xref: /linux/drivers/virtio/virtio_ring.c (revision 79d2e1919a2728ef49d938eb20ebd5903c14dfb0)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /* Virtio ring implementation.
3  *
4  *  Copyright 2007 Rusty Russell IBM Corporation
5  */
6 #include <linux/virtio.h>
7 #include <linux/virtio_ring.h>
8 #include <linux/virtio_config.h>
9 #include <linux/device.h>
10 #include <linux/slab.h>
11 #include <linux/module.h>
12 #include <linux/hrtimer.h>
13 #include <linux/dma-mapping.h>
14 #include <linux/kmsan.h>
15 #include <linux/spinlock.h>
16 #include <xen/xen.h>
17 
18 #ifdef DEBUG
19 /* For development, we want to crash whenever the ring is screwed. */
20 #define BAD_RING(_vq, fmt, args...)				\
21 	do {							\
22 		dev_err(&(_vq)->vq.vdev->dev,			\
23 			"%s:"fmt, (_vq)->vq.name, ##args);	\
24 		BUG();						\
25 	} while (0)
26 /* Caller is supposed to guarantee no reentry. */
27 #define START_USE(_vq)						\
28 	do {							\
29 		if ((_vq)->in_use)				\
30 			panic("%s:in_use = %i\n",		\
31 			      (_vq)->vq.name, (_vq)->in_use);	\
32 		(_vq)->in_use = __LINE__;			\
33 	} while (0)
34 #define END_USE(_vq) \
35 	do { BUG_ON(!(_vq)->in_use); (_vq)->in_use = 0; } while(0)
36 #define LAST_ADD_TIME_UPDATE(_vq)				\
37 	do {							\
38 		ktime_t now = ktime_get();			\
39 								\
40 		/* No kick or get, with .1 second between?  Warn. */ \
41 		if ((_vq)->last_add_time_valid)			\
42 			WARN_ON(ktime_to_ms(ktime_sub(now,	\
43 				(_vq)->last_add_time)) > 100);	\
44 		(_vq)->last_add_time = now;			\
45 		(_vq)->last_add_time_valid = true;		\
46 	} while (0)
47 #define LAST_ADD_TIME_CHECK(_vq)				\
48 	do {							\
49 		if ((_vq)->last_add_time_valid) {		\
50 			WARN_ON(ktime_to_ms(ktime_sub(ktime_get(), \
51 				      (_vq)->last_add_time)) > 100); \
52 		}						\
53 	} while (0)
54 #define LAST_ADD_TIME_INVALID(_vq)				\
55 	((_vq)->last_add_time_valid = false)
56 #else
57 #define BAD_RING(_vq, fmt, args...)				\
58 	do {							\
59 		dev_err(&_vq->vq.vdev->dev,			\
60 			"%s:"fmt, (_vq)->vq.name, ##args);	\
61 		(_vq)->broken = true;				\
62 	} while (0)
63 #define START_USE(vq)
64 #define END_USE(vq)
65 #define LAST_ADD_TIME_UPDATE(vq)
66 #define LAST_ADD_TIME_CHECK(vq)
67 #define LAST_ADD_TIME_INVALID(vq)
68 #endif
69 
70 struct vring_desc_state_split {
71 	void *data;			/* Data for callback. */
72 
73 	/* Indirect desc table and extra table, if any. These two will be
74 	 * allocated together. So we won't stress more to the memory allocator.
75 	 */
76 	struct vring_desc *indir_desc;
77 };
78 
79 struct vring_desc_state_packed {
80 	void *data;			/* Data for callback. */
81 
82 	/* Indirect desc table and extra table, if any. These two will be
83 	 * allocated together. So we won't stress more to the memory allocator.
84 	 */
85 	struct vring_packed_desc *indir_desc;
86 	u16 num;			/* Descriptor list length. */
87 	u16 last;			/* The last desc state in a list. */
88 };
89 
90 struct vring_desc_extra {
91 	dma_addr_t addr;		/* Descriptor DMA addr. */
92 	u32 len;			/* Descriptor length. */
93 	u16 flags;			/* Descriptor flags. */
94 	u16 next;			/* The next desc state in a list. */
95 };
96 
97 struct vring_virtqueue_split {
98 	/* Actual memory layout for this queue. */
99 	struct vring vring;
100 
101 	/* Last written value to avail->flags */
102 	u16 avail_flags_shadow;
103 
104 	/*
105 	 * Last written value to avail->idx in
106 	 * guest byte order.
107 	 */
108 	u16 avail_idx_shadow;
109 
110 	/* Per-descriptor state. */
111 	struct vring_desc_state_split *desc_state;
112 	struct vring_desc_extra *desc_extra;
113 
114 	/* DMA address and size information */
115 	dma_addr_t queue_dma_addr;
116 	size_t queue_size_in_bytes;
117 
118 	/*
119 	 * The parameters for creating vrings are reserved for creating new
120 	 * vring.
121 	 */
122 	u32 vring_align;
123 	bool may_reduce_num;
124 };
125 
126 struct vring_virtqueue_packed {
127 	/* Actual memory layout for this queue. */
128 	struct {
129 		unsigned int num;
130 		struct vring_packed_desc *desc;
131 		struct vring_packed_desc_event *driver;
132 		struct vring_packed_desc_event *device;
133 	} vring;
134 
135 	/* Driver ring wrap counter. */
136 	bool avail_wrap_counter;
137 
138 	/* Avail used flags. */
139 	u16 avail_used_flags;
140 
141 	/* Index of the next avail descriptor. */
142 	u16 next_avail_idx;
143 
144 	/*
145 	 * Last written value to driver->flags in
146 	 * guest byte order.
147 	 */
148 	u16 event_flags_shadow;
149 
150 	/* Per-descriptor state. */
151 	struct vring_desc_state_packed *desc_state;
152 	struct vring_desc_extra *desc_extra;
153 
154 	/* DMA address and size information */
155 	dma_addr_t ring_dma_addr;
156 	dma_addr_t driver_event_dma_addr;
157 	dma_addr_t device_event_dma_addr;
158 	size_t ring_size_in_bytes;
159 	size_t event_size_in_bytes;
160 };
161 
162 struct vring_virtqueue {
163 	struct virtqueue vq;
164 
165 	/* Is this a packed ring? */
166 	bool packed_ring;
167 
168 	/* Is DMA API used? */
169 	bool use_dma_api;
170 
171 	/* Can we use weak barriers? */
172 	bool weak_barriers;
173 
174 	/* Other side has made a mess, don't try any more. */
175 	bool broken;
176 
177 	/* Host supports indirect buffers */
178 	bool indirect;
179 
180 	/* Host publishes avail event idx */
181 	bool event;
182 
183 	/* Head of free buffer list. */
184 	unsigned int free_head;
185 	/* Number we've added since last sync. */
186 	unsigned int num_added;
187 
188 	/* Last used index  we've seen.
189 	 * for split ring, it just contains last used index
190 	 * for packed ring:
191 	 * bits up to VRING_PACKED_EVENT_F_WRAP_CTR include the last used index.
192 	 * bits from VRING_PACKED_EVENT_F_WRAP_CTR include the used wrap counter.
193 	 */
194 	u16 last_used_idx;
195 
196 	/* Hint for event idx: already triggered no need to disable. */
197 	bool event_triggered;
198 
199 	union {
200 		/* Available for split ring */
201 		struct vring_virtqueue_split split;
202 
203 		/* Available for packed ring */
204 		struct vring_virtqueue_packed packed;
205 	};
206 
207 	/* How to notify other side. FIXME: commonalize hcalls! */
208 	bool (*notify)(struct virtqueue *vq);
209 
210 	/* DMA, allocation, and size information */
211 	bool we_own_ring;
212 
213 	/* Device used for doing DMA */
214 	struct device *dma_dev;
215 
216 #ifdef DEBUG
217 	/* They're supposed to lock for us. */
218 	unsigned int in_use;
219 
220 	/* Figure out if their kicks are too delayed. */
221 	bool last_add_time_valid;
222 	ktime_t last_add_time;
223 #endif
224 };
225 
226 static struct vring_desc_extra *vring_alloc_desc_extra(unsigned int num);
227 static void vring_free(struct virtqueue *_vq);
228 
229 /*
230  * Helpers.
231  */
232 
233 #define to_vvq(_vq) container_of_const(_vq, struct vring_virtqueue, vq)
234 
235 static bool virtqueue_use_indirect(const struct vring_virtqueue *vq,
236 				   unsigned int total_sg)
237 {
238 	/*
239 	 * If the host supports indirect descriptor tables, and we have multiple
240 	 * buffers, then go indirect. FIXME: tune this threshold
241 	 */
242 	return (vq->indirect && total_sg > 1 && vq->vq.num_free);
243 }
244 
245 /*
246  * Modern virtio devices have feature bits to specify whether they need a
247  * quirk and bypass the IOMMU. If not there, just use the DMA API.
248  *
249  * If there, the interaction between virtio and DMA API is messy.
250  *
251  * On most systems with virtio, physical addresses match bus addresses,
252  * and it doesn't particularly matter whether we use the DMA API.
253  *
254  * On some systems, including Xen and any system with a physical device
255  * that speaks virtio behind a physical IOMMU, we must use the DMA API
256  * for virtio DMA to work at all.
257  *
258  * On other systems, including SPARC and PPC64, virtio-pci devices are
259  * enumerated as though they are behind an IOMMU, but the virtio host
260  * ignores the IOMMU, so we must either pretend that the IOMMU isn't
261  * there or somehow map everything as the identity.
262  *
263  * For the time being, we preserve historic behavior and bypass the DMA
264  * API.
265  *
266  * TODO: install a per-device DMA ops structure that does the right thing
267  * taking into account all the above quirks, and use the DMA API
268  * unconditionally on data path.
269  */
270 
271 static bool vring_use_dma_api(const struct virtio_device *vdev)
272 {
273 	if (!virtio_has_dma_quirk(vdev))
274 		return true;
275 
276 	/* Otherwise, we are left to guess. */
277 	/*
278 	 * In theory, it's possible to have a buggy QEMU-supposed
279 	 * emulated Q35 IOMMU and Xen enabled at the same time.  On
280 	 * such a configuration, virtio has never worked and will
281 	 * not work without an even larger kludge.  Instead, enable
282 	 * the DMA API if we're a Xen guest, which at least allows
283 	 * all of the sensible Xen configurations to work correctly.
284 	 */
285 	if (xen_domain())
286 		return true;
287 
288 	return false;
289 }
290 
291 static bool vring_need_unmap_buffer(const struct vring_virtqueue *vring,
292 				    const struct vring_desc_extra *extra)
293 {
294 	return vring->use_dma_api && (extra->addr != DMA_MAPPING_ERROR);
295 }
296 
297 size_t virtio_max_dma_size(const struct virtio_device *vdev)
298 {
299 	size_t max_segment_size = SIZE_MAX;
300 
301 	if (vring_use_dma_api(vdev))
302 		max_segment_size = dma_max_mapping_size(vdev->dev.parent);
303 
304 	return max_segment_size;
305 }
306 EXPORT_SYMBOL_GPL(virtio_max_dma_size);
307 
308 static void *vring_alloc_queue(struct virtio_device *vdev, size_t size,
309 			       dma_addr_t *dma_handle, gfp_t flag,
310 			       struct device *dma_dev)
311 {
312 	if (vring_use_dma_api(vdev)) {
313 		return dma_alloc_coherent(dma_dev, size,
314 					  dma_handle, flag);
315 	} else {
316 		void *queue = alloc_pages_exact(PAGE_ALIGN(size), flag);
317 
318 		if (queue) {
319 			phys_addr_t phys_addr = virt_to_phys(queue);
320 			*dma_handle = (dma_addr_t)phys_addr;
321 
322 			/*
323 			 * Sanity check: make sure we dind't truncate
324 			 * the address.  The only arches I can find that
325 			 * have 64-bit phys_addr_t but 32-bit dma_addr_t
326 			 * are certain non-highmem MIPS and x86
327 			 * configurations, but these configurations
328 			 * should never allocate physical pages above 32
329 			 * bits, so this is fine.  Just in case, throw a
330 			 * warning and abort if we end up with an
331 			 * unrepresentable address.
332 			 */
333 			if (WARN_ON_ONCE(*dma_handle != phys_addr)) {
334 				free_pages_exact(queue, PAGE_ALIGN(size));
335 				return NULL;
336 			}
337 		}
338 		return queue;
339 	}
340 }
341 
342 static void vring_free_queue(struct virtio_device *vdev, size_t size,
343 			     void *queue, dma_addr_t dma_handle,
344 			     struct device *dma_dev)
345 {
346 	if (vring_use_dma_api(vdev))
347 		dma_free_coherent(dma_dev, size, queue, dma_handle);
348 	else
349 		free_pages_exact(queue, PAGE_ALIGN(size));
350 }
351 
352 /*
353  * The DMA ops on various arches are rather gnarly right now, and
354  * making all of the arch DMA ops work on the vring device itself
355  * is a mess.
356  */
357 static struct device *vring_dma_dev(const struct vring_virtqueue *vq)
358 {
359 	return vq->dma_dev;
360 }
361 
362 /* Map one sg entry. */
363 static int vring_map_one_sg(const struct vring_virtqueue *vq, struct scatterlist *sg,
364 			    enum dma_data_direction direction, dma_addr_t *addr,
365 			    u32 *len, bool premapped)
366 {
367 	if (premapped) {
368 		*addr = sg_dma_address(sg);
369 		*len = sg_dma_len(sg);
370 		return 0;
371 	}
372 
373 	*len = sg->length;
374 
375 	if (!vq->use_dma_api) {
376 		/*
377 		 * If DMA is not used, KMSAN doesn't know that the scatterlist
378 		 * is initialized by the hardware. Explicitly check/unpoison it
379 		 * depending on the direction.
380 		 */
381 		kmsan_handle_dma(sg_page(sg), sg->offset, sg->length, direction);
382 		*addr = (dma_addr_t)sg_phys(sg);
383 		return 0;
384 	}
385 
386 	/*
387 	 * We can't use dma_map_sg, because we don't use scatterlists in
388 	 * the way it expects (we don't guarantee that the scatterlist
389 	 * will exist for the lifetime of the mapping).
390 	 */
391 	*addr = dma_map_page(vring_dma_dev(vq),
392 			    sg_page(sg), sg->offset, sg->length,
393 			    direction);
394 
395 	if (dma_mapping_error(vring_dma_dev(vq), *addr))
396 		return -ENOMEM;
397 
398 	return 0;
399 }
400 
401 static dma_addr_t vring_map_single(const struct vring_virtqueue *vq,
402 				   void *cpu_addr, size_t size,
403 				   enum dma_data_direction direction)
404 {
405 	if (!vq->use_dma_api)
406 		return (dma_addr_t)virt_to_phys(cpu_addr);
407 
408 	return dma_map_single(vring_dma_dev(vq),
409 			      cpu_addr, size, direction);
410 }
411 
412 static int vring_mapping_error(const struct vring_virtqueue *vq,
413 			       dma_addr_t addr)
414 {
415 	if (!vq->use_dma_api)
416 		return 0;
417 
418 	return dma_mapping_error(vring_dma_dev(vq), addr);
419 }
420 
421 static void virtqueue_init(struct vring_virtqueue *vq, u32 num)
422 {
423 	vq->vq.num_free = num;
424 
425 	if (vq->packed_ring)
426 		vq->last_used_idx = 0 | (1 << VRING_PACKED_EVENT_F_WRAP_CTR);
427 	else
428 		vq->last_used_idx = 0;
429 
430 	vq->event_triggered = false;
431 	vq->num_added = 0;
432 
433 #ifdef DEBUG
434 	vq->in_use = false;
435 	vq->last_add_time_valid = false;
436 #endif
437 }
438 
439 
440 /*
441  * Split ring specific functions - *_split().
442  */
443 
444 static unsigned int vring_unmap_one_split(const struct vring_virtqueue *vq,
445 					  struct vring_desc_extra *extra)
446 {
447 	u16 flags;
448 
449 	flags = extra->flags;
450 
451 	if (flags & VRING_DESC_F_INDIRECT) {
452 		if (!vq->use_dma_api)
453 			goto out;
454 
455 		dma_unmap_single(vring_dma_dev(vq),
456 				 extra->addr,
457 				 extra->len,
458 				 (flags & VRING_DESC_F_WRITE) ?
459 				 DMA_FROM_DEVICE : DMA_TO_DEVICE);
460 	} else {
461 		if (!vring_need_unmap_buffer(vq, extra))
462 			goto out;
463 
464 		dma_unmap_page(vring_dma_dev(vq),
465 			       extra->addr,
466 			       extra->len,
467 			       (flags & VRING_DESC_F_WRITE) ?
468 			       DMA_FROM_DEVICE : DMA_TO_DEVICE);
469 	}
470 
471 out:
472 	return extra->next;
473 }
474 
475 static struct vring_desc *alloc_indirect_split(struct virtqueue *_vq,
476 					       unsigned int total_sg,
477 					       gfp_t gfp)
478 {
479 	struct vring_desc_extra *extra;
480 	struct vring_desc *desc;
481 	unsigned int i, size;
482 
483 	/*
484 	 * We require lowmem mappings for the descriptors because
485 	 * otherwise virt_to_phys will give us bogus addresses in the
486 	 * virtqueue.
487 	 */
488 	gfp &= ~__GFP_HIGHMEM;
489 
490 	size = sizeof(*desc) * total_sg + sizeof(*extra) * total_sg;
491 
492 	desc = kmalloc(size, gfp);
493 	if (!desc)
494 		return NULL;
495 
496 	extra = (struct vring_desc_extra *)&desc[total_sg];
497 
498 	for (i = 0; i < total_sg; i++)
499 		extra[i].next = i + 1;
500 
501 	return desc;
502 }
503 
504 static inline unsigned int virtqueue_add_desc_split(struct virtqueue *vq,
505 						    struct vring_desc *desc,
506 						    struct vring_desc_extra *extra,
507 						    unsigned int i,
508 						    dma_addr_t addr,
509 						    unsigned int len,
510 						    u16 flags, bool premapped)
511 {
512 	u16 next;
513 
514 	desc[i].flags = cpu_to_virtio16(vq->vdev, flags);
515 	desc[i].addr = cpu_to_virtio64(vq->vdev, addr);
516 	desc[i].len = cpu_to_virtio32(vq->vdev, len);
517 
518 	extra[i].addr = premapped ? DMA_MAPPING_ERROR : addr;
519 	extra[i].len = len;
520 	extra[i].flags = flags;
521 
522 	next = extra[i].next;
523 
524 	desc[i].next = cpu_to_virtio16(vq->vdev, next);
525 
526 	return next;
527 }
528 
529 static inline int virtqueue_add_split(struct virtqueue *_vq,
530 				      struct scatterlist *sgs[],
531 				      unsigned int total_sg,
532 				      unsigned int out_sgs,
533 				      unsigned int in_sgs,
534 				      void *data,
535 				      void *ctx,
536 				      bool premapped,
537 				      gfp_t gfp)
538 {
539 	struct vring_virtqueue *vq = to_vvq(_vq);
540 	struct vring_desc_extra *extra;
541 	struct scatterlist *sg;
542 	struct vring_desc *desc;
543 	unsigned int i, n, avail, descs_used, prev, err_idx;
544 	int head;
545 	bool indirect;
546 
547 	START_USE(vq);
548 
549 	BUG_ON(data == NULL);
550 	BUG_ON(ctx && vq->indirect);
551 
552 	if (unlikely(vq->broken)) {
553 		END_USE(vq);
554 		return -EIO;
555 	}
556 
557 	LAST_ADD_TIME_UPDATE(vq);
558 
559 	BUG_ON(total_sg == 0);
560 
561 	head = vq->free_head;
562 
563 	if (virtqueue_use_indirect(vq, total_sg))
564 		desc = alloc_indirect_split(_vq, total_sg, gfp);
565 	else {
566 		desc = NULL;
567 		WARN_ON_ONCE(total_sg > vq->split.vring.num && !vq->indirect);
568 	}
569 
570 	if (desc) {
571 		/* Use a single buffer which doesn't continue */
572 		indirect = true;
573 		/* Set up rest to use this indirect table. */
574 		i = 0;
575 		descs_used = 1;
576 		extra = (struct vring_desc_extra *)&desc[total_sg];
577 	} else {
578 		indirect = false;
579 		desc = vq->split.vring.desc;
580 		extra = vq->split.desc_extra;
581 		i = head;
582 		descs_used = total_sg;
583 	}
584 
585 	if (unlikely(vq->vq.num_free < descs_used)) {
586 		pr_debug("Can't add buf len %i - avail = %i\n",
587 			 descs_used, vq->vq.num_free);
588 		/* FIXME: for historical reasons, we force a notify here if
589 		 * there are outgoing parts to the buffer.  Presumably the
590 		 * host should service the ring ASAP. */
591 		if (out_sgs)
592 			vq->notify(&vq->vq);
593 		if (indirect)
594 			kfree(desc);
595 		END_USE(vq);
596 		return -ENOSPC;
597 	}
598 
599 	for (n = 0; n < out_sgs; n++) {
600 		for (sg = sgs[n]; sg; sg = sg_next(sg)) {
601 			dma_addr_t addr;
602 			u32 len;
603 
604 			if (vring_map_one_sg(vq, sg, DMA_TO_DEVICE, &addr, &len, premapped))
605 				goto unmap_release;
606 
607 			prev = i;
608 			/* Note that we trust indirect descriptor
609 			 * table since it use stream DMA mapping.
610 			 */
611 			i = virtqueue_add_desc_split(_vq, desc, extra, i, addr, len,
612 						     VRING_DESC_F_NEXT,
613 						     premapped);
614 		}
615 	}
616 	for (; n < (out_sgs + in_sgs); n++) {
617 		for (sg = sgs[n]; sg; sg = sg_next(sg)) {
618 			dma_addr_t addr;
619 			u32 len;
620 
621 			if (vring_map_one_sg(vq, sg, DMA_FROM_DEVICE, &addr, &len, premapped))
622 				goto unmap_release;
623 
624 			prev = i;
625 			/* Note that we trust indirect descriptor
626 			 * table since it use stream DMA mapping.
627 			 */
628 			i = virtqueue_add_desc_split(_vq, desc, extra, i, addr, len,
629 						     VRING_DESC_F_NEXT |
630 						     VRING_DESC_F_WRITE,
631 						     premapped);
632 		}
633 	}
634 	/* Last one doesn't continue. */
635 	desc[prev].flags &= cpu_to_virtio16(_vq->vdev, ~VRING_DESC_F_NEXT);
636 	if (!indirect && vring_need_unmap_buffer(vq, &extra[prev]))
637 		vq->split.desc_extra[prev & (vq->split.vring.num - 1)].flags &=
638 			~VRING_DESC_F_NEXT;
639 
640 	if (indirect) {
641 		/* Now that the indirect table is filled in, map it. */
642 		dma_addr_t addr = vring_map_single(
643 			vq, desc, total_sg * sizeof(struct vring_desc),
644 			DMA_TO_DEVICE);
645 		if (vring_mapping_error(vq, addr))
646 			goto unmap_release;
647 
648 		virtqueue_add_desc_split(_vq, vq->split.vring.desc,
649 					 vq->split.desc_extra,
650 					 head, addr,
651 					 total_sg * sizeof(struct vring_desc),
652 					 VRING_DESC_F_INDIRECT, false);
653 	}
654 
655 	/* We're using some buffers from the free list. */
656 	vq->vq.num_free -= descs_used;
657 
658 	/* Update free pointer */
659 	if (indirect)
660 		vq->free_head = vq->split.desc_extra[head].next;
661 	else
662 		vq->free_head = i;
663 
664 	/* Store token and indirect buffer state. */
665 	vq->split.desc_state[head].data = data;
666 	if (indirect)
667 		vq->split.desc_state[head].indir_desc = desc;
668 	else
669 		vq->split.desc_state[head].indir_desc = ctx;
670 
671 	/* Put entry in available array (but don't update avail->idx until they
672 	 * do sync). */
673 	avail = vq->split.avail_idx_shadow & (vq->split.vring.num - 1);
674 	vq->split.vring.avail->ring[avail] = cpu_to_virtio16(_vq->vdev, head);
675 
676 	/* Descriptors and available array need to be set before we expose the
677 	 * new available array entries. */
678 	virtio_wmb(vq->weak_barriers);
679 	vq->split.avail_idx_shadow++;
680 	vq->split.vring.avail->idx = cpu_to_virtio16(_vq->vdev,
681 						vq->split.avail_idx_shadow);
682 	vq->num_added++;
683 
684 	pr_debug("Added buffer head %i to %p\n", head, vq);
685 	END_USE(vq);
686 
687 	/* This is very unlikely, but theoretically possible.  Kick
688 	 * just in case. */
689 	if (unlikely(vq->num_added == (1 << 16) - 1))
690 		virtqueue_kick(_vq);
691 
692 	return 0;
693 
694 unmap_release:
695 	err_idx = i;
696 
697 	if (indirect)
698 		i = 0;
699 	else
700 		i = head;
701 
702 	for (n = 0; n < total_sg; n++) {
703 		if (i == err_idx)
704 			break;
705 
706 		i = vring_unmap_one_split(vq, &extra[i]);
707 	}
708 
709 	if (indirect)
710 		kfree(desc);
711 
712 	END_USE(vq);
713 	return -ENOMEM;
714 }
715 
716 static bool virtqueue_kick_prepare_split(struct virtqueue *_vq)
717 {
718 	struct vring_virtqueue *vq = to_vvq(_vq);
719 	u16 new, old;
720 	bool needs_kick;
721 
722 	START_USE(vq);
723 	/* We need to expose available array entries before checking avail
724 	 * event. */
725 	virtio_mb(vq->weak_barriers);
726 
727 	old = vq->split.avail_idx_shadow - vq->num_added;
728 	new = vq->split.avail_idx_shadow;
729 	vq->num_added = 0;
730 
731 	LAST_ADD_TIME_CHECK(vq);
732 	LAST_ADD_TIME_INVALID(vq);
733 
734 	if (vq->event) {
735 		needs_kick = vring_need_event(virtio16_to_cpu(_vq->vdev,
736 					vring_avail_event(&vq->split.vring)),
737 					      new, old);
738 	} else {
739 		needs_kick = !(vq->split.vring.used->flags &
740 					cpu_to_virtio16(_vq->vdev,
741 						VRING_USED_F_NO_NOTIFY));
742 	}
743 	END_USE(vq);
744 	return needs_kick;
745 }
746 
747 static void detach_buf_split(struct vring_virtqueue *vq, unsigned int head,
748 			     void **ctx)
749 {
750 	struct vring_desc_extra *extra;
751 	unsigned int i, j;
752 	__virtio16 nextflag = cpu_to_virtio16(vq->vq.vdev, VRING_DESC_F_NEXT);
753 
754 	/* Clear data ptr. */
755 	vq->split.desc_state[head].data = NULL;
756 
757 	extra = vq->split.desc_extra;
758 
759 	/* Put back on free list: unmap first-level descriptors and find end */
760 	i = head;
761 
762 	while (vq->split.vring.desc[i].flags & nextflag) {
763 		vring_unmap_one_split(vq, &extra[i]);
764 		i = vq->split.desc_extra[i].next;
765 		vq->vq.num_free++;
766 	}
767 
768 	vring_unmap_one_split(vq, &extra[i]);
769 	vq->split.desc_extra[i].next = vq->free_head;
770 	vq->free_head = head;
771 
772 	/* Plus final descriptor */
773 	vq->vq.num_free++;
774 
775 	if (vq->indirect) {
776 		struct vring_desc *indir_desc =
777 				vq->split.desc_state[head].indir_desc;
778 		u32 len, num;
779 
780 		/* Free the indirect table, if any, now that it's unmapped. */
781 		if (!indir_desc)
782 			return;
783 		len = vq->split.desc_extra[head].len;
784 
785 		BUG_ON(!(vq->split.desc_extra[head].flags &
786 				VRING_DESC_F_INDIRECT));
787 		BUG_ON(len == 0 || len % sizeof(struct vring_desc));
788 
789 		num = len / sizeof(struct vring_desc);
790 
791 		extra = (struct vring_desc_extra *)&indir_desc[num];
792 
793 		if (vq->use_dma_api) {
794 			for (j = 0; j < num; j++)
795 				vring_unmap_one_split(vq, &extra[j]);
796 		}
797 
798 		kfree(indir_desc);
799 		vq->split.desc_state[head].indir_desc = NULL;
800 	} else if (ctx) {
801 		*ctx = vq->split.desc_state[head].indir_desc;
802 	}
803 }
804 
805 static bool more_used_split(const struct vring_virtqueue *vq)
806 {
807 	return vq->last_used_idx != virtio16_to_cpu(vq->vq.vdev,
808 			vq->split.vring.used->idx);
809 }
810 
811 static void *virtqueue_get_buf_ctx_split(struct virtqueue *_vq,
812 					 unsigned int *len,
813 					 void **ctx)
814 {
815 	struct vring_virtqueue *vq = to_vvq(_vq);
816 	void *ret;
817 	unsigned int i;
818 	u16 last_used;
819 
820 	START_USE(vq);
821 
822 	if (unlikely(vq->broken)) {
823 		END_USE(vq);
824 		return NULL;
825 	}
826 
827 	if (!more_used_split(vq)) {
828 		pr_debug("No more buffers in queue\n");
829 		END_USE(vq);
830 		return NULL;
831 	}
832 
833 	/* Only get used array entries after they have been exposed by host. */
834 	virtio_rmb(vq->weak_barriers);
835 
836 	last_used = (vq->last_used_idx & (vq->split.vring.num - 1));
837 	i = virtio32_to_cpu(_vq->vdev,
838 			vq->split.vring.used->ring[last_used].id);
839 	*len = virtio32_to_cpu(_vq->vdev,
840 			vq->split.vring.used->ring[last_used].len);
841 
842 	if (unlikely(i >= vq->split.vring.num)) {
843 		BAD_RING(vq, "id %u out of range\n", i);
844 		return NULL;
845 	}
846 	if (unlikely(!vq->split.desc_state[i].data)) {
847 		BAD_RING(vq, "id %u is not a head!\n", i);
848 		return NULL;
849 	}
850 
851 	/* detach_buf_split clears data, so grab it now. */
852 	ret = vq->split.desc_state[i].data;
853 	detach_buf_split(vq, i, ctx);
854 	vq->last_used_idx++;
855 	/* If we expect an interrupt for the next entry, tell host
856 	 * by writing event index and flush out the write before
857 	 * the read in the next get_buf call. */
858 	if (!(vq->split.avail_flags_shadow & VRING_AVAIL_F_NO_INTERRUPT))
859 		virtio_store_mb(vq->weak_barriers,
860 				&vring_used_event(&vq->split.vring),
861 				cpu_to_virtio16(_vq->vdev, vq->last_used_idx));
862 
863 	LAST_ADD_TIME_INVALID(vq);
864 
865 	END_USE(vq);
866 	return ret;
867 }
868 
869 static void virtqueue_disable_cb_split(struct virtqueue *_vq)
870 {
871 	struct vring_virtqueue *vq = to_vvq(_vq);
872 
873 	if (!(vq->split.avail_flags_shadow & VRING_AVAIL_F_NO_INTERRUPT)) {
874 		vq->split.avail_flags_shadow |= VRING_AVAIL_F_NO_INTERRUPT;
875 
876 		/*
877 		 * If device triggered an event already it won't trigger one again:
878 		 * no need to disable.
879 		 */
880 		if (vq->event_triggered)
881 			return;
882 
883 		if (vq->event)
884 			/* TODO: this is a hack. Figure out a cleaner value to write. */
885 			vring_used_event(&vq->split.vring) = 0x0;
886 		else
887 			vq->split.vring.avail->flags =
888 				cpu_to_virtio16(_vq->vdev,
889 						vq->split.avail_flags_shadow);
890 	}
891 }
892 
893 static unsigned int virtqueue_enable_cb_prepare_split(struct virtqueue *_vq)
894 {
895 	struct vring_virtqueue *vq = to_vvq(_vq);
896 	u16 last_used_idx;
897 
898 	START_USE(vq);
899 
900 	/* We optimistically turn back on interrupts, then check if there was
901 	 * more to do. */
902 	/* Depending on the VIRTIO_RING_F_EVENT_IDX feature, we need to
903 	 * either clear the flags bit or point the event index at the next
904 	 * entry. Always do both to keep code simple. */
905 	if (vq->split.avail_flags_shadow & VRING_AVAIL_F_NO_INTERRUPT) {
906 		vq->split.avail_flags_shadow &= ~VRING_AVAIL_F_NO_INTERRUPT;
907 		if (!vq->event)
908 			vq->split.vring.avail->flags =
909 				cpu_to_virtio16(_vq->vdev,
910 						vq->split.avail_flags_shadow);
911 	}
912 	vring_used_event(&vq->split.vring) = cpu_to_virtio16(_vq->vdev,
913 			last_used_idx = vq->last_used_idx);
914 	END_USE(vq);
915 	return last_used_idx;
916 }
917 
918 static bool virtqueue_poll_split(struct virtqueue *_vq, unsigned int last_used_idx)
919 {
920 	struct vring_virtqueue *vq = to_vvq(_vq);
921 
922 	return (u16)last_used_idx != virtio16_to_cpu(_vq->vdev,
923 			vq->split.vring.used->idx);
924 }
925 
926 static bool virtqueue_enable_cb_delayed_split(struct virtqueue *_vq)
927 {
928 	struct vring_virtqueue *vq = to_vvq(_vq);
929 	u16 bufs;
930 
931 	START_USE(vq);
932 
933 	/* We optimistically turn back on interrupts, then check if there was
934 	 * more to do. */
935 	/* Depending on the VIRTIO_RING_F_USED_EVENT_IDX feature, we need to
936 	 * either clear the flags bit or point the event index at the next
937 	 * entry. Always update the event index to keep code simple. */
938 	if (vq->split.avail_flags_shadow & VRING_AVAIL_F_NO_INTERRUPT) {
939 		vq->split.avail_flags_shadow &= ~VRING_AVAIL_F_NO_INTERRUPT;
940 		if (!vq->event)
941 			vq->split.vring.avail->flags =
942 				cpu_to_virtio16(_vq->vdev,
943 						vq->split.avail_flags_shadow);
944 	}
945 	/* TODO: tune this threshold */
946 	bufs = (u16)(vq->split.avail_idx_shadow - vq->last_used_idx) * 3 / 4;
947 
948 	virtio_store_mb(vq->weak_barriers,
949 			&vring_used_event(&vq->split.vring),
950 			cpu_to_virtio16(_vq->vdev, vq->last_used_idx + bufs));
951 
952 	if (unlikely((u16)(virtio16_to_cpu(_vq->vdev, vq->split.vring.used->idx)
953 					- vq->last_used_idx) > bufs)) {
954 		END_USE(vq);
955 		return false;
956 	}
957 
958 	END_USE(vq);
959 	return true;
960 }
961 
962 static void *virtqueue_detach_unused_buf_split(struct virtqueue *_vq)
963 {
964 	struct vring_virtqueue *vq = to_vvq(_vq);
965 	unsigned int i;
966 	void *buf;
967 
968 	START_USE(vq);
969 
970 	for (i = 0; i < vq->split.vring.num; i++) {
971 		if (!vq->split.desc_state[i].data)
972 			continue;
973 		/* detach_buf_split clears data, so grab it now. */
974 		buf = vq->split.desc_state[i].data;
975 		detach_buf_split(vq, i, NULL);
976 		vq->split.avail_idx_shadow--;
977 		vq->split.vring.avail->idx = cpu_to_virtio16(_vq->vdev,
978 				vq->split.avail_idx_shadow);
979 		END_USE(vq);
980 		return buf;
981 	}
982 	/* That should have freed everything. */
983 	BUG_ON(vq->vq.num_free != vq->split.vring.num);
984 
985 	END_USE(vq);
986 	return NULL;
987 }
988 
989 static void virtqueue_vring_init_split(struct vring_virtqueue_split *vring_split,
990 				       struct vring_virtqueue *vq)
991 {
992 	struct virtio_device *vdev;
993 
994 	vdev = vq->vq.vdev;
995 
996 	vring_split->avail_flags_shadow = 0;
997 	vring_split->avail_idx_shadow = 0;
998 
999 	/* No callback?  Tell other side not to bother us. */
1000 	if (!vq->vq.callback) {
1001 		vring_split->avail_flags_shadow |= VRING_AVAIL_F_NO_INTERRUPT;
1002 		if (!vq->event)
1003 			vring_split->vring.avail->flags = cpu_to_virtio16(vdev,
1004 					vring_split->avail_flags_shadow);
1005 	}
1006 }
1007 
1008 static void virtqueue_reinit_split(struct vring_virtqueue *vq)
1009 {
1010 	int num;
1011 
1012 	num = vq->split.vring.num;
1013 
1014 	vq->split.vring.avail->flags = 0;
1015 	vq->split.vring.avail->idx = 0;
1016 
1017 	/* reset avail event */
1018 	vq->split.vring.avail->ring[num] = 0;
1019 
1020 	vq->split.vring.used->flags = 0;
1021 	vq->split.vring.used->idx = 0;
1022 
1023 	/* reset used event */
1024 	*(__virtio16 *)&(vq->split.vring.used->ring[num]) = 0;
1025 
1026 	virtqueue_init(vq, num);
1027 
1028 	virtqueue_vring_init_split(&vq->split, vq);
1029 }
1030 
1031 static void virtqueue_vring_attach_split(struct vring_virtqueue *vq,
1032 					 struct vring_virtqueue_split *vring_split)
1033 {
1034 	vq->split = *vring_split;
1035 
1036 	/* Put everything in free lists. */
1037 	vq->free_head = 0;
1038 }
1039 
1040 static int vring_alloc_state_extra_split(struct vring_virtqueue_split *vring_split)
1041 {
1042 	struct vring_desc_state_split *state;
1043 	struct vring_desc_extra *extra;
1044 	u32 num = vring_split->vring.num;
1045 
1046 	state = kmalloc_array(num, sizeof(struct vring_desc_state_split), GFP_KERNEL);
1047 	if (!state)
1048 		goto err_state;
1049 
1050 	extra = vring_alloc_desc_extra(num);
1051 	if (!extra)
1052 		goto err_extra;
1053 
1054 	memset(state, 0, num * sizeof(struct vring_desc_state_split));
1055 
1056 	vring_split->desc_state = state;
1057 	vring_split->desc_extra = extra;
1058 	return 0;
1059 
1060 err_extra:
1061 	kfree(state);
1062 err_state:
1063 	return -ENOMEM;
1064 }
1065 
1066 static void vring_free_split(struct vring_virtqueue_split *vring_split,
1067 			     struct virtio_device *vdev, struct device *dma_dev)
1068 {
1069 	vring_free_queue(vdev, vring_split->queue_size_in_bytes,
1070 			 vring_split->vring.desc,
1071 			 vring_split->queue_dma_addr,
1072 			 dma_dev);
1073 
1074 	kfree(vring_split->desc_state);
1075 	kfree(vring_split->desc_extra);
1076 }
1077 
1078 static int vring_alloc_queue_split(struct vring_virtqueue_split *vring_split,
1079 				   struct virtio_device *vdev,
1080 				   u32 num,
1081 				   unsigned int vring_align,
1082 				   bool may_reduce_num,
1083 				   struct device *dma_dev)
1084 {
1085 	void *queue = NULL;
1086 	dma_addr_t dma_addr;
1087 
1088 	/* We assume num is a power of 2. */
1089 	if (!is_power_of_2(num)) {
1090 		dev_warn(&vdev->dev, "Bad virtqueue length %u\n", num);
1091 		return -EINVAL;
1092 	}
1093 
1094 	/* TODO: allocate each queue chunk individually */
1095 	for (; num && vring_size(num, vring_align) > PAGE_SIZE; num /= 2) {
1096 		queue = vring_alloc_queue(vdev, vring_size(num, vring_align),
1097 					  &dma_addr,
1098 					  GFP_KERNEL | __GFP_NOWARN | __GFP_ZERO,
1099 					  dma_dev);
1100 		if (queue)
1101 			break;
1102 		if (!may_reduce_num)
1103 			return -ENOMEM;
1104 	}
1105 
1106 	if (!num)
1107 		return -ENOMEM;
1108 
1109 	if (!queue) {
1110 		/* Try to get a single page. You are my only hope! */
1111 		queue = vring_alloc_queue(vdev, vring_size(num, vring_align),
1112 					  &dma_addr, GFP_KERNEL | __GFP_ZERO,
1113 					  dma_dev);
1114 	}
1115 	if (!queue)
1116 		return -ENOMEM;
1117 
1118 	vring_init(&vring_split->vring, num, queue, vring_align);
1119 
1120 	vring_split->queue_dma_addr = dma_addr;
1121 	vring_split->queue_size_in_bytes = vring_size(num, vring_align);
1122 
1123 	vring_split->vring_align = vring_align;
1124 	vring_split->may_reduce_num = may_reduce_num;
1125 
1126 	return 0;
1127 }
1128 
1129 static struct virtqueue *__vring_new_virtqueue_split(unsigned int index,
1130 					       struct vring_virtqueue_split *vring_split,
1131 					       struct virtio_device *vdev,
1132 					       bool weak_barriers,
1133 					       bool context,
1134 					       bool (*notify)(struct virtqueue *),
1135 					       void (*callback)(struct virtqueue *),
1136 					       const char *name,
1137 					       struct device *dma_dev)
1138 {
1139 	struct vring_virtqueue *vq;
1140 	int err;
1141 
1142 	vq = kmalloc(sizeof(*vq), GFP_KERNEL);
1143 	if (!vq)
1144 		return NULL;
1145 
1146 	vq->packed_ring = false;
1147 	vq->vq.callback = callback;
1148 	vq->vq.vdev = vdev;
1149 	vq->vq.name = name;
1150 	vq->vq.index = index;
1151 	vq->vq.reset = false;
1152 	vq->we_own_ring = false;
1153 	vq->notify = notify;
1154 	vq->weak_barriers = weak_barriers;
1155 #ifdef CONFIG_VIRTIO_HARDEN_NOTIFICATION
1156 	vq->broken = true;
1157 #else
1158 	vq->broken = false;
1159 #endif
1160 	vq->dma_dev = dma_dev;
1161 	vq->use_dma_api = vring_use_dma_api(vdev);
1162 
1163 	vq->indirect = virtio_has_feature(vdev, VIRTIO_RING_F_INDIRECT_DESC) &&
1164 		!context;
1165 	vq->event = virtio_has_feature(vdev, VIRTIO_RING_F_EVENT_IDX);
1166 
1167 	if (virtio_has_feature(vdev, VIRTIO_F_ORDER_PLATFORM))
1168 		vq->weak_barriers = false;
1169 
1170 	err = vring_alloc_state_extra_split(vring_split);
1171 	if (err) {
1172 		kfree(vq);
1173 		return NULL;
1174 	}
1175 
1176 	virtqueue_vring_init_split(vring_split, vq);
1177 
1178 	virtqueue_init(vq, vring_split->vring.num);
1179 	virtqueue_vring_attach_split(vq, vring_split);
1180 
1181 	spin_lock(&vdev->vqs_list_lock);
1182 	list_add_tail(&vq->vq.list, &vdev->vqs);
1183 	spin_unlock(&vdev->vqs_list_lock);
1184 	return &vq->vq;
1185 }
1186 
1187 static struct virtqueue *vring_create_virtqueue_split(
1188 	unsigned int index,
1189 	unsigned int num,
1190 	unsigned int vring_align,
1191 	struct virtio_device *vdev,
1192 	bool weak_barriers,
1193 	bool may_reduce_num,
1194 	bool context,
1195 	bool (*notify)(struct virtqueue *),
1196 	void (*callback)(struct virtqueue *),
1197 	const char *name,
1198 	struct device *dma_dev)
1199 {
1200 	struct vring_virtqueue_split vring_split = {};
1201 	struct virtqueue *vq;
1202 	int err;
1203 
1204 	err = vring_alloc_queue_split(&vring_split, vdev, num, vring_align,
1205 				      may_reduce_num, dma_dev);
1206 	if (err)
1207 		return NULL;
1208 
1209 	vq = __vring_new_virtqueue_split(index, &vring_split, vdev, weak_barriers,
1210 				   context, notify, callback, name, dma_dev);
1211 	if (!vq) {
1212 		vring_free_split(&vring_split, vdev, dma_dev);
1213 		return NULL;
1214 	}
1215 
1216 	to_vvq(vq)->we_own_ring = true;
1217 
1218 	return vq;
1219 }
1220 
1221 static int virtqueue_resize_split(struct virtqueue *_vq, u32 num)
1222 {
1223 	struct vring_virtqueue_split vring_split = {};
1224 	struct vring_virtqueue *vq = to_vvq(_vq);
1225 	struct virtio_device *vdev = _vq->vdev;
1226 	int err;
1227 
1228 	err = vring_alloc_queue_split(&vring_split, vdev, num,
1229 				      vq->split.vring_align,
1230 				      vq->split.may_reduce_num,
1231 				      vring_dma_dev(vq));
1232 	if (err)
1233 		goto err;
1234 
1235 	err = vring_alloc_state_extra_split(&vring_split);
1236 	if (err)
1237 		goto err_state_extra;
1238 
1239 	vring_free(&vq->vq);
1240 
1241 	virtqueue_vring_init_split(&vring_split, vq);
1242 
1243 	virtqueue_init(vq, vring_split.vring.num);
1244 	virtqueue_vring_attach_split(vq, &vring_split);
1245 
1246 	return 0;
1247 
1248 err_state_extra:
1249 	vring_free_split(&vring_split, vdev, vring_dma_dev(vq));
1250 err:
1251 	virtqueue_reinit_split(vq);
1252 	return -ENOMEM;
1253 }
1254 
1255 
1256 /*
1257  * Packed ring specific functions - *_packed().
1258  */
1259 static bool packed_used_wrap_counter(u16 last_used_idx)
1260 {
1261 	return !!(last_used_idx & (1 << VRING_PACKED_EVENT_F_WRAP_CTR));
1262 }
1263 
1264 static u16 packed_last_used(u16 last_used_idx)
1265 {
1266 	return last_used_idx & ~(-(1 << VRING_PACKED_EVENT_F_WRAP_CTR));
1267 }
1268 
1269 static void vring_unmap_extra_packed(const struct vring_virtqueue *vq,
1270 				     const struct vring_desc_extra *extra)
1271 {
1272 	u16 flags;
1273 
1274 	flags = extra->flags;
1275 
1276 	if (flags & VRING_DESC_F_INDIRECT) {
1277 		if (!vq->use_dma_api)
1278 			return;
1279 
1280 		dma_unmap_single(vring_dma_dev(vq),
1281 				 extra->addr, extra->len,
1282 				 (flags & VRING_DESC_F_WRITE) ?
1283 				 DMA_FROM_DEVICE : DMA_TO_DEVICE);
1284 	} else {
1285 		if (!vring_need_unmap_buffer(vq, extra))
1286 			return;
1287 
1288 		dma_unmap_page(vring_dma_dev(vq),
1289 			       extra->addr, extra->len,
1290 			       (flags & VRING_DESC_F_WRITE) ?
1291 			       DMA_FROM_DEVICE : DMA_TO_DEVICE);
1292 	}
1293 }
1294 
1295 static struct vring_packed_desc *alloc_indirect_packed(unsigned int total_sg,
1296 						       gfp_t gfp)
1297 {
1298 	struct vring_desc_extra *extra;
1299 	struct vring_packed_desc *desc;
1300 	int i, size;
1301 
1302 	/*
1303 	 * We require lowmem mappings for the descriptors because
1304 	 * otherwise virt_to_phys will give us bogus addresses in the
1305 	 * virtqueue.
1306 	 */
1307 	gfp &= ~__GFP_HIGHMEM;
1308 
1309 	size = (sizeof(*desc) + sizeof(*extra)) * total_sg;
1310 
1311 	desc = kmalloc(size, gfp);
1312 	if (!desc)
1313 		return NULL;
1314 
1315 	extra = (struct vring_desc_extra *)&desc[total_sg];
1316 
1317 	for (i = 0; i < total_sg; i++)
1318 		extra[i].next = i + 1;
1319 
1320 	return desc;
1321 }
1322 
1323 static int virtqueue_add_indirect_packed(struct vring_virtqueue *vq,
1324 					 struct scatterlist *sgs[],
1325 					 unsigned int total_sg,
1326 					 unsigned int out_sgs,
1327 					 unsigned int in_sgs,
1328 					 void *data,
1329 					 bool premapped,
1330 					 gfp_t gfp)
1331 {
1332 	struct vring_desc_extra *extra;
1333 	struct vring_packed_desc *desc;
1334 	struct scatterlist *sg;
1335 	unsigned int i, n, err_idx, len;
1336 	u16 head, id;
1337 	dma_addr_t addr;
1338 
1339 	head = vq->packed.next_avail_idx;
1340 	desc = alloc_indirect_packed(total_sg, gfp);
1341 	if (!desc)
1342 		return -ENOMEM;
1343 
1344 	extra = (struct vring_desc_extra *)&desc[total_sg];
1345 
1346 	if (unlikely(vq->vq.num_free < 1)) {
1347 		pr_debug("Can't add buf len 1 - avail = 0\n");
1348 		kfree(desc);
1349 		END_USE(vq);
1350 		return -ENOSPC;
1351 	}
1352 
1353 	i = 0;
1354 	id = vq->free_head;
1355 	BUG_ON(id == vq->packed.vring.num);
1356 
1357 	for (n = 0; n < out_sgs + in_sgs; n++) {
1358 		for (sg = sgs[n]; sg; sg = sg_next(sg)) {
1359 			if (vring_map_one_sg(vq, sg, n < out_sgs ?
1360 					     DMA_TO_DEVICE : DMA_FROM_DEVICE,
1361 					     &addr, &len, premapped))
1362 				goto unmap_release;
1363 
1364 			desc[i].flags = cpu_to_le16(n < out_sgs ?
1365 						0 : VRING_DESC_F_WRITE);
1366 			desc[i].addr = cpu_to_le64(addr);
1367 			desc[i].len = cpu_to_le32(len);
1368 
1369 			if (unlikely(vq->use_dma_api)) {
1370 				extra[i].addr = premapped ? DMA_MAPPING_ERROR : addr;
1371 				extra[i].len = len;
1372 				extra[i].flags = n < out_sgs ?  0 : VRING_DESC_F_WRITE;
1373 			}
1374 
1375 			i++;
1376 		}
1377 	}
1378 
1379 	/* Now that the indirect table is filled in, map it. */
1380 	addr = vring_map_single(vq, desc,
1381 			total_sg * sizeof(struct vring_packed_desc),
1382 			DMA_TO_DEVICE);
1383 	if (vring_mapping_error(vq, addr))
1384 		goto unmap_release;
1385 
1386 	vq->packed.vring.desc[head].addr = cpu_to_le64(addr);
1387 	vq->packed.vring.desc[head].len = cpu_to_le32(total_sg *
1388 				sizeof(struct vring_packed_desc));
1389 	vq->packed.vring.desc[head].id = cpu_to_le16(id);
1390 
1391 	if (vq->use_dma_api) {
1392 		vq->packed.desc_extra[id].addr = addr;
1393 		vq->packed.desc_extra[id].len = total_sg *
1394 				sizeof(struct vring_packed_desc);
1395 		vq->packed.desc_extra[id].flags = VRING_DESC_F_INDIRECT |
1396 						  vq->packed.avail_used_flags;
1397 	}
1398 
1399 	/*
1400 	 * A driver MUST NOT make the first descriptor in the list
1401 	 * available before all subsequent descriptors comprising
1402 	 * the list are made available.
1403 	 */
1404 	virtio_wmb(vq->weak_barriers);
1405 	vq->packed.vring.desc[head].flags = cpu_to_le16(VRING_DESC_F_INDIRECT |
1406 						vq->packed.avail_used_flags);
1407 
1408 	/* We're using some buffers from the free list. */
1409 	vq->vq.num_free -= 1;
1410 
1411 	/* Update free pointer */
1412 	n = head + 1;
1413 	if (n >= vq->packed.vring.num) {
1414 		n = 0;
1415 		vq->packed.avail_wrap_counter ^= 1;
1416 		vq->packed.avail_used_flags ^=
1417 				1 << VRING_PACKED_DESC_F_AVAIL |
1418 				1 << VRING_PACKED_DESC_F_USED;
1419 	}
1420 	vq->packed.next_avail_idx = n;
1421 	vq->free_head = vq->packed.desc_extra[id].next;
1422 
1423 	/* Store token and indirect buffer state. */
1424 	vq->packed.desc_state[id].num = 1;
1425 	vq->packed.desc_state[id].data = data;
1426 	vq->packed.desc_state[id].indir_desc = desc;
1427 	vq->packed.desc_state[id].last = id;
1428 
1429 	vq->num_added += 1;
1430 
1431 	pr_debug("Added buffer head %i to %p\n", head, vq);
1432 	END_USE(vq);
1433 
1434 	return 0;
1435 
1436 unmap_release:
1437 	err_idx = i;
1438 
1439 	for (i = 0; i < err_idx; i++)
1440 		vring_unmap_extra_packed(vq, &extra[i]);
1441 
1442 	kfree(desc);
1443 
1444 	END_USE(vq);
1445 	return -ENOMEM;
1446 }
1447 
1448 static inline int virtqueue_add_packed(struct virtqueue *_vq,
1449 				       struct scatterlist *sgs[],
1450 				       unsigned int total_sg,
1451 				       unsigned int out_sgs,
1452 				       unsigned int in_sgs,
1453 				       void *data,
1454 				       void *ctx,
1455 				       bool premapped,
1456 				       gfp_t gfp)
1457 {
1458 	struct vring_virtqueue *vq = to_vvq(_vq);
1459 	struct vring_packed_desc *desc;
1460 	struct scatterlist *sg;
1461 	unsigned int i, n, c, descs_used, err_idx, len;
1462 	__le16 head_flags, flags;
1463 	u16 head, id, prev, curr, avail_used_flags;
1464 	int err;
1465 
1466 	START_USE(vq);
1467 
1468 	BUG_ON(data == NULL);
1469 	BUG_ON(ctx && vq->indirect);
1470 
1471 	if (unlikely(vq->broken)) {
1472 		END_USE(vq);
1473 		return -EIO;
1474 	}
1475 
1476 	LAST_ADD_TIME_UPDATE(vq);
1477 
1478 	BUG_ON(total_sg == 0);
1479 
1480 	if (virtqueue_use_indirect(vq, total_sg)) {
1481 		err = virtqueue_add_indirect_packed(vq, sgs, total_sg, out_sgs,
1482 						    in_sgs, data, premapped, gfp);
1483 		if (err != -ENOMEM) {
1484 			END_USE(vq);
1485 			return err;
1486 		}
1487 
1488 		/* fall back on direct */
1489 	}
1490 
1491 	head = vq->packed.next_avail_idx;
1492 	avail_used_flags = vq->packed.avail_used_flags;
1493 
1494 	WARN_ON_ONCE(total_sg > vq->packed.vring.num && !vq->indirect);
1495 
1496 	desc = vq->packed.vring.desc;
1497 	i = head;
1498 	descs_used = total_sg;
1499 
1500 	if (unlikely(vq->vq.num_free < descs_used)) {
1501 		pr_debug("Can't add buf len %i - avail = %i\n",
1502 			 descs_used, vq->vq.num_free);
1503 		END_USE(vq);
1504 		return -ENOSPC;
1505 	}
1506 
1507 	id = vq->free_head;
1508 	BUG_ON(id == vq->packed.vring.num);
1509 
1510 	curr = id;
1511 	c = 0;
1512 	for (n = 0; n < out_sgs + in_sgs; n++) {
1513 		for (sg = sgs[n]; sg; sg = sg_next(sg)) {
1514 			dma_addr_t addr;
1515 
1516 			if (vring_map_one_sg(vq, sg, n < out_sgs ?
1517 					     DMA_TO_DEVICE : DMA_FROM_DEVICE,
1518 					     &addr, &len, premapped))
1519 				goto unmap_release;
1520 
1521 			flags = cpu_to_le16(vq->packed.avail_used_flags |
1522 				    (++c == total_sg ? 0 : VRING_DESC_F_NEXT) |
1523 				    (n < out_sgs ? 0 : VRING_DESC_F_WRITE));
1524 			if (i == head)
1525 				head_flags = flags;
1526 			else
1527 				desc[i].flags = flags;
1528 
1529 			desc[i].addr = cpu_to_le64(addr);
1530 			desc[i].len = cpu_to_le32(len);
1531 			desc[i].id = cpu_to_le16(id);
1532 
1533 			if (unlikely(vq->use_dma_api)) {
1534 				vq->packed.desc_extra[curr].addr = premapped ?
1535 					DMA_MAPPING_ERROR : addr;
1536 				vq->packed.desc_extra[curr].len = len;
1537 				vq->packed.desc_extra[curr].flags =
1538 					le16_to_cpu(flags);
1539 			}
1540 			prev = curr;
1541 			curr = vq->packed.desc_extra[curr].next;
1542 
1543 			if ((unlikely(++i >= vq->packed.vring.num))) {
1544 				i = 0;
1545 				vq->packed.avail_used_flags ^=
1546 					1 << VRING_PACKED_DESC_F_AVAIL |
1547 					1 << VRING_PACKED_DESC_F_USED;
1548 			}
1549 		}
1550 	}
1551 
1552 	if (i <= head)
1553 		vq->packed.avail_wrap_counter ^= 1;
1554 
1555 	/* We're using some buffers from the free list. */
1556 	vq->vq.num_free -= descs_used;
1557 
1558 	/* Update free pointer */
1559 	vq->packed.next_avail_idx = i;
1560 	vq->free_head = curr;
1561 
1562 	/* Store token. */
1563 	vq->packed.desc_state[id].num = descs_used;
1564 	vq->packed.desc_state[id].data = data;
1565 	vq->packed.desc_state[id].indir_desc = ctx;
1566 	vq->packed.desc_state[id].last = prev;
1567 
1568 	/*
1569 	 * A driver MUST NOT make the first descriptor in the list
1570 	 * available before all subsequent descriptors comprising
1571 	 * the list are made available.
1572 	 */
1573 	virtio_wmb(vq->weak_barriers);
1574 	vq->packed.vring.desc[head].flags = head_flags;
1575 	vq->num_added += descs_used;
1576 
1577 	pr_debug("Added buffer head %i to %p\n", head, vq);
1578 	END_USE(vq);
1579 
1580 	return 0;
1581 
1582 unmap_release:
1583 	err_idx = i;
1584 	i = head;
1585 	curr = vq->free_head;
1586 
1587 	vq->packed.avail_used_flags = avail_used_flags;
1588 
1589 	for (n = 0; n < total_sg; n++) {
1590 		if (i == err_idx)
1591 			break;
1592 		vring_unmap_extra_packed(vq, &vq->packed.desc_extra[curr]);
1593 		curr = vq->packed.desc_extra[curr].next;
1594 		i++;
1595 		if (i >= vq->packed.vring.num)
1596 			i = 0;
1597 	}
1598 
1599 	END_USE(vq);
1600 	return -EIO;
1601 }
1602 
1603 static bool virtqueue_kick_prepare_packed(struct virtqueue *_vq)
1604 {
1605 	struct vring_virtqueue *vq = to_vvq(_vq);
1606 	u16 new, old, off_wrap, flags, wrap_counter, event_idx;
1607 	bool needs_kick;
1608 	union {
1609 		struct {
1610 			__le16 off_wrap;
1611 			__le16 flags;
1612 		};
1613 		u32 u32;
1614 	} snapshot;
1615 
1616 	START_USE(vq);
1617 
1618 	/*
1619 	 * We need to expose the new flags value before checking notification
1620 	 * suppressions.
1621 	 */
1622 	virtio_mb(vq->weak_barriers);
1623 
1624 	old = vq->packed.next_avail_idx - vq->num_added;
1625 	new = vq->packed.next_avail_idx;
1626 	vq->num_added = 0;
1627 
1628 	snapshot.u32 = *(u32 *)vq->packed.vring.device;
1629 	flags = le16_to_cpu(snapshot.flags);
1630 
1631 	LAST_ADD_TIME_CHECK(vq);
1632 	LAST_ADD_TIME_INVALID(vq);
1633 
1634 	if (flags != VRING_PACKED_EVENT_FLAG_DESC) {
1635 		needs_kick = (flags != VRING_PACKED_EVENT_FLAG_DISABLE);
1636 		goto out;
1637 	}
1638 
1639 	off_wrap = le16_to_cpu(snapshot.off_wrap);
1640 
1641 	wrap_counter = off_wrap >> VRING_PACKED_EVENT_F_WRAP_CTR;
1642 	event_idx = off_wrap & ~(1 << VRING_PACKED_EVENT_F_WRAP_CTR);
1643 	if (wrap_counter != vq->packed.avail_wrap_counter)
1644 		event_idx -= vq->packed.vring.num;
1645 
1646 	needs_kick = vring_need_event(event_idx, new, old);
1647 out:
1648 	END_USE(vq);
1649 	return needs_kick;
1650 }
1651 
1652 static void detach_buf_packed(struct vring_virtqueue *vq,
1653 			      unsigned int id, void **ctx)
1654 {
1655 	struct vring_desc_state_packed *state = NULL;
1656 	struct vring_packed_desc *desc;
1657 	unsigned int i, curr;
1658 
1659 	state = &vq->packed.desc_state[id];
1660 
1661 	/* Clear data ptr. */
1662 	state->data = NULL;
1663 
1664 	vq->packed.desc_extra[state->last].next = vq->free_head;
1665 	vq->free_head = id;
1666 	vq->vq.num_free += state->num;
1667 
1668 	if (unlikely(vq->use_dma_api)) {
1669 		curr = id;
1670 		for (i = 0; i < state->num; i++) {
1671 			vring_unmap_extra_packed(vq,
1672 						 &vq->packed.desc_extra[curr]);
1673 			curr = vq->packed.desc_extra[curr].next;
1674 		}
1675 	}
1676 
1677 	if (vq->indirect) {
1678 		struct vring_desc_extra *extra;
1679 		u32 len, num;
1680 
1681 		/* Free the indirect table, if any, now that it's unmapped. */
1682 		desc = state->indir_desc;
1683 		if (!desc)
1684 			return;
1685 
1686 		if (vq->use_dma_api) {
1687 			len = vq->packed.desc_extra[id].len;
1688 			num = len / sizeof(struct vring_packed_desc);
1689 
1690 			extra = (struct vring_desc_extra *)&desc[num];
1691 
1692 			for (i = 0; i < num; i++)
1693 				vring_unmap_extra_packed(vq, &extra[i]);
1694 		}
1695 		kfree(desc);
1696 		state->indir_desc = NULL;
1697 	} else if (ctx) {
1698 		*ctx = state->indir_desc;
1699 	}
1700 }
1701 
1702 static inline bool is_used_desc_packed(const struct vring_virtqueue *vq,
1703 				       u16 idx, bool used_wrap_counter)
1704 {
1705 	bool avail, used;
1706 	u16 flags;
1707 
1708 	flags = le16_to_cpu(vq->packed.vring.desc[idx].flags);
1709 	avail = !!(flags & (1 << VRING_PACKED_DESC_F_AVAIL));
1710 	used = !!(flags & (1 << VRING_PACKED_DESC_F_USED));
1711 
1712 	return avail == used && used == used_wrap_counter;
1713 }
1714 
1715 static bool more_used_packed(const struct vring_virtqueue *vq)
1716 {
1717 	u16 last_used;
1718 	u16 last_used_idx;
1719 	bool used_wrap_counter;
1720 
1721 	last_used_idx = READ_ONCE(vq->last_used_idx);
1722 	last_used = packed_last_used(last_used_idx);
1723 	used_wrap_counter = packed_used_wrap_counter(last_used_idx);
1724 	return is_used_desc_packed(vq, last_used, used_wrap_counter);
1725 }
1726 
1727 static void *virtqueue_get_buf_ctx_packed(struct virtqueue *_vq,
1728 					  unsigned int *len,
1729 					  void **ctx)
1730 {
1731 	struct vring_virtqueue *vq = to_vvq(_vq);
1732 	u16 last_used, id, last_used_idx;
1733 	bool used_wrap_counter;
1734 	void *ret;
1735 
1736 	START_USE(vq);
1737 
1738 	if (unlikely(vq->broken)) {
1739 		END_USE(vq);
1740 		return NULL;
1741 	}
1742 
1743 	if (!more_used_packed(vq)) {
1744 		pr_debug("No more buffers in queue\n");
1745 		END_USE(vq);
1746 		return NULL;
1747 	}
1748 
1749 	/* Only get used elements after they have been exposed by host. */
1750 	virtio_rmb(vq->weak_barriers);
1751 
1752 	last_used_idx = READ_ONCE(vq->last_used_idx);
1753 	used_wrap_counter = packed_used_wrap_counter(last_used_idx);
1754 	last_used = packed_last_used(last_used_idx);
1755 	id = le16_to_cpu(vq->packed.vring.desc[last_used].id);
1756 	*len = le32_to_cpu(vq->packed.vring.desc[last_used].len);
1757 
1758 	if (unlikely(id >= vq->packed.vring.num)) {
1759 		BAD_RING(vq, "id %u out of range\n", id);
1760 		return NULL;
1761 	}
1762 	if (unlikely(!vq->packed.desc_state[id].data)) {
1763 		BAD_RING(vq, "id %u is not a head!\n", id);
1764 		return NULL;
1765 	}
1766 
1767 	/* detach_buf_packed clears data, so grab it now. */
1768 	ret = vq->packed.desc_state[id].data;
1769 	detach_buf_packed(vq, id, ctx);
1770 
1771 	last_used += vq->packed.desc_state[id].num;
1772 	if (unlikely(last_used >= vq->packed.vring.num)) {
1773 		last_used -= vq->packed.vring.num;
1774 		used_wrap_counter ^= 1;
1775 	}
1776 
1777 	last_used = (last_used | (used_wrap_counter << VRING_PACKED_EVENT_F_WRAP_CTR));
1778 	WRITE_ONCE(vq->last_used_idx, last_used);
1779 
1780 	/*
1781 	 * If we expect an interrupt for the next entry, tell host
1782 	 * by writing event index and flush out the write before
1783 	 * the read in the next get_buf call.
1784 	 */
1785 	if (vq->packed.event_flags_shadow == VRING_PACKED_EVENT_FLAG_DESC)
1786 		virtio_store_mb(vq->weak_barriers,
1787 				&vq->packed.vring.driver->off_wrap,
1788 				cpu_to_le16(vq->last_used_idx));
1789 
1790 	LAST_ADD_TIME_INVALID(vq);
1791 
1792 	END_USE(vq);
1793 	return ret;
1794 }
1795 
1796 static void virtqueue_disable_cb_packed(struct virtqueue *_vq)
1797 {
1798 	struct vring_virtqueue *vq = to_vvq(_vq);
1799 
1800 	if (vq->packed.event_flags_shadow != VRING_PACKED_EVENT_FLAG_DISABLE) {
1801 		vq->packed.event_flags_shadow = VRING_PACKED_EVENT_FLAG_DISABLE;
1802 
1803 		/*
1804 		 * If device triggered an event already it won't trigger one again:
1805 		 * no need to disable.
1806 		 */
1807 		if (vq->event_triggered)
1808 			return;
1809 
1810 		vq->packed.vring.driver->flags =
1811 			cpu_to_le16(vq->packed.event_flags_shadow);
1812 	}
1813 }
1814 
1815 static unsigned int virtqueue_enable_cb_prepare_packed(struct virtqueue *_vq)
1816 {
1817 	struct vring_virtqueue *vq = to_vvq(_vq);
1818 
1819 	START_USE(vq);
1820 
1821 	/*
1822 	 * We optimistically turn back on interrupts, then check if there was
1823 	 * more to do.
1824 	 */
1825 
1826 	if (vq->event) {
1827 		vq->packed.vring.driver->off_wrap =
1828 			cpu_to_le16(vq->last_used_idx);
1829 		/*
1830 		 * We need to update event offset and event wrap
1831 		 * counter first before updating event flags.
1832 		 */
1833 		virtio_wmb(vq->weak_barriers);
1834 	}
1835 
1836 	if (vq->packed.event_flags_shadow == VRING_PACKED_EVENT_FLAG_DISABLE) {
1837 		vq->packed.event_flags_shadow = vq->event ?
1838 				VRING_PACKED_EVENT_FLAG_DESC :
1839 				VRING_PACKED_EVENT_FLAG_ENABLE;
1840 		vq->packed.vring.driver->flags =
1841 				cpu_to_le16(vq->packed.event_flags_shadow);
1842 	}
1843 
1844 	END_USE(vq);
1845 	return vq->last_used_idx;
1846 }
1847 
1848 static bool virtqueue_poll_packed(struct virtqueue *_vq, u16 off_wrap)
1849 {
1850 	struct vring_virtqueue *vq = to_vvq(_vq);
1851 	bool wrap_counter;
1852 	u16 used_idx;
1853 
1854 	wrap_counter = off_wrap >> VRING_PACKED_EVENT_F_WRAP_CTR;
1855 	used_idx = off_wrap & ~(1 << VRING_PACKED_EVENT_F_WRAP_CTR);
1856 
1857 	return is_used_desc_packed(vq, used_idx, wrap_counter);
1858 }
1859 
1860 static bool virtqueue_enable_cb_delayed_packed(struct virtqueue *_vq)
1861 {
1862 	struct vring_virtqueue *vq = to_vvq(_vq);
1863 	u16 used_idx, wrap_counter, last_used_idx;
1864 	u16 bufs;
1865 
1866 	START_USE(vq);
1867 
1868 	/*
1869 	 * We optimistically turn back on interrupts, then check if there was
1870 	 * more to do.
1871 	 */
1872 
1873 	if (vq->event) {
1874 		/* TODO: tune this threshold */
1875 		bufs = (vq->packed.vring.num - vq->vq.num_free) * 3 / 4;
1876 		last_used_idx = READ_ONCE(vq->last_used_idx);
1877 		wrap_counter = packed_used_wrap_counter(last_used_idx);
1878 
1879 		used_idx = packed_last_used(last_used_idx) + bufs;
1880 		if (used_idx >= vq->packed.vring.num) {
1881 			used_idx -= vq->packed.vring.num;
1882 			wrap_counter ^= 1;
1883 		}
1884 
1885 		vq->packed.vring.driver->off_wrap = cpu_to_le16(used_idx |
1886 			(wrap_counter << VRING_PACKED_EVENT_F_WRAP_CTR));
1887 
1888 		/*
1889 		 * We need to update event offset and event wrap
1890 		 * counter first before updating event flags.
1891 		 */
1892 		virtio_wmb(vq->weak_barriers);
1893 	}
1894 
1895 	if (vq->packed.event_flags_shadow == VRING_PACKED_EVENT_FLAG_DISABLE) {
1896 		vq->packed.event_flags_shadow = vq->event ?
1897 				VRING_PACKED_EVENT_FLAG_DESC :
1898 				VRING_PACKED_EVENT_FLAG_ENABLE;
1899 		vq->packed.vring.driver->flags =
1900 				cpu_to_le16(vq->packed.event_flags_shadow);
1901 	}
1902 
1903 	/*
1904 	 * We need to update event suppression structure first
1905 	 * before re-checking for more used buffers.
1906 	 */
1907 	virtio_mb(vq->weak_barriers);
1908 
1909 	last_used_idx = READ_ONCE(vq->last_used_idx);
1910 	wrap_counter = packed_used_wrap_counter(last_used_idx);
1911 	used_idx = packed_last_used(last_used_idx);
1912 	if (is_used_desc_packed(vq, used_idx, wrap_counter)) {
1913 		END_USE(vq);
1914 		return false;
1915 	}
1916 
1917 	END_USE(vq);
1918 	return true;
1919 }
1920 
1921 static void *virtqueue_detach_unused_buf_packed(struct virtqueue *_vq)
1922 {
1923 	struct vring_virtqueue *vq = to_vvq(_vq);
1924 	unsigned int i;
1925 	void *buf;
1926 
1927 	START_USE(vq);
1928 
1929 	for (i = 0; i < vq->packed.vring.num; i++) {
1930 		if (!vq->packed.desc_state[i].data)
1931 			continue;
1932 		/* detach_buf clears data, so grab it now. */
1933 		buf = vq->packed.desc_state[i].data;
1934 		detach_buf_packed(vq, i, NULL);
1935 		END_USE(vq);
1936 		return buf;
1937 	}
1938 	/* That should have freed everything. */
1939 	BUG_ON(vq->vq.num_free != vq->packed.vring.num);
1940 
1941 	END_USE(vq);
1942 	return NULL;
1943 }
1944 
1945 static struct vring_desc_extra *vring_alloc_desc_extra(unsigned int num)
1946 {
1947 	struct vring_desc_extra *desc_extra;
1948 	unsigned int i;
1949 
1950 	desc_extra = kmalloc_array(num, sizeof(struct vring_desc_extra),
1951 				   GFP_KERNEL);
1952 	if (!desc_extra)
1953 		return NULL;
1954 
1955 	memset(desc_extra, 0, num * sizeof(struct vring_desc_extra));
1956 
1957 	for (i = 0; i < num - 1; i++)
1958 		desc_extra[i].next = i + 1;
1959 
1960 	return desc_extra;
1961 }
1962 
1963 static void vring_free_packed(struct vring_virtqueue_packed *vring_packed,
1964 			      struct virtio_device *vdev,
1965 			      struct device *dma_dev)
1966 {
1967 	if (vring_packed->vring.desc)
1968 		vring_free_queue(vdev, vring_packed->ring_size_in_bytes,
1969 				 vring_packed->vring.desc,
1970 				 vring_packed->ring_dma_addr,
1971 				 dma_dev);
1972 
1973 	if (vring_packed->vring.driver)
1974 		vring_free_queue(vdev, vring_packed->event_size_in_bytes,
1975 				 vring_packed->vring.driver,
1976 				 vring_packed->driver_event_dma_addr,
1977 				 dma_dev);
1978 
1979 	if (vring_packed->vring.device)
1980 		vring_free_queue(vdev, vring_packed->event_size_in_bytes,
1981 				 vring_packed->vring.device,
1982 				 vring_packed->device_event_dma_addr,
1983 				 dma_dev);
1984 
1985 	kfree(vring_packed->desc_state);
1986 	kfree(vring_packed->desc_extra);
1987 }
1988 
1989 static int vring_alloc_queue_packed(struct vring_virtqueue_packed *vring_packed,
1990 				    struct virtio_device *vdev,
1991 				    u32 num, struct device *dma_dev)
1992 {
1993 	struct vring_packed_desc *ring;
1994 	struct vring_packed_desc_event *driver, *device;
1995 	dma_addr_t ring_dma_addr, driver_event_dma_addr, device_event_dma_addr;
1996 	size_t ring_size_in_bytes, event_size_in_bytes;
1997 
1998 	ring_size_in_bytes = num * sizeof(struct vring_packed_desc);
1999 
2000 	ring = vring_alloc_queue(vdev, ring_size_in_bytes,
2001 				 &ring_dma_addr,
2002 				 GFP_KERNEL | __GFP_NOWARN | __GFP_ZERO,
2003 				 dma_dev);
2004 	if (!ring)
2005 		goto err;
2006 
2007 	vring_packed->vring.desc         = ring;
2008 	vring_packed->ring_dma_addr      = ring_dma_addr;
2009 	vring_packed->ring_size_in_bytes = ring_size_in_bytes;
2010 
2011 	event_size_in_bytes = sizeof(struct vring_packed_desc_event);
2012 
2013 	driver = vring_alloc_queue(vdev, event_size_in_bytes,
2014 				   &driver_event_dma_addr,
2015 				   GFP_KERNEL | __GFP_NOWARN | __GFP_ZERO,
2016 				   dma_dev);
2017 	if (!driver)
2018 		goto err;
2019 
2020 	vring_packed->vring.driver          = driver;
2021 	vring_packed->event_size_in_bytes   = event_size_in_bytes;
2022 	vring_packed->driver_event_dma_addr = driver_event_dma_addr;
2023 
2024 	device = vring_alloc_queue(vdev, event_size_in_bytes,
2025 				   &device_event_dma_addr,
2026 				   GFP_KERNEL | __GFP_NOWARN | __GFP_ZERO,
2027 				   dma_dev);
2028 	if (!device)
2029 		goto err;
2030 
2031 	vring_packed->vring.device          = device;
2032 	vring_packed->device_event_dma_addr = device_event_dma_addr;
2033 
2034 	vring_packed->vring.num = num;
2035 
2036 	return 0;
2037 
2038 err:
2039 	vring_free_packed(vring_packed, vdev, dma_dev);
2040 	return -ENOMEM;
2041 }
2042 
2043 static int vring_alloc_state_extra_packed(struct vring_virtqueue_packed *vring_packed)
2044 {
2045 	struct vring_desc_state_packed *state;
2046 	struct vring_desc_extra *extra;
2047 	u32 num = vring_packed->vring.num;
2048 
2049 	state = kmalloc_array(num, sizeof(struct vring_desc_state_packed), GFP_KERNEL);
2050 	if (!state)
2051 		goto err_desc_state;
2052 
2053 	memset(state, 0, num * sizeof(struct vring_desc_state_packed));
2054 
2055 	extra = vring_alloc_desc_extra(num);
2056 	if (!extra)
2057 		goto err_desc_extra;
2058 
2059 	vring_packed->desc_state = state;
2060 	vring_packed->desc_extra = extra;
2061 
2062 	return 0;
2063 
2064 err_desc_extra:
2065 	kfree(state);
2066 err_desc_state:
2067 	return -ENOMEM;
2068 }
2069 
2070 static void virtqueue_vring_init_packed(struct vring_virtqueue_packed *vring_packed,
2071 					bool callback)
2072 {
2073 	vring_packed->next_avail_idx = 0;
2074 	vring_packed->avail_wrap_counter = 1;
2075 	vring_packed->event_flags_shadow = 0;
2076 	vring_packed->avail_used_flags = 1 << VRING_PACKED_DESC_F_AVAIL;
2077 
2078 	/* No callback?  Tell other side not to bother us. */
2079 	if (!callback) {
2080 		vring_packed->event_flags_shadow = VRING_PACKED_EVENT_FLAG_DISABLE;
2081 		vring_packed->vring.driver->flags =
2082 			cpu_to_le16(vring_packed->event_flags_shadow);
2083 	}
2084 }
2085 
2086 static void virtqueue_vring_attach_packed(struct vring_virtqueue *vq,
2087 					  struct vring_virtqueue_packed *vring_packed)
2088 {
2089 	vq->packed = *vring_packed;
2090 
2091 	/* Put everything in free lists. */
2092 	vq->free_head = 0;
2093 }
2094 
2095 static void virtqueue_reinit_packed(struct vring_virtqueue *vq)
2096 {
2097 	memset(vq->packed.vring.device, 0, vq->packed.event_size_in_bytes);
2098 	memset(vq->packed.vring.driver, 0, vq->packed.event_size_in_bytes);
2099 
2100 	/* we need to reset the desc.flags. For more, see is_used_desc_packed() */
2101 	memset(vq->packed.vring.desc, 0, vq->packed.ring_size_in_bytes);
2102 
2103 	virtqueue_init(vq, vq->packed.vring.num);
2104 	virtqueue_vring_init_packed(&vq->packed, !!vq->vq.callback);
2105 }
2106 
2107 static struct virtqueue *__vring_new_virtqueue_packed(unsigned int index,
2108 					       struct vring_virtqueue_packed *vring_packed,
2109 					       struct virtio_device *vdev,
2110 					       bool weak_barriers,
2111 					       bool context,
2112 					       bool (*notify)(struct virtqueue *),
2113 					       void (*callback)(struct virtqueue *),
2114 					       const char *name,
2115 					       struct device *dma_dev)
2116 {
2117 	struct vring_virtqueue *vq;
2118 	int err;
2119 
2120 	vq = kmalloc(sizeof(*vq), GFP_KERNEL);
2121 	if (!vq)
2122 		return NULL;
2123 
2124 	vq->vq.callback = callback;
2125 	vq->vq.vdev = vdev;
2126 	vq->vq.name = name;
2127 	vq->vq.index = index;
2128 	vq->vq.reset = false;
2129 	vq->we_own_ring = false;
2130 	vq->notify = notify;
2131 	vq->weak_barriers = weak_barriers;
2132 #ifdef CONFIG_VIRTIO_HARDEN_NOTIFICATION
2133 	vq->broken = true;
2134 #else
2135 	vq->broken = false;
2136 #endif
2137 	vq->packed_ring = true;
2138 	vq->dma_dev = dma_dev;
2139 	vq->use_dma_api = vring_use_dma_api(vdev);
2140 
2141 	vq->indirect = virtio_has_feature(vdev, VIRTIO_RING_F_INDIRECT_DESC) &&
2142 		!context;
2143 	vq->event = virtio_has_feature(vdev, VIRTIO_RING_F_EVENT_IDX);
2144 
2145 	if (virtio_has_feature(vdev, VIRTIO_F_ORDER_PLATFORM))
2146 		vq->weak_barriers = false;
2147 
2148 	err = vring_alloc_state_extra_packed(vring_packed);
2149 	if (err) {
2150 		kfree(vq);
2151 		return NULL;
2152 	}
2153 
2154 	virtqueue_vring_init_packed(vring_packed, !!callback);
2155 
2156 	virtqueue_init(vq, vring_packed->vring.num);
2157 	virtqueue_vring_attach_packed(vq, vring_packed);
2158 
2159 	spin_lock(&vdev->vqs_list_lock);
2160 	list_add_tail(&vq->vq.list, &vdev->vqs);
2161 	spin_unlock(&vdev->vqs_list_lock);
2162 	return &vq->vq;
2163 }
2164 
2165 static struct virtqueue *vring_create_virtqueue_packed(
2166 	unsigned int index,
2167 	unsigned int num,
2168 	unsigned int vring_align,
2169 	struct virtio_device *vdev,
2170 	bool weak_barriers,
2171 	bool may_reduce_num,
2172 	bool context,
2173 	bool (*notify)(struct virtqueue *),
2174 	void (*callback)(struct virtqueue *),
2175 	const char *name,
2176 	struct device *dma_dev)
2177 {
2178 	struct vring_virtqueue_packed vring_packed = {};
2179 	struct virtqueue *vq;
2180 
2181 	if (vring_alloc_queue_packed(&vring_packed, vdev, num, dma_dev))
2182 		return NULL;
2183 
2184 	vq = __vring_new_virtqueue_packed(index, &vring_packed, vdev, weak_barriers,
2185 					context, notify, callback, name, dma_dev);
2186 	if (!vq) {
2187 		vring_free_packed(&vring_packed, vdev, dma_dev);
2188 		return NULL;
2189 	}
2190 
2191 	to_vvq(vq)->we_own_ring = true;
2192 
2193 	return vq;
2194 }
2195 
2196 static int virtqueue_resize_packed(struct virtqueue *_vq, u32 num)
2197 {
2198 	struct vring_virtqueue_packed vring_packed = {};
2199 	struct vring_virtqueue *vq = to_vvq(_vq);
2200 	struct virtio_device *vdev = _vq->vdev;
2201 	int err;
2202 
2203 	if (vring_alloc_queue_packed(&vring_packed, vdev, num, vring_dma_dev(vq)))
2204 		goto err_ring;
2205 
2206 	err = vring_alloc_state_extra_packed(&vring_packed);
2207 	if (err)
2208 		goto err_state_extra;
2209 
2210 	vring_free(&vq->vq);
2211 
2212 	virtqueue_vring_init_packed(&vring_packed, !!vq->vq.callback);
2213 
2214 	virtqueue_init(vq, vring_packed.vring.num);
2215 	virtqueue_vring_attach_packed(vq, &vring_packed);
2216 
2217 	return 0;
2218 
2219 err_state_extra:
2220 	vring_free_packed(&vring_packed, vdev, vring_dma_dev(vq));
2221 err_ring:
2222 	virtqueue_reinit_packed(vq);
2223 	return -ENOMEM;
2224 }
2225 
2226 static int virtqueue_disable_and_recycle(struct virtqueue *_vq,
2227 					 void (*recycle)(struct virtqueue *vq, void *buf))
2228 {
2229 	struct vring_virtqueue *vq = to_vvq(_vq);
2230 	struct virtio_device *vdev = vq->vq.vdev;
2231 	void *buf;
2232 	int err;
2233 
2234 	if (!vq->we_own_ring)
2235 		return -EPERM;
2236 
2237 	if (!vdev->config->disable_vq_and_reset)
2238 		return -ENOENT;
2239 
2240 	if (!vdev->config->enable_vq_after_reset)
2241 		return -ENOENT;
2242 
2243 	err = vdev->config->disable_vq_and_reset(_vq);
2244 	if (err)
2245 		return err;
2246 
2247 	while ((buf = virtqueue_detach_unused_buf(_vq)) != NULL)
2248 		recycle(_vq, buf);
2249 
2250 	return 0;
2251 }
2252 
2253 static int virtqueue_enable_after_reset(struct virtqueue *_vq)
2254 {
2255 	struct vring_virtqueue *vq = to_vvq(_vq);
2256 	struct virtio_device *vdev = vq->vq.vdev;
2257 
2258 	if (vdev->config->enable_vq_after_reset(_vq))
2259 		return -EBUSY;
2260 
2261 	return 0;
2262 }
2263 
2264 /*
2265  * Generic functions and exported symbols.
2266  */
2267 
2268 static inline int virtqueue_add(struct virtqueue *_vq,
2269 				struct scatterlist *sgs[],
2270 				unsigned int total_sg,
2271 				unsigned int out_sgs,
2272 				unsigned int in_sgs,
2273 				void *data,
2274 				void *ctx,
2275 				bool premapped,
2276 				gfp_t gfp)
2277 {
2278 	struct vring_virtqueue *vq = to_vvq(_vq);
2279 
2280 	return vq->packed_ring ? virtqueue_add_packed(_vq, sgs, total_sg,
2281 					out_sgs, in_sgs, data, ctx, premapped, gfp) :
2282 				 virtqueue_add_split(_vq, sgs, total_sg,
2283 					out_sgs, in_sgs, data, ctx, premapped, gfp);
2284 }
2285 
2286 /**
2287  * virtqueue_add_sgs - expose buffers to other end
2288  * @_vq: the struct virtqueue we're talking about.
2289  * @sgs: array of terminated scatterlists.
2290  * @out_sgs: the number of scatterlists readable by other side
2291  * @in_sgs: the number of scatterlists which are writable (after readable ones)
2292  * @data: the token identifying the buffer.
2293  * @gfp: how to do memory allocations (if necessary).
2294  *
2295  * Caller must ensure we don't call this with other virtqueue operations
2296  * at the same time (except where noted).
2297  *
2298  * Returns zero or a negative error (ie. ENOSPC, ENOMEM, EIO).
2299  */
2300 int virtqueue_add_sgs(struct virtqueue *_vq,
2301 		      struct scatterlist *sgs[],
2302 		      unsigned int out_sgs,
2303 		      unsigned int in_sgs,
2304 		      void *data,
2305 		      gfp_t gfp)
2306 {
2307 	unsigned int i, total_sg = 0;
2308 
2309 	/* Count them first. */
2310 	for (i = 0; i < out_sgs + in_sgs; i++) {
2311 		struct scatterlist *sg;
2312 
2313 		for (sg = sgs[i]; sg; sg = sg_next(sg))
2314 			total_sg++;
2315 	}
2316 	return virtqueue_add(_vq, sgs, total_sg, out_sgs, in_sgs,
2317 			     data, NULL, false, gfp);
2318 }
2319 EXPORT_SYMBOL_GPL(virtqueue_add_sgs);
2320 
2321 /**
2322  * virtqueue_add_outbuf - expose output buffers to other end
2323  * @vq: the struct virtqueue we're talking about.
2324  * @sg: scatterlist (must be well-formed and terminated!)
2325  * @num: the number of entries in @sg readable by other side
2326  * @data: the token identifying the buffer.
2327  * @gfp: how to do memory allocations (if necessary).
2328  *
2329  * Caller must ensure we don't call this with other virtqueue operations
2330  * at the same time (except where noted).
2331  *
2332  * Returns zero or a negative error (ie. ENOSPC, ENOMEM, EIO).
2333  */
2334 int virtqueue_add_outbuf(struct virtqueue *vq,
2335 			 struct scatterlist *sg, unsigned int num,
2336 			 void *data,
2337 			 gfp_t gfp)
2338 {
2339 	return virtqueue_add(vq, &sg, num, 1, 0, data, NULL, false, gfp);
2340 }
2341 EXPORT_SYMBOL_GPL(virtqueue_add_outbuf);
2342 
2343 /**
2344  * virtqueue_add_outbuf_premapped - expose output buffers to other end
2345  * @vq: the struct virtqueue we're talking about.
2346  * @sg: scatterlist (must be well-formed and terminated!)
2347  * @num: the number of entries in @sg readable by other side
2348  * @data: the token identifying the buffer.
2349  * @gfp: how to do memory allocations (if necessary).
2350  *
2351  * Caller must ensure we don't call this with other virtqueue operations
2352  * at the same time (except where noted).
2353  *
2354  * Return:
2355  * Returns zero or a negative error (ie. ENOSPC, ENOMEM, EIO).
2356  */
2357 int virtqueue_add_outbuf_premapped(struct virtqueue *vq,
2358 				   struct scatterlist *sg, unsigned int num,
2359 				   void *data,
2360 				   gfp_t gfp)
2361 {
2362 	return virtqueue_add(vq, &sg, num, 1, 0, data, NULL, true, gfp);
2363 }
2364 EXPORT_SYMBOL_GPL(virtqueue_add_outbuf_premapped);
2365 
2366 /**
2367  * virtqueue_add_inbuf - expose input buffers to other end
2368  * @vq: the struct virtqueue we're talking about.
2369  * @sg: scatterlist (must be well-formed and terminated!)
2370  * @num: the number of entries in @sg writable by other side
2371  * @data: the token identifying the buffer.
2372  * @gfp: how to do memory allocations (if necessary).
2373  *
2374  * Caller must ensure we don't call this with other virtqueue operations
2375  * at the same time (except where noted).
2376  *
2377  * Returns zero or a negative error (ie. ENOSPC, ENOMEM, EIO).
2378  */
2379 int virtqueue_add_inbuf(struct virtqueue *vq,
2380 			struct scatterlist *sg, unsigned int num,
2381 			void *data,
2382 			gfp_t gfp)
2383 {
2384 	return virtqueue_add(vq, &sg, num, 0, 1, data, NULL, false, gfp);
2385 }
2386 EXPORT_SYMBOL_GPL(virtqueue_add_inbuf);
2387 
2388 /**
2389  * virtqueue_add_inbuf_ctx - expose input buffers to other end
2390  * @vq: the struct virtqueue we're talking about.
2391  * @sg: scatterlist (must be well-formed and terminated!)
2392  * @num: the number of entries in @sg writable by other side
2393  * @data: the token identifying the buffer.
2394  * @ctx: extra context for the token
2395  * @gfp: how to do memory allocations (if necessary).
2396  *
2397  * Caller must ensure we don't call this with other virtqueue operations
2398  * at the same time (except where noted).
2399  *
2400  * Returns zero or a negative error (ie. ENOSPC, ENOMEM, EIO).
2401  */
2402 int virtqueue_add_inbuf_ctx(struct virtqueue *vq,
2403 			struct scatterlist *sg, unsigned int num,
2404 			void *data,
2405 			void *ctx,
2406 			gfp_t gfp)
2407 {
2408 	return virtqueue_add(vq, &sg, num, 0, 1, data, ctx, false, gfp);
2409 }
2410 EXPORT_SYMBOL_GPL(virtqueue_add_inbuf_ctx);
2411 
2412 /**
2413  * virtqueue_add_inbuf_premapped - expose input buffers to other end
2414  * @vq: the struct virtqueue we're talking about.
2415  * @sg: scatterlist (must be well-formed and terminated!)
2416  * @num: the number of entries in @sg writable by other side
2417  * @data: the token identifying the buffer.
2418  * @ctx: extra context for the token
2419  * @gfp: how to do memory allocations (if necessary).
2420  *
2421  * Caller must ensure we don't call this with other virtqueue operations
2422  * at the same time (except where noted).
2423  *
2424  * Return:
2425  * Returns zero or a negative error (ie. ENOSPC, ENOMEM, EIO).
2426  */
2427 int virtqueue_add_inbuf_premapped(struct virtqueue *vq,
2428 				  struct scatterlist *sg, unsigned int num,
2429 				  void *data,
2430 				  void *ctx,
2431 				  gfp_t gfp)
2432 {
2433 	return virtqueue_add(vq, &sg, num, 0, 1, data, ctx, true, gfp);
2434 }
2435 EXPORT_SYMBOL_GPL(virtqueue_add_inbuf_premapped);
2436 
2437 /**
2438  * virtqueue_dma_dev - get the dma dev
2439  * @_vq: the struct virtqueue we're talking about.
2440  *
2441  * Returns the dma dev. That can been used for dma api.
2442  */
2443 struct device *virtqueue_dma_dev(struct virtqueue *_vq)
2444 {
2445 	struct vring_virtqueue *vq = to_vvq(_vq);
2446 
2447 	if (vq->use_dma_api)
2448 		return vring_dma_dev(vq);
2449 	else
2450 		return NULL;
2451 }
2452 EXPORT_SYMBOL_GPL(virtqueue_dma_dev);
2453 
2454 /**
2455  * virtqueue_kick_prepare - first half of split virtqueue_kick call.
2456  * @_vq: the struct virtqueue
2457  *
2458  * Instead of virtqueue_kick(), you can do:
2459  *	if (virtqueue_kick_prepare(vq))
2460  *		virtqueue_notify(vq);
2461  *
2462  * This is sometimes useful because the virtqueue_kick_prepare() needs
2463  * to be serialized, but the actual virtqueue_notify() call does not.
2464  */
2465 bool virtqueue_kick_prepare(struct virtqueue *_vq)
2466 {
2467 	struct vring_virtqueue *vq = to_vvq(_vq);
2468 
2469 	return vq->packed_ring ? virtqueue_kick_prepare_packed(_vq) :
2470 				 virtqueue_kick_prepare_split(_vq);
2471 }
2472 EXPORT_SYMBOL_GPL(virtqueue_kick_prepare);
2473 
2474 /**
2475  * virtqueue_notify - second half of split virtqueue_kick call.
2476  * @_vq: the struct virtqueue
2477  *
2478  * This does not need to be serialized.
2479  *
2480  * Returns false if host notify failed or queue is broken, otherwise true.
2481  */
2482 bool virtqueue_notify(struct virtqueue *_vq)
2483 {
2484 	struct vring_virtqueue *vq = to_vvq(_vq);
2485 
2486 	if (unlikely(vq->broken))
2487 		return false;
2488 
2489 	/* Prod other side to tell it about changes. */
2490 	if (!vq->notify(_vq)) {
2491 		vq->broken = true;
2492 		return false;
2493 	}
2494 	return true;
2495 }
2496 EXPORT_SYMBOL_GPL(virtqueue_notify);
2497 
2498 /**
2499  * virtqueue_kick - update after add_buf
2500  * @vq: the struct virtqueue
2501  *
2502  * After one or more virtqueue_add_* calls, invoke this to kick
2503  * the other side.
2504  *
2505  * Caller must ensure we don't call this with other virtqueue
2506  * operations at the same time (except where noted).
2507  *
2508  * Returns false if kick failed, otherwise true.
2509  */
2510 bool virtqueue_kick(struct virtqueue *vq)
2511 {
2512 	if (virtqueue_kick_prepare(vq))
2513 		return virtqueue_notify(vq);
2514 	return true;
2515 }
2516 EXPORT_SYMBOL_GPL(virtqueue_kick);
2517 
2518 /**
2519  * virtqueue_get_buf_ctx - get the next used buffer
2520  * @_vq: the struct virtqueue we're talking about.
2521  * @len: the length written into the buffer
2522  * @ctx: extra context for the token
2523  *
2524  * If the device wrote data into the buffer, @len will be set to the
2525  * amount written.  This means you don't need to clear the buffer
2526  * beforehand to ensure there's no data leakage in the case of short
2527  * writes.
2528  *
2529  * Caller must ensure we don't call this with other virtqueue
2530  * operations at the same time (except where noted).
2531  *
2532  * Returns NULL if there are no used buffers, or the "data" token
2533  * handed to virtqueue_add_*().
2534  */
2535 void *virtqueue_get_buf_ctx(struct virtqueue *_vq, unsigned int *len,
2536 			    void **ctx)
2537 {
2538 	struct vring_virtqueue *vq = to_vvq(_vq);
2539 
2540 	return vq->packed_ring ? virtqueue_get_buf_ctx_packed(_vq, len, ctx) :
2541 				 virtqueue_get_buf_ctx_split(_vq, len, ctx);
2542 }
2543 EXPORT_SYMBOL_GPL(virtqueue_get_buf_ctx);
2544 
2545 void *virtqueue_get_buf(struct virtqueue *_vq, unsigned int *len)
2546 {
2547 	return virtqueue_get_buf_ctx(_vq, len, NULL);
2548 }
2549 EXPORT_SYMBOL_GPL(virtqueue_get_buf);
2550 /**
2551  * virtqueue_disable_cb - disable callbacks
2552  * @_vq: the struct virtqueue we're talking about.
2553  *
2554  * Note that this is not necessarily synchronous, hence unreliable and only
2555  * useful as an optimization.
2556  *
2557  * Unlike other operations, this need not be serialized.
2558  */
2559 void virtqueue_disable_cb(struct virtqueue *_vq)
2560 {
2561 	struct vring_virtqueue *vq = to_vvq(_vq);
2562 
2563 	if (vq->packed_ring)
2564 		virtqueue_disable_cb_packed(_vq);
2565 	else
2566 		virtqueue_disable_cb_split(_vq);
2567 }
2568 EXPORT_SYMBOL_GPL(virtqueue_disable_cb);
2569 
2570 /**
2571  * virtqueue_enable_cb_prepare - restart callbacks after disable_cb
2572  * @_vq: the struct virtqueue we're talking about.
2573  *
2574  * This re-enables callbacks; it returns current queue state
2575  * in an opaque unsigned value. This value should be later tested by
2576  * virtqueue_poll, to detect a possible race between the driver checking for
2577  * more work, and enabling callbacks.
2578  *
2579  * Caller must ensure we don't call this with other virtqueue
2580  * operations at the same time (except where noted).
2581  */
2582 unsigned int virtqueue_enable_cb_prepare(struct virtqueue *_vq)
2583 {
2584 	struct vring_virtqueue *vq = to_vvq(_vq);
2585 
2586 	if (vq->event_triggered)
2587 		vq->event_triggered = false;
2588 
2589 	return vq->packed_ring ? virtqueue_enable_cb_prepare_packed(_vq) :
2590 				 virtqueue_enable_cb_prepare_split(_vq);
2591 }
2592 EXPORT_SYMBOL_GPL(virtqueue_enable_cb_prepare);
2593 
2594 /**
2595  * virtqueue_poll - query pending used buffers
2596  * @_vq: the struct virtqueue we're talking about.
2597  * @last_used_idx: virtqueue state (from call to virtqueue_enable_cb_prepare).
2598  *
2599  * Returns "true" if there are pending used buffers in the queue.
2600  *
2601  * This does not need to be serialized.
2602  */
2603 bool virtqueue_poll(struct virtqueue *_vq, unsigned int last_used_idx)
2604 {
2605 	struct vring_virtqueue *vq = to_vvq(_vq);
2606 
2607 	if (unlikely(vq->broken))
2608 		return false;
2609 
2610 	virtio_mb(vq->weak_barriers);
2611 	return vq->packed_ring ? virtqueue_poll_packed(_vq, last_used_idx) :
2612 				 virtqueue_poll_split(_vq, last_used_idx);
2613 }
2614 EXPORT_SYMBOL_GPL(virtqueue_poll);
2615 
2616 /**
2617  * virtqueue_enable_cb - restart callbacks after disable_cb.
2618  * @_vq: the struct virtqueue we're talking about.
2619  *
2620  * This re-enables callbacks; it returns "false" if there are pending
2621  * buffers in the queue, to detect a possible race between the driver
2622  * checking for more work, and enabling callbacks.
2623  *
2624  * Caller must ensure we don't call this with other virtqueue
2625  * operations at the same time (except where noted).
2626  */
2627 bool virtqueue_enable_cb(struct virtqueue *_vq)
2628 {
2629 	unsigned int last_used_idx = virtqueue_enable_cb_prepare(_vq);
2630 
2631 	return !virtqueue_poll(_vq, last_used_idx);
2632 }
2633 EXPORT_SYMBOL_GPL(virtqueue_enable_cb);
2634 
2635 /**
2636  * virtqueue_enable_cb_delayed - restart callbacks after disable_cb.
2637  * @_vq: the struct virtqueue we're talking about.
2638  *
2639  * This re-enables callbacks but hints to the other side to delay
2640  * interrupts until most of the available buffers have been processed;
2641  * it returns "false" if there are many pending buffers in the queue,
2642  * to detect a possible race between the driver checking for more work,
2643  * and enabling callbacks.
2644  *
2645  * Caller must ensure we don't call this with other virtqueue
2646  * operations at the same time (except where noted).
2647  */
2648 bool virtqueue_enable_cb_delayed(struct virtqueue *_vq)
2649 {
2650 	struct vring_virtqueue *vq = to_vvq(_vq);
2651 
2652 	if (vq->event_triggered)
2653 		vq->event_triggered = false;
2654 
2655 	return vq->packed_ring ? virtqueue_enable_cb_delayed_packed(_vq) :
2656 				 virtqueue_enable_cb_delayed_split(_vq);
2657 }
2658 EXPORT_SYMBOL_GPL(virtqueue_enable_cb_delayed);
2659 
2660 /**
2661  * virtqueue_detach_unused_buf - detach first unused buffer
2662  * @_vq: the struct virtqueue we're talking about.
2663  *
2664  * Returns NULL or the "data" token handed to virtqueue_add_*().
2665  * This is not valid on an active queue; it is useful for device
2666  * shutdown or the reset queue.
2667  */
2668 void *virtqueue_detach_unused_buf(struct virtqueue *_vq)
2669 {
2670 	struct vring_virtqueue *vq = to_vvq(_vq);
2671 
2672 	return vq->packed_ring ? virtqueue_detach_unused_buf_packed(_vq) :
2673 				 virtqueue_detach_unused_buf_split(_vq);
2674 }
2675 EXPORT_SYMBOL_GPL(virtqueue_detach_unused_buf);
2676 
2677 static inline bool more_used(const struct vring_virtqueue *vq)
2678 {
2679 	return vq->packed_ring ? more_used_packed(vq) : more_used_split(vq);
2680 }
2681 
2682 /**
2683  * vring_interrupt - notify a virtqueue on an interrupt
2684  * @irq: the IRQ number (ignored)
2685  * @_vq: the struct virtqueue to notify
2686  *
2687  * Calls the callback function of @_vq to process the virtqueue
2688  * notification.
2689  */
2690 irqreturn_t vring_interrupt(int irq, void *_vq)
2691 {
2692 	struct vring_virtqueue *vq = to_vvq(_vq);
2693 
2694 	if (!more_used(vq)) {
2695 		pr_debug("virtqueue interrupt with no work for %p\n", vq);
2696 		return IRQ_NONE;
2697 	}
2698 
2699 	if (unlikely(vq->broken)) {
2700 #ifdef CONFIG_VIRTIO_HARDEN_NOTIFICATION
2701 		dev_warn_once(&vq->vq.vdev->dev,
2702 			      "virtio vring IRQ raised before DRIVER_OK");
2703 		return IRQ_NONE;
2704 #else
2705 		return IRQ_HANDLED;
2706 #endif
2707 	}
2708 
2709 	/* Just a hint for performance: so it's ok that this can be racy! */
2710 	if (vq->event)
2711 		data_race(vq->event_triggered = true);
2712 
2713 	pr_debug("virtqueue callback for %p (%p)\n", vq, vq->vq.callback);
2714 	if (vq->vq.callback)
2715 		vq->vq.callback(&vq->vq);
2716 
2717 	return IRQ_HANDLED;
2718 }
2719 EXPORT_SYMBOL_GPL(vring_interrupt);
2720 
2721 struct virtqueue *vring_create_virtqueue(
2722 	unsigned int index,
2723 	unsigned int num,
2724 	unsigned int vring_align,
2725 	struct virtio_device *vdev,
2726 	bool weak_barriers,
2727 	bool may_reduce_num,
2728 	bool context,
2729 	bool (*notify)(struct virtqueue *),
2730 	void (*callback)(struct virtqueue *),
2731 	const char *name)
2732 {
2733 
2734 	if (virtio_has_feature(vdev, VIRTIO_F_RING_PACKED))
2735 		return vring_create_virtqueue_packed(index, num, vring_align,
2736 				vdev, weak_barriers, may_reduce_num,
2737 				context, notify, callback, name, vdev->dev.parent);
2738 
2739 	return vring_create_virtqueue_split(index, num, vring_align,
2740 			vdev, weak_barriers, may_reduce_num,
2741 			context, notify, callback, name, vdev->dev.parent);
2742 }
2743 EXPORT_SYMBOL_GPL(vring_create_virtqueue);
2744 
2745 struct virtqueue *vring_create_virtqueue_dma(
2746 	unsigned int index,
2747 	unsigned int num,
2748 	unsigned int vring_align,
2749 	struct virtio_device *vdev,
2750 	bool weak_barriers,
2751 	bool may_reduce_num,
2752 	bool context,
2753 	bool (*notify)(struct virtqueue *),
2754 	void (*callback)(struct virtqueue *),
2755 	const char *name,
2756 	struct device *dma_dev)
2757 {
2758 
2759 	if (virtio_has_feature(vdev, VIRTIO_F_RING_PACKED))
2760 		return vring_create_virtqueue_packed(index, num, vring_align,
2761 				vdev, weak_barriers, may_reduce_num,
2762 				context, notify, callback, name, dma_dev);
2763 
2764 	return vring_create_virtqueue_split(index, num, vring_align,
2765 			vdev, weak_barriers, may_reduce_num,
2766 			context, notify, callback, name, dma_dev);
2767 }
2768 EXPORT_SYMBOL_GPL(vring_create_virtqueue_dma);
2769 
2770 /**
2771  * virtqueue_resize - resize the vring of vq
2772  * @_vq: the struct virtqueue we're talking about.
2773  * @num: new ring num
2774  * @recycle: callback to recycle unused buffers
2775  * @recycle_done: callback to be invoked when recycle for all unused buffers done
2776  *
2777  * When it is really necessary to create a new vring, it will set the current vq
2778  * into the reset state. Then call the passed callback to recycle the buffer
2779  * that is no longer used. Only after the new vring is successfully created, the
2780  * old vring will be released.
2781  *
2782  * Caller must ensure we don't call this with other virtqueue operations
2783  * at the same time (except where noted).
2784  *
2785  * Returns zero or a negative error.
2786  * 0: success.
2787  * -ENOMEM: Failed to allocate a new ring, fall back to the original ring size.
2788  *  vq can still work normally
2789  * -EBUSY: Failed to sync with device, vq may not work properly
2790  * -ENOENT: Transport or device not supported
2791  * -E2BIG/-EINVAL: num error
2792  * -EPERM: Operation not permitted
2793  *
2794  */
2795 int virtqueue_resize(struct virtqueue *_vq, u32 num,
2796 		     void (*recycle)(struct virtqueue *vq, void *buf),
2797 		     void (*recycle_done)(struct virtqueue *vq))
2798 {
2799 	struct vring_virtqueue *vq = to_vvq(_vq);
2800 	int err;
2801 
2802 	if (num > vq->vq.num_max)
2803 		return -E2BIG;
2804 
2805 	if (!num)
2806 		return -EINVAL;
2807 
2808 	if ((vq->packed_ring ? vq->packed.vring.num : vq->split.vring.num) == num)
2809 		return 0;
2810 
2811 	err = virtqueue_disable_and_recycle(_vq, recycle);
2812 	if (err)
2813 		return err;
2814 	if (recycle_done)
2815 		recycle_done(_vq);
2816 
2817 	if (vq->packed_ring)
2818 		err = virtqueue_resize_packed(_vq, num);
2819 	else
2820 		err = virtqueue_resize_split(_vq, num);
2821 
2822 	return virtqueue_enable_after_reset(_vq);
2823 }
2824 EXPORT_SYMBOL_GPL(virtqueue_resize);
2825 
2826 /**
2827  * virtqueue_reset - detach and recycle all unused buffers
2828  * @_vq: the struct virtqueue we're talking about.
2829  * @recycle: callback to recycle unused buffers
2830  * @recycle_done: callback to be invoked when recycle for all unused buffers done
2831  *
2832  * Caller must ensure we don't call this with other virtqueue operations
2833  * at the same time (except where noted).
2834  *
2835  * Returns zero or a negative error.
2836  * 0: success.
2837  * -EBUSY: Failed to sync with device, vq may not work properly
2838  * -ENOENT: Transport or device not supported
2839  * -EPERM: Operation not permitted
2840  */
2841 int virtqueue_reset(struct virtqueue *_vq,
2842 		    void (*recycle)(struct virtqueue *vq, void *buf),
2843 		    void (*recycle_done)(struct virtqueue *vq))
2844 {
2845 	struct vring_virtqueue *vq = to_vvq(_vq);
2846 	int err;
2847 
2848 	err = virtqueue_disable_and_recycle(_vq, recycle);
2849 	if (err)
2850 		return err;
2851 	if (recycle_done)
2852 		recycle_done(_vq);
2853 
2854 	if (vq->packed_ring)
2855 		virtqueue_reinit_packed(vq);
2856 	else
2857 		virtqueue_reinit_split(vq);
2858 
2859 	return virtqueue_enable_after_reset(_vq);
2860 }
2861 EXPORT_SYMBOL_GPL(virtqueue_reset);
2862 
2863 struct virtqueue *vring_new_virtqueue(unsigned int index,
2864 				      unsigned int num,
2865 				      unsigned int vring_align,
2866 				      struct virtio_device *vdev,
2867 				      bool weak_barriers,
2868 				      bool context,
2869 				      void *pages,
2870 				      bool (*notify)(struct virtqueue *vq),
2871 				      void (*callback)(struct virtqueue *vq),
2872 				      const char *name)
2873 {
2874 	struct vring_virtqueue_split vring_split = {};
2875 
2876 	if (virtio_has_feature(vdev, VIRTIO_F_RING_PACKED)) {
2877 		struct vring_virtqueue_packed vring_packed = {};
2878 
2879 		vring_packed.vring.num = num;
2880 		vring_packed.vring.desc = pages;
2881 		return __vring_new_virtqueue_packed(index, &vring_packed,
2882 						    vdev, weak_barriers,
2883 						    context, notify, callback,
2884 						    name, vdev->dev.parent);
2885 	}
2886 
2887 	vring_init(&vring_split.vring, num, pages, vring_align);
2888 	return __vring_new_virtqueue_split(index, &vring_split, vdev, weak_barriers,
2889 				     context, notify, callback, name,
2890 				     vdev->dev.parent);
2891 }
2892 EXPORT_SYMBOL_GPL(vring_new_virtqueue);
2893 
2894 static void vring_free(struct virtqueue *_vq)
2895 {
2896 	struct vring_virtqueue *vq = to_vvq(_vq);
2897 
2898 	if (vq->we_own_ring) {
2899 		if (vq->packed_ring) {
2900 			vring_free_queue(vq->vq.vdev,
2901 					 vq->packed.ring_size_in_bytes,
2902 					 vq->packed.vring.desc,
2903 					 vq->packed.ring_dma_addr,
2904 					 vring_dma_dev(vq));
2905 
2906 			vring_free_queue(vq->vq.vdev,
2907 					 vq->packed.event_size_in_bytes,
2908 					 vq->packed.vring.driver,
2909 					 vq->packed.driver_event_dma_addr,
2910 					 vring_dma_dev(vq));
2911 
2912 			vring_free_queue(vq->vq.vdev,
2913 					 vq->packed.event_size_in_bytes,
2914 					 vq->packed.vring.device,
2915 					 vq->packed.device_event_dma_addr,
2916 					 vring_dma_dev(vq));
2917 
2918 			kfree(vq->packed.desc_state);
2919 			kfree(vq->packed.desc_extra);
2920 		} else {
2921 			vring_free_queue(vq->vq.vdev,
2922 					 vq->split.queue_size_in_bytes,
2923 					 vq->split.vring.desc,
2924 					 vq->split.queue_dma_addr,
2925 					 vring_dma_dev(vq));
2926 		}
2927 	}
2928 	if (!vq->packed_ring) {
2929 		kfree(vq->split.desc_state);
2930 		kfree(vq->split.desc_extra);
2931 	}
2932 }
2933 
2934 void vring_del_virtqueue(struct virtqueue *_vq)
2935 {
2936 	struct vring_virtqueue *vq = to_vvq(_vq);
2937 
2938 	spin_lock(&vq->vq.vdev->vqs_list_lock);
2939 	list_del(&_vq->list);
2940 	spin_unlock(&vq->vq.vdev->vqs_list_lock);
2941 
2942 	vring_free(_vq);
2943 
2944 	kfree(vq);
2945 }
2946 EXPORT_SYMBOL_GPL(vring_del_virtqueue);
2947 
2948 u32 vring_notification_data(struct virtqueue *_vq)
2949 {
2950 	struct vring_virtqueue *vq = to_vvq(_vq);
2951 	u16 next;
2952 
2953 	if (vq->packed_ring)
2954 		next = (vq->packed.next_avail_idx &
2955 				~(-(1 << VRING_PACKED_EVENT_F_WRAP_CTR))) |
2956 			vq->packed.avail_wrap_counter <<
2957 				VRING_PACKED_EVENT_F_WRAP_CTR;
2958 	else
2959 		next = vq->split.avail_idx_shadow;
2960 
2961 	return next << 16 | _vq->index;
2962 }
2963 EXPORT_SYMBOL_GPL(vring_notification_data);
2964 
2965 /* Manipulates transport-specific feature bits. */
2966 void vring_transport_features(struct virtio_device *vdev)
2967 {
2968 	unsigned int i;
2969 
2970 	for (i = VIRTIO_TRANSPORT_F_START; i < VIRTIO_TRANSPORT_F_END; i++) {
2971 		switch (i) {
2972 		case VIRTIO_RING_F_INDIRECT_DESC:
2973 			break;
2974 		case VIRTIO_RING_F_EVENT_IDX:
2975 			break;
2976 		case VIRTIO_F_VERSION_1:
2977 			break;
2978 		case VIRTIO_F_ACCESS_PLATFORM:
2979 			break;
2980 		case VIRTIO_F_RING_PACKED:
2981 			break;
2982 		case VIRTIO_F_ORDER_PLATFORM:
2983 			break;
2984 		case VIRTIO_F_NOTIFICATION_DATA:
2985 			break;
2986 		default:
2987 			/* We don't understand this bit. */
2988 			__virtio_clear_bit(vdev, i);
2989 		}
2990 	}
2991 }
2992 EXPORT_SYMBOL_GPL(vring_transport_features);
2993 
2994 /**
2995  * virtqueue_get_vring_size - return the size of the virtqueue's vring
2996  * @_vq: the struct virtqueue containing the vring of interest.
2997  *
2998  * Returns the size of the vring.  This is mainly used for boasting to
2999  * userspace.  Unlike other operations, this need not be serialized.
3000  */
3001 unsigned int virtqueue_get_vring_size(const struct virtqueue *_vq)
3002 {
3003 
3004 	const struct vring_virtqueue *vq = to_vvq(_vq);
3005 
3006 	return vq->packed_ring ? vq->packed.vring.num : vq->split.vring.num;
3007 }
3008 EXPORT_SYMBOL_GPL(virtqueue_get_vring_size);
3009 
3010 /*
3011  * This function should only be called by the core, not directly by the driver.
3012  */
3013 void __virtqueue_break(struct virtqueue *_vq)
3014 {
3015 	struct vring_virtqueue *vq = to_vvq(_vq);
3016 
3017 	/* Pairs with READ_ONCE() in virtqueue_is_broken(). */
3018 	WRITE_ONCE(vq->broken, true);
3019 }
3020 EXPORT_SYMBOL_GPL(__virtqueue_break);
3021 
3022 /*
3023  * This function should only be called by the core, not directly by the driver.
3024  */
3025 void __virtqueue_unbreak(struct virtqueue *_vq)
3026 {
3027 	struct vring_virtqueue *vq = to_vvq(_vq);
3028 
3029 	/* Pairs with READ_ONCE() in virtqueue_is_broken(). */
3030 	WRITE_ONCE(vq->broken, false);
3031 }
3032 EXPORT_SYMBOL_GPL(__virtqueue_unbreak);
3033 
3034 bool virtqueue_is_broken(const struct virtqueue *_vq)
3035 {
3036 	const struct vring_virtqueue *vq = to_vvq(_vq);
3037 
3038 	return READ_ONCE(vq->broken);
3039 }
3040 EXPORT_SYMBOL_GPL(virtqueue_is_broken);
3041 
3042 /*
3043  * This should prevent the device from being used, allowing drivers to
3044  * recover.  You may need to grab appropriate locks to flush.
3045  */
3046 void virtio_break_device(struct virtio_device *dev)
3047 {
3048 	struct virtqueue *_vq;
3049 
3050 	spin_lock(&dev->vqs_list_lock);
3051 	list_for_each_entry(_vq, &dev->vqs, list) {
3052 		struct vring_virtqueue *vq = to_vvq(_vq);
3053 
3054 		/* Pairs with READ_ONCE() in virtqueue_is_broken(). */
3055 		WRITE_ONCE(vq->broken, true);
3056 	}
3057 	spin_unlock(&dev->vqs_list_lock);
3058 }
3059 EXPORT_SYMBOL_GPL(virtio_break_device);
3060 
3061 /*
3062  * This should allow the device to be used by the driver. You may
3063  * need to grab appropriate locks to flush the write to
3064  * vq->broken. This should only be used in some specific case e.g
3065  * (probing and restoring). This function should only be called by the
3066  * core, not directly by the driver.
3067  */
3068 void __virtio_unbreak_device(struct virtio_device *dev)
3069 {
3070 	struct virtqueue *_vq;
3071 
3072 	spin_lock(&dev->vqs_list_lock);
3073 	list_for_each_entry(_vq, &dev->vqs, list) {
3074 		struct vring_virtqueue *vq = to_vvq(_vq);
3075 
3076 		/* Pairs with READ_ONCE() in virtqueue_is_broken(). */
3077 		WRITE_ONCE(vq->broken, false);
3078 	}
3079 	spin_unlock(&dev->vqs_list_lock);
3080 }
3081 EXPORT_SYMBOL_GPL(__virtio_unbreak_device);
3082 
3083 dma_addr_t virtqueue_get_desc_addr(const struct virtqueue *_vq)
3084 {
3085 	const struct vring_virtqueue *vq = to_vvq(_vq);
3086 
3087 	BUG_ON(!vq->we_own_ring);
3088 
3089 	if (vq->packed_ring)
3090 		return vq->packed.ring_dma_addr;
3091 
3092 	return vq->split.queue_dma_addr;
3093 }
3094 EXPORT_SYMBOL_GPL(virtqueue_get_desc_addr);
3095 
3096 dma_addr_t virtqueue_get_avail_addr(const struct virtqueue *_vq)
3097 {
3098 	const struct vring_virtqueue *vq = to_vvq(_vq);
3099 
3100 	BUG_ON(!vq->we_own_ring);
3101 
3102 	if (vq->packed_ring)
3103 		return vq->packed.driver_event_dma_addr;
3104 
3105 	return vq->split.queue_dma_addr +
3106 		((char *)vq->split.vring.avail - (char *)vq->split.vring.desc);
3107 }
3108 EXPORT_SYMBOL_GPL(virtqueue_get_avail_addr);
3109 
3110 dma_addr_t virtqueue_get_used_addr(const struct virtqueue *_vq)
3111 {
3112 	const struct vring_virtqueue *vq = to_vvq(_vq);
3113 
3114 	BUG_ON(!vq->we_own_ring);
3115 
3116 	if (vq->packed_ring)
3117 		return vq->packed.device_event_dma_addr;
3118 
3119 	return vq->split.queue_dma_addr +
3120 		((char *)vq->split.vring.used - (char *)vq->split.vring.desc);
3121 }
3122 EXPORT_SYMBOL_GPL(virtqueue_get_used_addr);
3123 
3124 /* Only available for split ring */
3125 const struct vring *virtqueue_get_vring(const struct virtqueue *vq)
3126 {
3127 	return &to_vvq(vq)->split.vring;
3128 }
3129 EXPORT_SYMBOL_GPL(virtqueue_get_vring);
3130 
3131 /**
3132  * virtqueue_dma_map_single_attrs - map DMA for _vq
3133  * @_vq: the struct virtqueue we're talking about.
3134  * @ptr: the pointer of the buffer to do dma
3135  * @size: the size of the buffer to do dma
3136  * @dir: DMA direction
3137  * @attrs: DMA Attrs
3138  *
3139  * The caller calls this to do dma mapping in advance. The DMA address can be
3140  * passed to this _vq when it is in pre-mapped mode.
3141  *
3142  * return DMA address. Caller should check that by virtqueue_dma_mapping_error().
3143  */
3144 dma_addr_t virtqueue_dma_map_single_attrs(struct virtqueue *_vq, void *ptr,
3145 					  size_t size,
3146 					  enum dma_data_direction dir,
3147 					  unsigned long attrs)
3148 {
3149 	struct vring_virtqueue *vq = to_vvq(_vq);
3150 
3151 	if (!vq->use_dma_api) {
3152 		kmsan_handle_dma(virt_to_page(ptr), offset_in_page(ptr), size, dir);
3153 		return (dma_addr_t)virt_to_phys(ptr);
3154 	}
3155 
3156 	return dma_map_single_attrs(vring_dma_dev(vq), ptr, size, dir, attrs);
3157 }
3158 EXPORT_SYMBOL_GPL(virtqueue_dma_map_single_attrs);
3159 
3160 /**
3161  * virtqueue_dma_unmap_single_attrs - unmap DMA for _vq
3162  * @_vq: the struct virtqueue we're talking about.
3163  * @addr: the dma address to unmap
3164  * @size: the size of the buffer
3165  * @dir: DMA direction
3166  * @attrs: DMA Attrs
3167  *
3168  * Unmap the address that is mapped by the virtqueue_dma_map_* APIs.
3169  *
3170  */
3171 void virtqueue_dma_unmap_single_attrs(struct virtqueue *_vq, dma_addr_t addr,
3172 				      size_t size, enum dma_data_direction dir,
3173 				      unsigned long attrs)
3174 {
3175 	struct vring_virtqueue *vq = to_vvq(_vq);
3176 
3177 	if (!vq->use_dma_api)
3178 		return;
3179 
3180 	dma_unmap_single_attrs(vring_dma_dev(vq), addr, size, dir, attrs);
3181 }
3182 EXPORT_SYMBOL_GPL(virtqueue_dma_unmap_single_attrs);
3183 
3184 /**
3185  * virtqueue_dma_mapping_error - check dma address
3186  * @_vq: the struct virtqueue we're talking about.
3187  * @addr: DMA address
3188  *
3189  * Returns 0 means dma valid. Other means invalid dma address.
3190  */
3191 int virtqueue_dma_mapping_error(struct virtqueue *_vq, dma_addr_t addr)
3192 {
3193 	struct vring_virtqueue *vq = to_vvq(_vq);
3194 
3195 	if (!vq->use_dma_api)
3196 		return 0;
3197 
3198 	return dma_mapping_error(vring_dma_dev(vq), addr);
3199 }
3200 EXPORT_SYMBOL_GPL(virtqueue_dma_mapping_error);
3201 
3202 /**
3203  * virtqueue_dma_need_sync - check a dma address needs sync
3204  * @_vq: the struct virtqueue we're talking about.
3205  * @addr: DMA address
3206  *
3207  * Check if the dma address mapped by the virtqueue_dma_map_* APIs needs to be
3208  * synchronized
3209  *
3210  * return bool
3211  */
3212 bool virtqueue_dma_need_sync(struct virtqueue *_vq, dma_addr_t addr)
3213 {
3214 	struct vring_virtqueue *vq = to_vvq(_vq);
3215 
3216 	if (!vq->use_dma_api)
3217 		return false;
3218 
3219 	return dma_need_sync(vring_dma_dev(vq), addr);
3220 }
3221 EXPORT_SYMBOL_GPL(virtqueue_dma_need_sync);
3222 
3223 /**
3224  * virtqueue_dma_sync_single_range_for_cpu - dma sync for cpu
3225  * @_vq: the struct virtqueue we're talking about.
3226  * @addr: DMA address
3227  * @offset: DMA address offset
3228  * @size: buf size for sync
3229  * @dir: DMA direction
3230  *
3231  * Before calling this function, use virtqueue_dma_need_sync() to confirm that
3232  * the DMA address really needs to be synchronized
3233  *
3234  */
3235 void virtqueue_dma_sync_single_range_for_cpu(struct virtqueue *_vq,
3236 					     dma_addr_t addr,
3237 					     unsigned long offset, size_t size,
3238 					     enum dma_data_direction dir)
3239 {
3240 	struct vring_virtqueue *vq = to_vvq(_vq);
3241 	struct device *dev = vring_dma_dev(vq);
3242 
3243 	if (!vq->use_dma_api)
3244 		return;
3245 
3246 	dma_sync_single_range_for_cpu(dev, addr, offset, size, dir);
3247 }
3248 EXPORT_SYMBOL_GPL(virtqueue_dma_sync_single_range_for_cpu);
3249 
3250 /**
3251  * virtqueue_dma_sync_single_range_for_device - dma sync for device
3252  * @_vq: the struct virtqueue we're talking about.
3253  * @addr: DMA address
3254  * @offset: DMA address offset
3255  * @size: buf size for sync
3256  * @dir: DMA direction
3257  *
3258  * Before calling this function, use virtqueue_dma_need_sync() to confirm that
3259  * the DMA address really needs to be synchronized
3260  */
3261 void virtqueue_dma_sync_single_range_for_device(struct virtqueue *_vq,
3262 						dma_addr_t addr,
3263 						unsigned long offset, size_t size,
3264 						enum dma_data_direction dir)
3265 {
3266 	struct vring_virtqueue *vq = to_vvq(_vq);
3267 	struct device *dev = vring_dma_dev(vq);
3268 
3269 	if (!vq->use_dma_api)
3270 		return;
3271 
3272 	dma_sync_single_range_for_device(dev, addr, offset, size, dir);
3273 }
3274 EXPORT_SYMBOL_GPL(virtqueue_dma_sync_single_range_for_device);
3275 
3276 MODULE_DESCRIPTION("Virtio ring implementation");
3277 MODULE_LICENSE("GPL");
3278