pulse_width_mask = 0xfffff,
46 	.irq_shift = 12,
47 	.irq_mask = GENMASK(31, 12),
48 };
49 
50 static const struct aspeed_wdt_config ast2600_config = {
51 	.ext_pulse_width_mask = 0xfffff,
52 	.irq_shift = 0,
53 	.irq_mask = GENMASK(31, 10),
54 };
55 
56 static const struct of_device_id aspeed_wdt_of_table[] = {
57 	{ .compatible = "aspeed,ast2400-wdt", .data = &ast2400_config },
58 	{ .compatible = "aspeed,ast2500-wdt", .data = &ast2500_config },
59 	{ .compatible = "aspeed,ast2600-wdt", .data = &ast2600_config },
60 	{ },
61 };
62 MODULE_DEVICE_TABLE(of, aspeed_wdt_of_table);
63 
64 #define WDT_STATUS		0x00
65 #define WDT_RELOAD_VALUE	0x04
66 #define WDT_RESTART		0x08
67 #define WDT_CTRL		0x0C
68 #define   WDT_CTRL_BOOT_SECONDARY	BIT(7)
69 #define   WDT_CTRL_RESET_MODE_SOC	(0x00 << 5)
70 #define   WDT_CTRL_RESET_MODE_FULL_CHIP	(0x01 << 5)
71 #define   WDT_CTRL_RESET_MODE_ARM_CPU	(0x10 << 5)
72 #define   WDT_CTRL_1MHZ_CLK		BIT(4)
73 #define   WDT_CTRL_WDT_EXT		BIT(3)
74 #define   WDT_CTRL_WDT_INTR		BIT(2)
75 #define   WDT_CTRL_RESET_SYSTEM		BIT(1)
76 #define   WDT_CTRL_ENABLE		BIT(0)
77 #define WDT_TIMEOUT_STATUS	0x10
78 #define   WDT_TIMEOUT_STATUS_IRQ		BIT(2)
79 #define   WDT_TIMEOUT_STATUS_BOOT_SECONDARY	BIT(1)
80 #define WDT_CLEAR_TIMEOUT_STATUS	0x14
81 #define   WDT_CLEAR_TIMEOUT_AND_BOOT_CODE_SELECTION	BIT(0)
82 
83 /*
84  * WDT_RESET_WIDTH controls the characteristics of the external pulse (if
85  * enabled), specifically:
86  *
87  * * Pulse duration
88  * * Drive mode: push-pull vs open-drain
89  * * Polarity: Active high or active low
90  *
91  * Pulse duration configuration is available on both the AST2400 and AST2500,
92  * though the field changes between SoCs:
93  *
94  * AST2400: Bits 7:0
95  * AST2500: Bits 19:0
96  *
97  * This difference is captured in struct aspeed_wdt_config.
98  *
99  * The AST2500 exposes the drive mode and polarity options, but not in a
100  * regular fashion. For read purposes, bit 31 represents active high or low,
101  * and bit 30 represents push-pull or open-drain. With respect to write, magic
102  * values need to be written to the top byte to change the state of the drive
103  * mode and polarity bits. Any other value written to the top byte has no
104  * effect on the state of the drive mode or polarity bits. However, the pulse
105  * width value must be preserved (as desired) if written.
106  */
107 #define WDT_RESET_WIDTH		0x18
108 #define   WDT_RESET_WIDTH_ACTIVE_HIGH	BIT(31)
109 #define     WDT_ACTIVE_HIGH_MAGIC	(0xA5 << 24)
110 #define     WDT_ACTIVE_LOW_MAGIC	(0x5A << 24)
111 #define   WDT_RESET_WIDTH_PUSH_PULL	BIT(30)
112 #define     WDT_PUSH_PULL_MAGIC		(0xA8 << 24)
113 #define     WDT_OPEN_DRAIN_MAGIC	(0x8A << 24)
114 
115 #define WDT_RESTART_MAGIC	0x4755
116 
117 /* 32 bits at 1MHz, in milliseconds */
118 #define WDT_MAX_TIMEOUT_MS	4294967
119 #define WDT_DEFAULT_TIMEOUT	30
120 #define WDT_RATE_1MHZ		1000000
121 
122 static struct aspeed_wdt *to_aspeed_wdt(struct watchdog_device *wdd)
123 {
124 	return container_of(wdd, struct aspeed_wdt, wdd);
125 }
126 
127 static void aspeed_wdt_enable(struct aspeed_wdt *wdt, int count)
128 {
129 	wdt->ctrl |= WDT_CTRL_ENABLE;
130 
131 	writel(0, wdt->base + WDT_CTRL);
132 	writel(count, wdt->base + WDT_RELOAD_VALUE);
133 	writel(WDT_RESTART_MAGIC, wdt->base + WDT_RESTART);
134 	writel(wdt->ctrl, wdt->base + WDT_CTRL);
135 }
136 
137 static int aspeed_wdt_start(struct watchdog_device *wdd)
138 {
139 	struct aspeed_wdt *wdt = to_aspeed_wdt(wdd);
140 
141 	aspeed_wdt_enable(wdt, wdd->timeout * WDT_RATE_1MHZ);
142 
143 	return 0;
144 }
145 
146 static int aspeed_wdt_stop(struct watchdog_device *wdd)
147 {
148 	struct aspeed_wdt *wdt = to_aspeed_wdt(wdd);
149 
150 	wdt->ctrl &= ~WDT_CTRL_ENABLE;
151 	writel(wdt->ctrl, wdt->base + WDT_CTRL);
152 
153 	return 0;
154 }
155 
156 static int aspeed_wdt_ping(struct watchdog_device *wdd)
157 {
158 	struct aspeed_wdt *wdt = to_aspeed_wdt(wdd);
159 
160 	writel(WDT_RESTART_MAGIC, wdt->base + WDT_RESTART);
161 
162 	return 0;
163 }
164 
165 static int aspeed_wdt_set_timeout(struct watchdog_device *wdd,
166 				  unsigned int timeout)
167 {
168 	struct aspeed_wdt *wdt = to_aspeed_wdt(wdd);
169 	u32 actual;
170 
171 	wdd->timeout = timeout;
172 
173 	actual = min(timeout, wdd->max_hw_heartbeat_ms / 1000);
174 
175 	writel(actual * WDT_RATE_1MHZ, wdt->base + WDT_RELOAD_VALUE);
176 	writel(WDT_RESTART_MAGIC, wdt->base + WDT_RESTART);
177 
178 	return 0;
179 }
180 
181 static int aspeed_wdt_set_pretimeout(struct watchdog_device *wdd,
182 				     unsigned int pretimeout)
183 {
184 	struct aspeed_wdt *wdt = to_aspeed_wdt(wdd);
185 	u32 actual = pretimeout * WDT_RATE_1MHZ;
186 	u32 s = wdt->cfg->irq_shift;
187 	u32 m = wdt->cfg->irq_mask;
188 
189 	wdd->pretimeout = pretimeout;
190 	wdt->ctrl &= ~m;
191 	if (pretimeout)
192 		wdt->ctrl |= ((actual << s) & m) | WDT_CTRL_WDT_INTR;
193 	else
194 		wdt->ctrl &= ~WDT_CTRL_WDT_INTR;
195 
196 	writel(wdt->ctrl, wdt->base + WDT_CTRL);
197 
198 	return 0;
199 }
200 
201 static int aspeed_wdt_restart(struct watchdog_device *wdd,
202 			      unsigned long action, void *data)
203 {
204 	struct aspeed_wdt *wdt = to_aspeed_wdt(wdd);
205 
206 	wdt->ctrl &= ~WDT_CTRL_BOOT_SECONDARY;
207 	aspeed_wdt_enable(wdt, 128 * WDT_RATE_1MHZ / 1000);
208 
209 	mdelay(1000);
210 
211 	return 0;
212 }
213 
214 /* access_cs0 shows if cs0 is accessible, hence the reverted bit */
215 static ssize_t access_cs0_show(struct device *dev,
216 			       struct device_attribute *attr, char *buf)
217 {
218 	struct aspeed_wdt *wdt = dev_get_drvdata(dev);
219 	u32 status = readl(wdt->base + WDT_TIMEOUT_STATUS);
220 
221 	return sysfs_emit(buf, "%u\n",
222 			  !(status & WDT_TIMEOUT_STATUS_BOOT_SECONDARY));
223 }
224 
225 static ssize_t access_cs0_store(struct device *dev,
226 				struct device_attribute *attr, const char *buf,
227 				size_t size)
228 {
229 	struct aspeed_wdt *wdt = dev_get_drvdata(dev);
230 	unsigned long val;
231 
232 	if (kstrtoul(buf, 10, &val))
233 		return -EINVAL;
234 
235 	if (val)
236 		writel(WDT_CLEAR_TIMEOUT_AND_BOOT_CODE_SELECTION,
237 		       wdt->base + WDT_CLEAR_TIMEOUT_STATUS);
238 
239 	return size;
240 }
241 
242 /*
243  * This attribute exists only if the system has booted from the alternate
244  * flash with 'alt-boot' option.
245  *
246  * At alternate flash the 'access_cs0' sysfs node provides:
247  *   ast2400: a way to get access to the primary SPI flash chip at CS0
248  *            after booting from the alternate chip at CS1.
249  *   ast2500: a way to restore the normal address mapping from
250  *            (CS0->CS1, CS1->CS0) to (CS0->CS0, CS1->CS1).
251  *
252  * Clearing the boot code selection and timeout counter also resets to the
253  * initial state the chip select line mapping. When the SoC is in normal
254  * mapping state (i.e. booted from CS0), clearing those bits does nothing for
255  * both versions of the SoC. For alternate boot mode (booted from CS1 due to
256  * wdt2 expiration) the behavior differs as described above.
257  *
258  * This option can be used with wdt2 (watchdog1) only.
259  */
260 static DEVICE_ATTR_RW(access_cs0);
261 
262 static struct attribute *bswitch_attrs[] = {
263 	&dev_attr_access_cs0.attr,
264 	NULL
265 };
266 ATTRIBUTE_GROUPS(bswitch);
267 
268 static const struct watchdog_ops aspeed_wdt_ops = {
269 	.start		= aspeed_wdt_start,
270 	.stop		= aspeed_wdt_stop,
271 	.ping		= aspeed_wdt_ping,
272 	.set_timeout	= aspeed_wdt_set_timeout,
273 	.set_pretimeout = aspeed_wdt_set_pretimeout,
274 	.restart	= aspeed_wdt_restart,
275 	.owner		= THIS_MODULE,
276 };
277 
278 static const struct watchdog_info aspeed_wdt_info = {
279 	.options	= WDIOF_KEEPALIVEPING
280 			| WDIOF_MAGICCLOSE
281 			| WDIOF_SETTIMEOUT,
282 	.identity	= KBUILD_MODNAME,
283 };
284 
285 static const struct watchdog_info aspeed_wdt_pretimeout_info = {
286 	.options	= WDIOF_KEEPALIVEPING
287 			| WDIOF_PRETIMEOUT
288 			| WDIOF_MAGICCLOSE
289 			| WDIOF_SETTIMEOUT,
290 	.identity	= KBUILD_MODNAME,
291 };
292 
293 static irqreturn_t aspeed_wdt_irq(int irq, void *arg)
294 {
295 	struct watchdog_device *wdd = arg;
296 	struct aspeed_wdt *wdt = to_aspeed_wdt(wdd);
297 	u32 status = readl(wdt->base + WDT_TIMEOUT_STATUS);
298 
299 	if (status & WDT_TIMEOUT_STATUS_IRQ)
300 		watchdog_notify_pretimeout(wdd);
301 
302 	return IRQ_HANDLED;
303 }
304 
305 static int aspeed_wdt_probe(struct platform_device *pdev)
306 {
307 	struct device *dev = &pdev->dev;
308 	const struct of_device_id *ofdid;
309 	struct aspeed_wdt *wdt;
310 	struct device_node *np;
311 	const char *reset_type;
312 	u32 duration;
313 	u32 status;
314 	int ret;
315 
316 	wdt = devm_kzalloc(dev, sizeof(*wdt), GFP_KERNEL);
317 	if (!wdt)
318 		return -ENOMEM;
319 
320 	np = dev->of_node;
321 
322 	ofdid = of_match_node(aspeed_wdt_of_table, np);
323 	if (!ofdid)
324 		return -EINVAL;
325 	wdt->cfg = ofdid->data;
326 
327 	wdt->base = devm_platform_ioremap_resource(pdev, 0);
328 	if (IS_ERR(wdt->base))
329 		return PTR_ERR(wdt->base);
330 
331 	wdt->wdd.info = &aspeed_wdt_info;
332 
333 	if (wdt->cfg->irq_mask) {
334 		int irq = platform_get_irq_optional(pdev, 0);
335 
336 		if (irq > 0) {
337 			ret = devm_request_irq(dev, irq, aspeed_wdt_irq,
338 					       IRQF_SHARED, dev_name(dev),
339 					       wdt);
340 			if (ret)
341 				return ret;
342 
343 			wdt->wdd.info = &aspeed_wdt_pretimeout_info;
344 		}
345 	}
346 
347 	wdt->wdd.ops = &aspeed_wdt_ops;
348 	wdt->wdd.max_hw_heartbeat_ms = WDT_MAX_TIMEOUT_MS;
349 	wdt->wdd.parent = dev;
350 
351 	wdt->wdd.timeout = WDT_DEFAULT_TIMEOUT;
352 	watchdog_init_timeout(&wdt->wdd, 0, dev);
353 
354 	watchdog_set_nowayout(&wdt->wdd, nowayout);
355 
356 	/*
357 	 * On clock rates:
358 	 *  - ast2400 wdt can run at PCLK, or 1MHz
359 	 *  - ast2500 only runs at 1MHz, hard coding bit 4 to 1
360 	 *  - ast2600 always runs at 1MHz
361 	 *
362 	 * Set the ast2400 to run at 1MHz as it simplifies the driver.
363 	 */
364 	if (of_device_is_compatible(np, "aspeed,ast2400-wdt"))
365 		wdt->ctrl = WDT_CTRL_1MHZ_CLK;
366 
367 	/*
368 	 * Control reset on a per-device basis to ensure the
369 	 * host is not affected by a BMC reboot
370 	 */
371 	ret = of_property_read_string(np, "aspeed,reset-type", &reset_type);
372 	if (ret) {
373 		wdt->ctrl |= WDT_CTRL_RESET_MODE_SOC | WDT_CTRL_RESET_SYSTEM;
374 	} else {
375 		if (!strcmp(reset_type, "cpu"))
376 			wdt->ctrl |= WDT_CTRL_RESET_MODE_ARM_CPU |
377 				     WDT_CTRL_RESET_SYSTEM;
378 		else if (!strcmp(reset_type, "soc"))
379 			wdt->ctrl |= WDT_CTRL_RESET_MODE_SOC |
380 				     WDT_CTRL_RESET_SYSTEM;
381 		else if (!strcmp(reset_type, "system"))
382 			wdt->ctrl |= WDT_CTRL_RESET_MODE_FULL_CHIP |
383 				     WDT_CTRL_RESET_SYSTEM;
384 		else if (strcmp(reset_type, "none"))
385 			return -EINVAL;
386 	}
387 	if (of_property_read_bool(np, "aspeed,external-signal"))
388 		wdt->ctrl |= WDT_CTRL_WDT_EXT;
389 	if (of_property_read_bool(np, "aspeed,alt-boot"))
390 		wdt->ctrl |= WDT_CTRL_BOOT_SECONDARY;
391 
392 	if (readl(wdt->base + WDT_CTRL) & WDT_CTRL_ENABLE)  {
393 		/*
394 		 * The watchdog is running, but invoke aspeed_wdt_start() to
395 		 * write wdt->ctrl to WDT_CTRL to ensure the watchdog's
396 		 * configuration conforms to the driver's expectations.
397 		 * Primarily, ensure we're using the 1MHz clock source.
398 		 */
399 		aspeed_wdt_start(&wdt->wdd);
400 		set_bit(WDOG_HW_RUNNING, &wdt->wdd.status);
401 	}
402 
403 	if ((of_device_is_compatible(np, "aspeed,ast2500-wdt")) ||
404 		(of_device_is_compatible(np, "aspeed,ast2600-wdt"))) {
405 		u32 reg = readl(wdt->base + WDT_RESET_WIDTH);
406 
407 		reg &= wdt->cfg->ext_pulse_width_mask;
408 		if (of_property_read_bool(np, "aspeed,ext-active-high"))
409 			reg |= WDT_ACTIVE_HIGH_MAGIC;
410 		else
411 			reg |= WDT_ACTIVE_LOW_MAGIC;
412 
413 		writel(reg, wdt->base + WDT_RESET_WIDTH);
414 
415 		reg &= wdt->cfg->ext_pulse_width_mask;
416 		if (of_property_read_bool(np, "aspeed,ext-push-pull"))
417 			reg |= WDT_PUSH_PULL_MAGIC;
418 		else
419 			reg |= WDT_OPEN_DRAIN_MAGIC;
420 
421 		writel(reg, wdt->base + WDT_RESET_WIDTH);
422 	}
423 
424 	if (!of_property_read_u32(np, "aspeed,ext-pulse-duration", &duration)) {
425 		u32 max_duration = wdt->cfg->ext_pulse_width_mask + 1;
426 
427 		if (duration == 0 || duration > max_duration) {
428 			dev_err(dev, "Invalid pulse duration: %uus\n",
429 				duration);
430 			duration = max(1U, min(max_duration, duration));
431 			dev_info(dev, "Pulse duration set to %uus\n",
432 				 duration);
433 		}
434 
435 		/*
436 		 * The watchdog is always configured with a 1MHz source, so
437 		 * there is no need to scale the microsecond value. However we
438 		 * need to offset it - from the datasheet:
439 		 *
440 		 * "This register decides the asserting duration of wdt_ext and
441 		 * wdt_rstarm signal. The default value is 0xFF. It means the
442 		 * default asserting duration of wdt_ext and wdt_rstarm is
443 		 * 256us."
444 		 *
445 		 * This implies a value of 0 gives a 1us pulse.
446 		 */
447 		writel(duration - 1, wdt->base + WDT_RESET_WIDTH);
448 	}
449 
450 	status = readl(wdt->base + WDT_TIMEOUT_STATUS);
451 	if (status & WDT_TIMEOUT_STATUS_BOOT_SECONDARY) {
452 		wdt->wdd.bootstatus = WDIOF_CARDRESET;
453 
454 		if (of_device_is_compatible(np, "aspeed,ast2400-wdt") ||
455 		    of_device_is_compatible(np, "aspeed,ast2500-wdt"))
456 			wdt->wdd.groups = bswitch_groups;
457 	}
458 
459 	dev_set_drvdata(dev, wdt);
460 
461 	return devm_watchdog_register_device(dev, &wdt->wdd);
462 }
463 
464 static struct platform_driver aspeed_watchdog_driver = {
465 	.probe = aspeed_wdt_probe,
466 	.driver = {
467 		.name = KBUILD_MODNAME,
468 		.of_match_table = aspeed_wdt_of_table,
469 	},
470 };
471 
472 static int __init aspeed_wdt_init(void)
473 {
474 	return platform_driver_register(&aspeed_watchdog_driver);
475 }
476 arch_initcall(aspeed_wdt_init);
477 
478 static void __exit aspeed_wdt_exit(void)
479 {
480 	platform_driver_unregister(&aspeed_watchdog_driver);
481 }
482 module_exit(aspeed_wdt_exit);
483 
484 MODULE_DESCRIPTION("Aspeed Watchdog Driver");
485 MODULE_LICENSE("GPL");
486