1 /* 2 * ds2490.c USB to one wire bridge 3 * 4 * Copyright (c) 2004 Evgeniy Polyakov <zbr@ioremap.net> 5 * 6 * 7 * This program is free software; you can redistribute it and/or modify 8 * it under the terms of the GNU General Public License as published by 9 * the Free Software Foundation; either version 2 of the License, or 10 * (at your option) any later version. 11 * 12 * This program is distributed in the hope that it will be useful, 13 * but WITHOUT ANY WARRANTY; without even the implied warranty of 14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 15 * GNU General Public License for more details. 16 * 17 * You should have received a copy of the GNU General Public License 18 * along with this program; if not, write to the Free Software 19 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA 20 */ 21 22 #include <linux/module.h> 23 #include <linux/kernel.h> 24 #include <linux/mod_devicetable.h> 25 #include <linux/usb.h> 26 #include <linux/slab.h> 27 28 #include "../w1_int.h" 29 #include "../w1.h" 30 31 /* USB Standard */ 32 /* USB Control request vendor type */ 33 #define VENDOR 0x40 34 35 /* COMMAND TYPE CODES */ 36 #define CONTROL_CMD 0x00 37 #define COMM_CMD 0x01 38 #define MODE_CMD 0x02 39 40 /* CONTROL COMMAND CODES */ 41 #define CTL_RESET_DEVICE 0x0000 42 #define CTL_START_EXE 0x0001 43 #define CTL_RESUME_EXE 0x0002 44 #define CTL_HALT_EXE_IDLE 0x0003 45 #define CTL_HALT_EXE_DONE 0x0004 46 #define CTL_FLUSH_COMM_CMDS 0x0007 47 #define CTL_FLUSH_RCV_BUFFER 0x0008 48 #define CTL_FLUSH_XMT_BUFFER 0x0009 49 #define CTL_GET_COMM_CMDS 0x000A 50 51 /* MODE COMMAND CODES */ 52 #define MOD_PULSE_EN 0x0000 53 #define MOD_SPEED_CHANGE_EN 0x0001 54 #define MOD_1WIRE_SPEED 0x0002 55 #define MOD_STRONG_PU_DURATION 0x0003 56 #define MOD_PULLDOWN_SLEWRATE 0x0004 57 #define MOD_PROG_PULSE_DURATION 0x0005 58 #define MOD_WRITE1_LOWTIME 0x0006 59 #define MOD_DSOW0_TREC 0x0007 60 61 /* COMMUNICATION COMMAND CODES */ 62 #define COMM_ERROR_ESCAPE 0x0601 63 #define COMM_SET_DURATION 0x0012 64 #define COMM_BIT_IO 0x0020 65 #define COMM_PULSE 0x0030 66 #define COMM_1_WIRE_RESET 0x0042 67 #define COMM_BYTE_IO 0x0052 68 #define COMM_MATCH_ACCESS 0x0064 69 #define COMM_BLOCK_IO 0x0074 70 #define COMM_READ_STRAIGHT 0x0080 71 #define COMM_DO_RELEASE 0x6092 72 #define COMM_SET_PATH 0x00A2 73 #define COMM_WRITE_SRAM_PAGE 0x00B2 74 #define COMM_WRITE_EPROM 0x00C4 75 #define COMM_READ_CRC_PROT_PAGE 0x00D4 76 #define COMM_READ_REDIRECT_PAGE_CRC 0x21E4 77 #define COMM_SEARCH_ACCESS 0x00F4 78 79 /* Communication command bits */ 80 #define COMM_TYPE 0x0008 81 #define COMM_SE 0x0008 82 #define COMM_D 0x0008 83 #define COMM_Z 0x0008 84 #define COMM_CH 0x0008 85 #define COMM_SM 0x0008 86 #define COMM_R 0x0008 87 #define COMM_IM 0x0001 88 89 #define COMM_PS 0x4000 90 #define COMM_PST 0x4000 91 #define COMM_CIB 0x4000 92 #define COMM_RTS 0x4000 93 #define COMM_DT 0x2000 94 #define COMM_SPU 0x1000 95 #define COMM_F 0x0800 96 #define COMM_NTF 0x0400 97 #define COMM_ICP 0x0200 98 #define COMM_RST 0x0100 99 100 #define PULSE_PROG 0x01 101 #define PULSE_SPUE 0x02 102 103 #define BRANCH_MAIN 0xCC 104 #define BRANCH_AUX 0x33 105 106 /* Status flags */ 107 #define ST_SPUA 0x01 /* Strong Pull-up is active */ 108 #define ST_PRGA 0x02 /* 12V programming pulse is being generated */ 109 #define ST_12VP 0x04 /* external 12V programming voltage is present */ 110 #define ST_PMOD 0x08 /* DS2490 powered from USB and external sources */ 111 #define ST_HALT 0x10 /* DS2490 is currently halted */ 112 #define ST_IDLE 0x20 /* DS2490 is currently idle */ 113 #define ST_EPOF 0x80 114 /* Status transfer size, 16 bytes status, 16 byte result flags */ 115 #define ST_SIZE 0x20 116 117 /* Result Register flags */ 118 #define RR_DETECT 0xA5 /* New device detected */ 119 #define RR_NRS 0x01 /* Reset no presence or ... */ 120 #define RR_SH 0x02 /* short on reset or set path */ 121 #define RR_APP 0x04 /* alarming presence on reset */ 122 #define RR_VPP 0x08 /* 12V expected not seen */ 123 #define RR_CMP 0x10 /* compare error */ 124 #define RR_CRC 0x20 /* CRC error detected */ 125 #define RR_RDP 0x40 /* redirected page */ 126 #define RR_EOS 0x80 /* end of search error */ 127 128 #define SPEED_NORMAL 0x00 129 #define SPEED_FLEXIBLE 0x01 130 #define SPEED_OVERDRIVE 0x02 131 132 #define NUM_EP 4 133 #define EP_CONTROL 0 134 #define EP_STATUS 1 135 #define EP_DATA_OUT 2 136 #define EP_DATA_IN 3 137 138 struct ds_device 139 { 140 struct list_head ds_entry; 141 142 struct usb_device *udev; 143 struct usb_interface *intf; 144 145 int ep[NUM_EP]; 146 147 /* Strong PullUp 148 * 0: pullup not active, else duration in milliseconds 149 */ 150 int spu_sleep; 151 /* spu_bit contains COMM_SPU or 0 depending on if the strong pullup 152 * should be active or not for writes. 153 */ 154 u16 spu_bit; 155 156 struct w1_bus_master master; 157 }; 158 159 struct ds_status 160 { 161 u8 enable; 162 u8 speed; 163 u8 pullup_dur; 164 u8 ppuls_dur; 165 u8 pulldown_slew; 166 u8 write1_time; 167 u8 write0_time; 168 u8 reserved0; 169 u8 status; 170 u8 command0; 171 u8 command1; 172 u8 command_buffer_status; 173 u8 data_out_buffer_status; 174 u8 data_in_buffer_status; 175 u8 reserved1; 176 u8 reserved2; 177 178 }; 179 180 static struct usb_device_id ds_id_table [] = { 181 { USB_DEVICE(0x04fa, 0x2490) }, 182 { }, 183 }; 184 MODULE_DEVICE_TABLE(usb, ds_id_table); 185 186 static int ds_probe(struct usb_interface *, const struct usb_device_id *); 187 static void ds_disconnect(struct usb_interface *); 188 189 static int ds_send_control(struct ds_device *, u16, u16); 190 static int ds_send_control_cmd(struct ds_device *, u16, u16); 191 192 static LIST_HEAD(ds_devices); 193 static DEFINE_MUTEX(ds_mutex); 194 195 static struct usb_driver ds_driver = { 196 .name = "DS9490R", 197 .probe = ds_probe, 198 .disconnect = ds_disconnect, 199 .id_table = ds_id_table, 200 }; 201 202 static int ds_send_control_cmd(struct ds_device *dev, u16 value, u16 index) 203 { 204 int err; 205 206 err = usb_control_msg(dev->udev, usb_sndctrlpipe(dev->udev, dev->ep[EP_CONTROL]), 207 CONTROL_CMD, VENDOR, value, index, NULL, 0, 1000); 208 if (err < 0) { 209 pr_err("Failed to send command control message %x.%x: err=%d.\n", 210 value, index, err); 211 return err; 212 } 213 214 return err; 215 } 216 217 static int ds_send_control_mode(struct ds_device *dev, u16 value, u16 index) 218 { 219 int err; 220 221 err = usb_control_msg(dev->udev, usb_sndctrlpipe(dev->udev, dev->ep[EP_CONTROL]), 222 MODE_CMD, VENDOR, value, index, NULL, 0, 1000); 223 if (err < 0) { 224 pr_err("Failed to send mode control message %x.%x: err=%d.\n", 225 value, index, err); 226 return err; 227 } 228 229 return err; 230 } 231 232 static int ds_send_control(struct ds_device *dev, u16 value, u16 index) 233 { 234 int err; 235 236 err = usb_control_msg(dev->udev, usb_sndctrlpipe(dev->udev, dev->ep[EP_CONTROL]), 237 COMM_CMD, VENDOR, value, index, NULL, 0, 1000); 238 if (err < 0) { 239 pr_err("Failed to send control message %x.%x: err=%d.\n", 240 value, index, err); 241 return err; 242 } 243 244 return err; 245 } 246 247 static int ds_recv_status_nodump(struct ds_device *dev, struct ds_status *st, 248 unsigned char *buf, int size) 249 { 250 int count, err; 251 252 memset(st, 0, sizeof(*st)); 253 254 count = 0; 255 err = usb_interrupt_msg(dev->udev, usb_rcvintpipe(dev->udev, 256 dev->ep[EP_STATUS]), buf, size, &count, 100); 257 if (err < 0) { 258 pr_err("Failed to read 1-wire data from 0x%x: err=%d.\n", 259 dev->ep[EP_STATUS], err); 260 return err; 261 } 262 263 if (count >= sizeof(*st)) 264 memcpy(st, buf, sizeof(*st)); 265 266 return count; 267 } 268 269 static inline void ds_print_msg(unsigned char *buf, unsigned char *str, int off) 270 { 271 pr_info("%45s: %8x\n", str, buf[off]); 272 } 273 274 static void ds_dump_status(struct ds_device *dev, unsigned char *buf, int count) 275 { 276 int i; 277 278 pr_info("0x%x: count=%d, status: ", dev->ep[EP_STATUS], count); 279 for (i=0; i<count; ++i) 280 pr_info("%02x ", buf[i]); 281 pr_info("\n"); 282 283 if (count >= 16) { 284 ds_print_msg(buf, "enable flag", 0); 285 ds_print_msg(buf, "1-wire speed", 1); 286 ds_print_msg(buf, "strong pullup duration", 2); 287 ds_print_msg(buf, "programming pulse duration", 3); 288 ds_print_msg(buf, "pulldown slew rate control", 4); 289 ds_print_msg(buf, "write-1 low time", 5); 290 ds_print_msg(buf, "data sample offset/write-0 recovery time", 291 6); 292 ds_print_msg(buf, "reserved (test register)", 7); 293 ds_print_msg(buf, "device status flags", 8); 294 ds_print_msg(buf, "communication command byte 1", 9); 295 ds_print_msg(buf, "communication command byte 2", 10); 296 ds_print_msg(buf, "communication command buffer status", 11); 297 ds_print_msg(buf, "1-wire data output buffer status", 12); 298 ds_print_msg(buf, "1-wire data input buffer status", 13); 299 ds_print_msg(buf, "reserved", 14); 300 ds_print_msg(buf, "reserved", 15); 301 } 302 for (i = 16; i < count; ++i) { 303 if (buf[i] == RR_DETECT) { 304 ds_print_msg(buf, "new device detect", i); 305 continue; 306 } 307 ds_print_msg(buf, "Result Register Value: ", i); 308 if (buf[i] & RR_NRS) 309 pr_info("NRS: Reset no presence or ...\n"); 310 if (buf[i] & RR_SH) 311 pr_info("SH: short on reset or set path\n"); 312 if (buf[i] & RR_APP) 313 pr_info("APP: alarming presence on reset\n"); 314 if (buf[i] & RR_VPP) 315 pr_info("VPP: 12V expected not seen\n"); 316 if (buf[i] & RR_CMP) 317 pr_info("CMP: compare error\n"); 318 if (buf[i] & RR_CRC) 319 pr_info("CRC: CRC error detected\n"); 320 if (buf[i] & RR_RDP) 321 pr_info("RDP: redirected page\n"); 322 if (buf[i] & RR_EOS) 323 pr_info("EOS: end of search error\n"); 324 } 325 } 326 327 static void ds_reset_device(struct ds_device *dev) 328 { 329 ds_send_control_cmd(dev, CTL_RESET_DEVICE, 0); 330 /* Always allow strong pullup which allow individual writes to use 331 * the strong pullup. 332 */ 333 if (ds_send_control_mode(dev, MOD_PULSE_EN, PULSE_SPUE)) 334 pr_err("ds_reset_device: Error allowing strong pullup\n"); 335 /* Chip strong pullup time was cleared. */ 336 if (dev->spu_sleep) { 337 /* lower 4 bits are 0, see ds_set_pullup */ 338 u8 del = dev->spu_sleep>>4; 339 if (ds_send_control(dev, COMM_SET_DURATION | COMM_IM, del)) 340 pr_err("ds_reset_device: Error setting duration\n"); 341 } 342 } 343 344 static int ds_recv_data(struct ds_device *dev, unsigned char *buf, int size) 345 { 346 int count, err; 347 struct ds_status st; 348 349 /* Careful on size. If size is less than what is available in 350 * the input buffer, the device fails the bulk transfer and 351 * clears the input buffer. It could read the maximum size of 352 * the data buffer, but then do you return the first, last, or 353 * some set of the middle size bytes? As long as the rest of 354 * the code is correct there will be size bytes waiting. A 355 * call to ds_wait_status will wait until the device is idle 356 * and any data to be received would have been available. 357 */ 358 count = 0; 359 err = usb_bulk_msg(dev->udev, usb_rcvbulkpipe(dev->udev, dev->ep[EP_DATA_IN]), 360 buf, size, &count, 1000); 361 if (err < 0) { 362 u8 buf[ST_SIZE]; 363 int count; 364 365 pr_info("Clearing ep0x%x.\n", dev->ep[EP_DATA_IN]); 366 usb_clear_halt(dev->udev, usb_rcvbulkpipe(dev->udev, dev->ep[EP_DATA_IN])); 367 368 count = ds_recv_status_nodump(dev, &st, buf, sizeof(buf)); 369 ds_dump_status(dev, buf, count); 370 return err; 371 } 372 373 #if 0 374 { 375 int i; 376 377 printk("%s: count=%d: ", __func__, count); 378 for (i=0; i<count; ++i) 379 printk("%02x ", buf[i]); 380 printk("\n"); 381 } 382 #endif 383 return count; 384 } 385 386 static int ds_send_data(struct ds_device *dev, unsigned char *buf, int len) 387 { 388 int count, err; 389 390 count = 0; 391 err = usb_bulk_msg(dev->udev, usb_sndbulkpipe(dev->udev, dev->ep[EP_DATA_OUT]), buf, len, &count, 1000); 392 if (err < 0) { 393 pr_err("Failed to write 1-wire data to ep0x%x: " 394 "err=%d.\n", dev->ep[EP_DATA_OUT], err); 395 return err; 396 } 397 398 return err; 399 } 400 401 #if 0 402 403 int ds_stop_pulse(struct ds_device *dev, int limit) 404 { 405 struct ds_status st; 406 int count = 0, err = 0; 407 u8 buf[ST_SIZE]; 408 409 do { 410 err = ds_send_control(dev, CTL_HALT_EXE_IDLE, 0); 411 if (err) 412 break; 413 err = ds_send_control(dev, CTL_RESUME_EXE, 0); 414 if (err) 415 break; 416 err = ds_recv_status_nodump(dev, &st, buf, sizeof(buf)); 417 if (err) 418 break; 419 420 if ((st.status & ST_SPUA) == 0) { 421 err = ds_send_control_mode(dev, MOD_PULSE_EN, 0); 422 if (err) 423 break; 424 } 425 } while(++count < limit); 426 427 return err; 428 } 429 430 int ds_detect(struct ds_device *dev, struct ds_status *st) 431 { 432 int err; 433 434 err = ds_send_control_cmd(dev, CTL_RESET_DEVICE, 0); 435 if (err) 436 return err; 437 438 err = ds_send_control(dev, COMM_SET_DURATION | COMM_IM, 0); 439 if (err) 440 return err; 441 442 err = ds_send_control(dev, COMM_SET_DURATION | COMM_IM | COMM_TYPE, 0x40); 443 if (err) 444 return err; 445 446 err = ds_send_control_mode(dev, MOD_PULSE_EN, PULSE_PROG); 447 if (err) 448 return err; 449 450 err = ds_dump_status(dev, st); 451 452 return err; 453 } 454 455 #endif /* 0 */ 456 457 static int ds_wait_status(struct ds_device *dev, struct ds_status *st) 458 { 459 u8 buf[ST_SIZE]; 460 int err, count = 0; 461 462 do { 463 st->status = 0; 464 err = ds_recv_status_nodump(dev, st, buf, sizeof(buf)); 465 #if 0 466 if (err >= 0) { 467 int i; 468 printk("0x%x: count=%d, status: ", dev->ep[EP_STATUS], err); 469 for (i=0; i<err; ++i) 470 printk("%02x ", buf[i]); 471 printk("\n"); 472 } 473 #endif 474 } while (!(st->status & ST_IDLE) && !(err < 0) && ++count < 100); 475 476 if (err >= 16 && st->status & ST_EPOF) { 477 pr_info("Resetting device after ST_EPOF.\n"); 478 ds_reset_device(dev); 479 /* Always dump the device status. */ 480 count = 101; 481 } 482 483 /* Dump the status for errors or if there is extended return data. 484 * The extended status includes new device detection (maybe someone 485 * can do something with it). 486 */ 487 if (err > 16 || count >= 100 || err < 0) 488 ds_dump_status(dev, buf, err); 489 490 /* Extended data isn't an error. Well, a short is, but the dump 491 * would have already told the user that and we can't do anything 492 * about it in software anyway. 493 */ 494 if (count >= 100 || err < 0) 495 return -1; 496 else 497 return 0; 498 } 499 500 static int ds_reset(struct ds_device *dev) 501 { 502 int err; 503 504 /* Other potentionally interesting flags for reset. 505 * 506 * COMM_NTF: Return result register feedback. This could be used to 507 * detect some conditions such as short, alarming presence, or 508 * detect if a new device was detected. 509 * 510 * COMM_SE which allows SPEED_NORMAL, SPEED_FLEXIBLE, SPEED_OVERDRIVE: 511 * Select the data transfer rate. 512 */ 513 err = ds_send_control(dev, COMM_1_WIRE_RESET | COMM_IM, SPEED_NORMAL); 514 if (err) 515 return err; 516 517 return 0; 518 } 519 520 #if 0 521 static int ds_set_speed(struct ds_device *dev, int speed) 522 { 523 int err; 524 525 if (speed != SPEED_NORMAL && speed != SPEED_FLEXIBLE && speed != SPEED_OVERDRIVE) 526 return -EINVAL; 527 528 if (speed != SPEED_OVERDRIVE) 529 speed = SPEED_FLEXIBLE; 530 531 speed &= 0xff; 532 533 err = ds_send_control_mode(dev, MOD_1WIRE_SPEED, speed); 534 if (err) 535 return err; 536 537 return err; 538 } 539 #endif /* 0 */ 540 541 static int ds_set_pullup(struct ds_device *dev, int delay) 542 { 543 int err = 0; 544 u8 del = 1 + (u8)(delay >> 4); 545 /* Just storing delay would not get the trunication and roundup. */ 546 int ms = del<<4; 547 548 /* Enable spu_bit if a delay is set. */ 549 dev->spu_bit = delay ? COMM_SPU : 0; 550 /* If delay is zero, it has already been disabled, if the time is 551 * the same as the hardware was last programmed to, there is also 552 * nothing more to do. Compare with the recalculated value ms 553 * rather than del or delay which can have a different value. 554 */ 555 if (delay == 0 || ms == dev->spu_sleep) 556 return err; 557 558 err = ds_send_control(dev, COMM_SET_DURATION | COMM_IM, del); 559 if (err) 560 return err; 561 562 dev->spu_sleep = ms; 563 564 return err; 565 } 566 567 static int ds_touch_bit(struct ds_device *dev, u8 bit, u8 *tbit) 568 { 569 int err; 570 struct ds_status st; 571 572 err = ds_send_control(dev, COMM_BIT_IO | COMM_IM | (bit ? COMM_D : 0), 573 0); 574 if (err) 575 return err; 576 577 ds_wait_status(dev, &st); 578 579 err = ds_recv_data(dev, tbit, sizeof(*tbit)); 580 if (err < 0) 581 return err; 582 583 return 0; 584 } 585 586 #if 0 587 static int ds_write_bit(struct ds_device *dev, u8 bit) 588 { 589 int err; 590 struct ds_status st; 591 592 /* Set COMM_ICP to write without a readback. Note, this will 593 * produce one time slot, a down followed by an up with COMM_D 594 * only determing the timing. 595 */ 596 err = ds_send_control(dev, COMM_BIT_IO | COMM_IM | COMM_ICP | 597 (bit ? COMM_D : 0), 0); 598 if (err) 599 return err; 600 601 ds_wait_status(dev, &st); 602 603 return 0; 604 } 605 #endif 606 607 static int ds_write_byte(struct ds_device *dev, u8 byte) 608 { 609 int err; 610 struct ds_status st; 611 u8 rbyte; 612 613 err = ds_send_control(dev, COMM_BYTE_IO | COMM_IM | dev->spu_bit, byte); 614 if (err) 615 return err; 616 617 if (dev->spu_bit) 618 msleep(dev->spu_sleep); 619 620 err = ds_wait_status(dev, &st); 621 if (err) 622 return err; 623 624 err = ds_recv_data(dev, &rbyte, sizeof(rbyte)); 625 if (err < 0) 626 return err; 627 628 return !(byte == rbyte); 629 } 630 631 static int ds_read_byte(struct ds_device *dev, u8 *byte) 632 { 633 int err; 634 struct ds_status st; 635 636 err = ds_send_control(dev, COMM_BYTE_IO | COMM_IM , 0xff); 637 if (err) 638 return err; 639 640 ds_wait_status(dev, &st); 641 642 err = ds_recv_data(dev, byte, sizeof(*byte)); 643 if (err < 0) 644 return err; 645 646 return 0; 647 } 648 649 static int ds_read_block(struct ds_device *dev, u8 *buf, int len) 650 { 651 struct ds_status st; 652 int err; 653 654 if (len > 64*1024) 655 return -E2BIG; 656 657 memset(buf, 0xFF, len); 658 659 err = ds_send_data(dev, buf, len); 660 if (err < 0) 661 return err; 662 663 err = ds_send_control(dev, COMM_BLOCK_IO | COMM_IM, len); 664 if (err) 665 return err; 666 667 ds_wait_status(dev, &st); 668 669 memset(buf, 0x00, len); 670 err = ds_recv_data(dev, buf, len); 671 672 return err; 673 } 674 675 static int ds_write_block(struct ds_device *dev, u8 *buf, int len) 676 { 677 int err; 678 struct ds_status st; 679 680 err = ds_send_data(dev, buf, len); 681 if (err < 0) 682 return err; 683 684 err = ds_send_control(dev, COMM_BLOCK_IO | COMM_IM | dev->spu_bit, len); 685 if (err) 686 return err; 687 688 if (dev->spu_bit) 689 msleep(dev->spu_sleep); 690 691 ds_wait_status(dev, &st); 692 693 err = ds_recv_data(dev, buf, len); 694 if (err < 0) 695 return err; 696 697 return !(err == len); 698 } 699 700 static void ds9490r_search(void *data, struct w1_master *master, 701 u8 search_type, w1_slave_found_callback callback) 702 { 703 /* When starting with an existing id, the first id returned will 704 * be that device (if it is still on the bus most likely). 705 * 706 * If the number of devices found is less than or equal to the 707 * search_limit, that number of IDs will be returned. If there are 708 * more, search_limit IDs will be returned followed by a non-zero 709 * discrepency value. 710 */ 711 struct ds_device *dev = data; 712 int err; 713 u16 value, index; 714 struct ds_status st; 715 u8 st_buf[ST_SIZE]; 716 int search_limit; 717 int found = 0; 718 int i; 719 720 /* DS18b20 spec, 13.16 ms per device, 75 per second, sleep for 721 * discovering 8 devices (1 bulk transfer and 1/2 FIFO size) at a time. 722 */ 723 const unsigned long jtime = msecs_to_jiffies(1000*8/75); 724 /* FIFO 128 bytes, bulk packet size 64, read a multiple of the 725 * packet size. 726 */ 727 u64 buf[2*64/8]; 728 729 mutex_lock(&master->bus_mutex); 730 731 /* address to start searching at */ 732 if (ds_send_data(dev, (u8 *)&master->search_id, 8) < 0) 733 goto search_out; 734 master->search_id = 0; 735 736 value = COMM_SEARCH_ACCESS | COMM_IM | COMM_RST | COMM_SM | COMM_F | 737 COMM_RTS; 738 search_limit = master->max_slave_count; 739 if (search_limit > 255) 740 search_limit = 0; 741 index = search_type | (search_limit << 8); 742 if (ds_send_control(dev, value, index) < 0) 743 goto search_out; 744 745 do { 746 schedule_timeout(jtime); 747 748 if (ds_recv_status_nodump(dev, &st, st_buf, sizeof(st_buf)) < 749 sizeof(st)) { 750 break; 751 } 752 753 if (st.data_in_buffer_status) { 754 /* Bulk in can receive partial ids, but when it does 755 * they fail crc and will be discarded anyway. 756 * That has only been seen when status in buffer 757 * is 0 and bulk is read anyway, so don't read 758 * bulk without first checking if status says there 759 * is data to read. 760 */ 761 err = ds_recv_data(dev, (u8 *)buf, sizeof(buf)); 762 if (err < 0) 763 break; 764 for (i = 0; i < err/8; ++i) { 765 ++found; 766 if (found <= search_limit) 767 callback(master, buf[i]); 768 /* can't know if there will be a discrepancy 769 * value after until the next id */ 770 if (found == search_limit) 771 master->search_id = buf[i]; 772 } 773 } 774 775 if (test_bit(W1_ABORT_SEARCH, &master->flags)) 776 break; 777 } while (!(st.status & (ST_IDLE | ST_HALT))); 778 779 /* only continue the search if some weren't found */ 780 if (found <= search_limit) { 781 master->search_id = 0; 782 } else if (!test_bit(W1_WARN_MAX_COUNT, &master->flags)) { 783 /* Only max_slave_count will be scanned in a search, 784 * but it will start where it left off next search 785 * until all ids are identified and then it will start 786 * over. A continued search will report the previous 787 * last id as the first id (provided it is still on the 788 * bus). 789 */ 790 dev_info(&dev->udev->dev, "%s: max_slave_count %d reached, " 791 "will continue next search.\n", __func__, 792 master->max_slave_count); 793 set_bit(W1_WARN_MAX_COUNT, &master->flags); 794 } 795 search_out: 796 mutex_unlock(&master->bus_mutex); 797 } 798 799 #if 0 800 static int ds_match_access(struct ds_device *dev, u64 init) 801 { 802 int err; 803 struct ds_status st; 804 805 err = ds_send_data(dev, (unsigned char *)&init, sizeof(init)); 806 if (err) 807 return err; 808 809 ds_wait_status(dev, &st); 810 811 err = ds_send_control(dev, COMM_MATCH_ACCESS | COMM_IM | COMM_RST, 0x0055); 812 if (err) 813 return err; 814 815 ds_wait_status(dev, &st); 816 817 return 0; 818 } 819 820 static int ds_set_path(struct ds_device *dev, u64 init) 821 { 822 int err; 823 struct ds_status st; 824 u8 buf[9]; 825 826 memcpy(buf, &init, 8); 827 buf[8] = BRANCH_MAIN; 828 829 err = ds_send_data(dev, buf, sizeof(buf)); 830 if (err) 831 return err; 832 833 ds_wait_status(dev, &st); 834 835 err = ds_send_control(dev, COMM_SET_PATH | COMM_IM | COMM_RST, 0); 836 if (err) 837 return err; 838 839 ds_wait_status(dev, &st); 840 841 return 0; 842 } 843 844 #endif /* 0 */ 845 846 static u8 ds9490r_touch_bit(void *data, u8 bit) 847 { 848 u8 ret; 849 struct ds_device *dev = data; 850 851 if (ds_touch_bit(dev, bit, &ret)) 852 return 0; 853 854 return ret; 855 } 856 857 #if 0 858 static void ds9490r_write_bit(void *data, u8 bit) 859 { 860 struct ds_device *dev = data; 861 862 ds_write_bit(dev, bit); 863 } 864 865 static u8 ds9490r_read_bit(void *data) 866 { 867 struct ds_device *dev = data; 868 int err; 869 u8 bit = 0; 870 871 err = ds_touch_bit(dev, 1, &bit); 872 if (err) 873 return 0; 874 875 return bit & 1; 876 } 877 #endif 878 879 static void ds9490r_write_byte(void *data, u8 byte) 880 { 881 struct ds_device *dev = data; 882 883 ds_write_byte(dev, byte); 884 } 885 886 static u8 ds9490r_read_byte(void *data) 887 { 888 struct ds_device *dev = data; 889 int err; 890 u8 byte = 0; 891 892 err = ds_read_byte(dev, &byte); 893 if (err) 894 return 0; 895 896 return byte; 897 } 898 899 static void ds9490r_write_block(void *data, const u8 *buf, int len) 900 { 901 struct ds_device *dev = data; 902 903 ds_write_block(dev, (u8 *)buf, len); 904 } 905 906 static u8 ds9490r_read_block(void *data, u8 *buf, int len) 907 { 908 struct ds_device *dev = data; 909 int err; 910 911 err = ds_read_block(dev, buf, len); 912 if (err < 0) 913 return 0; 914 915 return len; 916 } 917 918 static u8 ds9490r_reset(void *data) 919 { 920 struct ds_device *dev = data; 921 int err; 922 923 err = ds_reset(dev); 924 if (err) 925 return 1; 926 927 return 0; 928 } 929 930 static u8 ds9490r_set_pullup(void *data, int delay) 931 { 932 struct ds_device *dev = data; 933 934 if (ds_set_pullup(dev, delay)) 935 return 1; 936 937 return 0; 938 } 939 940 static int ds_w1_init(struct ds_device *dev) 941 { 942 memset(&dev->master, 0, sizeof(struct w1_bus_master)); 943 944 /* Reset the device as it can be in a bad state. 945 * This is necessary because a block write will wait for data 946 * to be placed in the output buffer and block any later 947 * commands which will keep accumulating and the device will 948 * not be idle. Another case is removing the ds2490 module 949 * while a bus search is in progress, somehow a few commands 950 * get through, but the input transfers fail leaving data in 951 * the input buffer. This will cause the next read to fail 952 * see the note in ds_recv_data. 953 */ 954 ds_reset_device(dev); 955 956 dev->master.data = dev; 957 dev->master.touch_bit = &ds9490r_touch_bit; 958 /* read_bit and write_bit in w1_bus_master are expected to set and 959 * sample the line level. For write_bit that means it is expected to 960 * set it to that value and leave it there. ds2490 only supports an 961 * individual time slot at the lowest level. The requirement from 962 * pulling the bus state down to reading the state is 15us, something 963 * that isn't realistic on the USB bus anyway. 964 dev->master.read_bit = &ds9490r_read_bit; 965 dev->master.write_bit = &ds9490r_write_bit; 966 */ 967 dev->master.read_byte = &ds9490r_read_byte; 968 dev->master.write_byte = &ds9490r_write_byte; 969 dev->master.read_block = &ds9490r_read_block; 970 dev->master.write_block = &ds9490r_write_block; 971 dev->master.reset_bus = &ds9490r_reset; 972 dev->master.set_pullup = &ds9490r_set_pullup; 973 dev->master.search = &ds9490r_search; 974 975 return w1_add_master_device(&dev->master); 976 } 977 978 static void ds_w1_fini(struct ds_device *dev) 979 { 980 w1_remove_master_device(&dev->master); 981 } 982 983 static int ds_probe(struct usb_interface *intf, 984 const struct usb_device_id *udev_id) 985 { 986 struct usb_device *udev = interface_to_usbdev(intf); 987 struct usb_endpoint_descriptor *endpoint; 988 struct usb_host_interface *iface_desc; 989 struct ds_device *dev; 990 int i, err, alt; 991 992 dev = kzalloc(sizeof(struct ds_device), GFP_KERNEL); 993 if (!dev) { 994 pr_info("Failed to allocate new DS9490R structure.\n"); 995 return -ENOMEM; 996 } 997 dev->udev = usb_get_dev(udev); 998 if (!dev->udev) { 999 err = -ENOMEM; 1000 goto err_out_free; 1001 } 1002 memset(dev->ep, 0, sizeof(dev->ep)); 1003 1004 usb_set_intfdata(intf, dev); 1005 1006 err = usb_reset_configuration(dev->udev); 1007 if (err) { 1008 dev_err(&dev->udev->dev, 1009 "Failed to reset configuration: err=%d.\n", err); 1010 goto err_out_clear; 1011 } 1012 1013 /* alternative 3, 1ms interrupt (greatly speeds search), 64 byte bulk */ 1014 alt = 3; 1015 err = usb_set_interface(dev->udev, 1016 intf->altsetting[alt].desc.bInterfaceNumber, alt); 1017 if (err) { 1018 dev_err(&dev->udev->dev, "Failed to set alternative setting %d " 1019 "for %d interface: err=%d.\n", alt, 1020 intf->altsetting[alt].desc.bInterfaceNumber, err); 1021 goto err_out_clear; 1022 } 1023 1024 iface_desc = &intf->altsetting[alt]; 1025 if (iface_desc->desc.bNumEndpoints != NUM_EP-1) { 1026 pr_info("Num endpoints=%d. It is not DS9490R.\n", 1027 iface_desc->desc.bNumEndpoints); 1028 err = -EINVAL; 1029 goto err_out_clear; 1030 } 1031 1032 /* 1033 * This loop doesn'd show control 0 endpoint, 1034 * so we will fill only 1-3 endpoints entry. 1035 */ 1036 for (i = 0; i < iface_desc->desc.bNumEndpoints; ++i) { 1037 endpoint = &iface_desc->endpoint[i].desc; 1038 1039 dev->ep[i+1] = endpoint->bEndpointAddress; 1040 #if 0 1041 printk("%d: addr=%x, size=%d, dir=%s, type=%x\n", 1042 i, endpoint->bEndpointAddress, le16_to_cpu(endpoint->wMaxPacketSize), 1043 (endpoint->bEndpointAddress & USB_DIR_IN)?"IN":"OUT", 1044 endpoint->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK); 1045 #endif 1046 } 1047 1048 err = ds_w1_init(dev); 1049 if (err) 1050 goto err_out_clear; 1051 1052 mutex_lock(&ds_mutex); 1053 list_add_tail(&dev->ds_entry, &ds_devices); 1054 mutex_unlock(&ds_mutex); 1055 1056 return 0; 1057 1058 err_out_clear: 1059 usb_set_intfdata(intf, NULL); 1060 usb_put_dev(dev->udev); 1061 err_out_free: 1062 kfree(dev); 1063 return err; 1064 } 1065 1066 static void ds_disconnect(struct usb_interface *intf) 1067 { 1068 struct ds_device *dev; 1069 1070 dev = usb_get_intfdata(intf); 1071 if (!dev) 1072 return; 1073 1074 mutex_lock(&ds_mutex); 1075 list_del(&dev->ds_entry); 1076 mutex_unlock(&ds_mutex); 1077 1078 ds_w1_fini(dev); 1079 1080 usb_set_intfdata(intf, NULL); 1081 1082 usb_put_dev(dev->udev); 1083 kfree(dev); 1084 } 1085 1086 module_usb_driver(ds_driver); 1087 1088 MODULE_LICENSE("GPL"); 1089 MODULE_AUTHOR("Evgeniy Polyakov <zbr@ioremap.net>"); 1090 MODULE_DESCRIPTION("DS2490 USB <-> W1 bus master driver (DS9490*)"); 1091