1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* Virtio ring implementation. 3 * 4 * Copyright 2007 Rusty Russell IBM Corporation 5 */ 6 #include <linux/virtio.h> 7 #include <linux/virtio_ring.h> 8 #include <linux/virtio_config.h> 9 #include <linux/device.h> 10 #include <linux/slab.h> 11 #include <linux/module.h> 12 #include <linux/hrtimer.h> 13 #include <linux/dma-mapping.h> 14 #include <linux/kmsan.h> 15 #include <linux/spinlock.h> 16 #include <xen/xen.h> 17 18 #ifdef DEBUG 19 /* For development, we want to crash whenever the ring is screwed. */ 20 #define BAD_RING(_vq, fmt, args...) \ 21 do { \ 22 dev_err(&(_vq)->vq.vdev->dev, \ 23 "%s:"fmt, (_vq)->vq.name, ##args); \ 24 BUG(); \ 25 } while (0) 26 /* Caller is supposed to guarantee no reentry. */ 27 #define START_USE(_vq) \ 28 do { \ 29 if ((_vq)->in_use) \ 30 panic("%s:in_use = %i\n", \ 31 (_vq)->vq.name, (_vq)->in_use); \ 32 (_vq)->in_use = __LINE__; \ 33 } while (0) 34 #define END_USE(_vq) \ 35 do { BUG_ON(!(_vq)->in_use); (_vq)->in_use = 0; } while(0) 36 #define LAST_ADD_TIME_UPDATE(_vq) \ 37 do { \ 38 ktime_t now = ktime_get(); \ 39 \ 40 /* No kick or get, with .1 second between? Warn. */ \ 41 if ((_vq)->last_add_time_valid) \ 42 WARN_ON(ktime_to_ms(ktime_sub(now, \ 43 (_vq)->last_add_time)) > 100); \ 44 (_vq)->last_add_time = now; \ 45 (_vq)->last_add_time_valid = true; \ 46 } while (0) 47 #define LAST_ADD_TIME_CHECK(_vq) \ 48 do { \ 49 if ((_vq)->last_add_time_valid) { \ 50 WARN_ON(ktime_to_ms(ktime_sub(ktime_get(), \ 51 (_vq)->last_add_time)) > 100); \ 52 } \ 53 } while (0) 54 #define LAST_ADD_TIME_INVALID(_vq) \ 55 ((_vq)->last_add_time_valid = false) 56 #else 57 #define BAD_RING(_vq, fmt, args...) \ 58 do { \ 59 dev_err(&_vq->vq.vdev->dev, \ 60 "%s:"fmt, (_vq)->vq.name, ##args); \ 61 (_vq)->broken = true; \ 62 } while (0) 63 #define START_USE(vq) 64 #define END_USE(vq) 65 #define LAST_ADD_TIME_UPDATE(vq) 66 #define LAST_ADD_TIME_CHECK(vq) 67 #define LAST_ADD_TIME_INVALID(vq) 68 #endif 69 70 struct vring_desc_state_split { 71 void *data; /* Data for callback. */ 72 73 /* Indirect desc table and extra table, if any. These two will be 74 * allocated together. So we won't stress more to the memory allocator. 75 */ 76 struct vring_desc *indir_desc; 77 }; 78 79 struct vring_desc_state_packed { 80 void *data; /* Data for callback. */ 81 82 /* Indirect desc table and extra table, if any. These two will be 83 * allocated together. So we won't stress more to the memory allocator. 84 */ 85 struct vring_packed_desc *indir_desc; 86 u16 num; /* Descriptor list length. */ 87 u16 last; /* The last desc state in a list. */ 88 }; 89 90 struct vring_desc_extra { 91 dma_addr_t addr; /* Descriptor DMA addr. */ 92 u32 len; /* Descriptor length. */ 93 u16 flags; /* Descriptor flags. */ 94 u16 next; /* The next desc state in a list. */ 95 }; 96 97 struct vring_virtqueue_split { 98 /* Actual memory layout for this queue. */ 99 struct vring vring; 100 101 /* Last written value to avail->flags */ 102 u16 avail_flags_shadow; 103 104 /* 105 * Last written value to avail->idx in 106 * guest byte order. 107 */ 108 u16 avail_idx_shadow; 109 110 /* Per-descriptor state. */ 111 struct vring_desc_state_split *desc_state; 112 struct vring_desc_extra *desc_extra; 113 114 /* DMA address and size information */ 115 dma_addr_t queue_dma_addr; 116 size_t queue_size_in_bytes; 117 118 /* 119 * The parameters for creating vrings are reserved for creating new 120 * vring. 121 */ 122 u32 vring_align; 123 bool may_reduce_num; 124 }; 125 126 struct vring_virtqueue_packed { 127 /* Actual memory layout for this queue. */ 128 struct { 129 unsigned int num; 130 struct vring_packed_desc *desc; 131 struct vring_packed_desc_event *driver; 132 struct vring_packed_desc_event *device; 133 } vring; 134 135 /* Driver ring wrap counter. */ 136 bool avail_wrap_counter; 137 138 /* Avail used flags. */ 139 u16 avail_used_flags; 140 141 /* Index of the next avail descriptor. */ 142 u16 next_avail_idx; 143 144 /* 145 * Last written value to driver->flags in 146 * guest byte order. 147 */ 148 u16 event_flags_shadow; 149 150 /* Per-descriptor state. */ 151 struct vring_desc_state_packed *desc_state; 152 struct vring_desc_extra *desc_extra; 153 154 /* DMA address and size information */ 155 dma_addr_t ring_dma_addr; 156 dma_addr_t driver_event_dma_addr; 157 dma_addr_t device_event_dma_addr; 158 size_t ring_size_in_bytes; 159 size_t event_size_in_bytes; 160 }; 161 162 struct vring_virtqueue { 163 struct virtqueue vq; 164 165 /* Is this a packed ring? */ 166 bool packed_ring; 167 168 /* Is DMA API used? */ 169 bool use_dma_api; 170 171 /* Can we use weak barriers? */ 172 bool weak_barriers; 173 174 /* Other side has made a mess, don't try any more. */ 175 bool broken; 176 177 /* Host supports indirect buffers */ 178 bool indirect; 179 180 /* Host publishes avail event idx */ 181 bool event; 182 183 /* Head of free buffer list. */ 184 unsigned int free_head; 185 /* Number we've added since last sync. */ 186 unsigned int num_added; 187 188 /* Last used index we've seen. 189 * for split ring, it just contains last used index 190 * for packed ring: 191 * bits up to VRING_PACKED_EVENT_F_WRAP_CTR include the last used index. 192 * bits from VRING_PACKED_EVENT_F_WRAP_CTR include the used wrap counter. 193 */ 194 u16 last_used_idx; 195 196 /* Hint for event idx: already triggered no need to disable. */ 197 bool event_triggered; 198 199 union { 200 /* Available for split ring */ 201 struct vring_virtqueue_split split; 202 203 /* Available for packed ring */ 204 struct vring_virtqueue_packed packed; 205 }; 206 207 /* How to notify other side. FIXME: commonalize hcalls! */ 208 bool (*notify)(struct virtqueue *vq); 209 210 /* DMA, allocation, and size information */ 211 bool we_own_ring; 212 213 /* Device used for doing DMA */ 214 struct device *dma_dev; 215 216 #ifdef DEBUG 217 /* They're supposed to lock for us. */ 218 unsigned int in_use; 219 220 /* Figure out if their kicks are too delayed. */ 221 bool last_add_time_valid; 222 ktime_t last_add_time; 223 #endif 224 }; 225 226 static struct vring_desc_extra *vring_alloc_desc_extra(unsigned int num); 227 static void vring_free(struct virtqueue *_vq); 228 229 /* 230 * Helpers. 231 */ 232 233 #define to_vvq(_vq) container_of_const(_vq, struct vring_virtqueue, vq) 234 235 static bool virtqueue_use_indirect(const struct vring_virtqueue *vq, 236 unsigned int total_sg) 237 { 238 /* 239 * If the host supports indirect descriptor tables, and we have multiple 240 * buffers, then go indirect. FIXME: tune this threshold 241 */ 242 return (vq->indirect && total_sg > 1 && vq->vq.num_free); 243 } 244 245 /* 246 * Modern virtio devices have feature bits to specify whether they need a 247 * quirk and bypass the IOMMU. If not there, just use the DMA API. 248 * 249 * If there, the interaction between virtio and DMA API is messy. 250 * 251 * On most systems with virtio, physical addresses match bus addresses, 252 * and it doesn't particularly matter whether we use the DMA API. 253 * 254 * On some systems, including Xen and any system with a physical device 255 * that speaks virtio behind a physical IOMMU, we must use the DMA API 256 * for virtio DMA to work at all. 257 * 258 * On other systems, including SPARC and PPC64, virtio-pci devices are 259 * enumerated as though they are behind an IOMMU, but the virtio host 260 * ignores the IOMMU, so we must either pretend that the IOMMU isn't 261 * there or somehow map everything as the identity. 262 * 263 * For the time being, we preserve historic behavior and bypass the DMA 264 * API. 265 * 266 * TODO: install a per-device DMA ops structure that does the right thing 267 * taking into account all the above quirks, and use the DMA API 268 * unconditionally on data path. 269 */ 270 271 static bool vring_use_dma_api(const struct virtio_device *vdev) 272 { 273 if (!virtio_has_dma_quirk(vdev)) 274 return true; 275 276 /* Otherwise, we are left to guess. */ 277 /* 278 * In theory, it's possible to have a buggy QEMU-supposed 279 * emulated Q35 IOMMU and Xen enabled at the same time. On 280 * such a configuration, virtio has never worked and will 281 * not work without an even larger kludge. Instead, enable 282 * the DMA API if we're a Xen guest, which at least allows 283 * all of the sensible Xen configurations to work correctly. 284 */ 285 if (xen_domain()) 286 return true; 287 288 return false; 289 } 290 291 static bool vring_need_unmap_buffer(const struct vring_virtqueue *vring, 292 const struct vring_desc_extra *extra) 293 { 294 return vring->use_dma_api && (extra->addr != DMA_MAPPING_ERROR); 295 } 296 297 size_t virtio_max_dma_size(const struct virtio_device *vdev) 298 { 299 size_t max_segment_size = SIZE_MAX; 300 301 if (vring_use_dma_api(vdev)) 302 max_segment_size = dma_max_mapping_size(vdev->dev.parent); 303 304 return max_segment_size; 305 } 306 EXPORT_SYMBOL_GPL(virtio_max_dma_size); 307 308 static void *vring_alloc_queue(struct virtio_device *vdev, size_t size, 309 dma_addr_t *dma_handle, gfp_t flag, 310 struct device *dma_dev) 311 { 312 if (vring_use_dma_api(vdev)) { 313 return dma_alloc_coherent(dma_dev, size, 314 dma_handle, flag); 315 } else { 316 void *queue = alloc_pages_exact(PAGE_ALIGN(size), flag); 317 318 if (queue) { 319 phys_addr_t phys_addr = virt_to_phys(queue); 320 *dma_handle = (dma_addr_t)phys_addr; 321 322 /* 323 * Sanity check: make sure we dind't truncate 324 * the address. The only arches I can find that 325 * have 64-bit phys_addr_t but 32-bit dma_addr_t 326 * are certain non-highmem MIPS and x86 327 * configurations, but these configurations 328 * should never allocate physical pages above 32 329 * bits, so this is fine. Just in case, throw a 330 * warning and abort if we end up with an 331 * unrepresentable address. 332 */ 333 if (WARN_ON_ONCE(*dma_handle != phys_addr)) { 334 free_pages_exact(queue, PAGE_ALIGN(size)); 335 return NULL; 336 } 337 } 338 return queue; 339 } 340 } 341 342 static void vring_free_queue(struct virtio_device *vdev, size_t size, 343 void *queue, dma_addr_t dma_handle, 344 struct device *dma_dev) 345 { 346 if (vring_use_dma_api(vdev)) 347 dma_free_coherent(dma_dev, size, queue, dma_handle); 348 else 349 free_pages_exact(queue, PAGE_ALIGN(size)); 350 } 351 352 /* 353 * The DMA ops on various arches are rather gnarly right now, and 354 * making all of the arch DMA ops work on the vring device itself 355 * is a mess. 356 */ 357 static struct device *vring_dma_dev(const struct vring_virtqueue *vq) 358 { 359 return vq->dma_dev; 360 } 361 362 /* Map one sg entry. */ 363 static int vring_map_one_sg(const struct vring_virtqueue *vq, struct scatterlist *sg, 364 enum dma_data_direction direction, dma_addr_t *addr, 365 u32 *len, bool premapped) 366 { 367 if (premapped) { 368 *addr = sg_dma_address(sg); 369 *len = sg_dma_len(sg); 370 return 0; 371 } 372 373 *len = sg->length; 374 375 if (!vq->use_dma_api) { 376 /* 377 * If DMA is not used, KMSAN doesn't know that the scatterlist 378 * is initialized by the hardware. Explicitly check/unpoison it 379 * depending on the direction. 380 */ 381 kmsan_handle_dma(sg_page(sg), sg->offset, sg->length, direction); 382 *addr = (dma_addr_t)sg_phys(sg); 383 return 0; 384 } 385 386 /* 387 * We can't use dma_map_sg, because we don't use scatterlists in 388 * the way it expects (we don't guarantee that the scatterlist 389 * will exist for the lifetime of the mapping). 390 */ 391 *addr = dma_map_page(vring_dma_dev(vq), 392 sg_page(sg), sg->offset, sg->length, 393 direction); 394 395 if (dma_mapping_error(vring_dma_dev(vq), *addr)) 396 return -ENOMEM; 397 398 return 0; 399 } 400 401 static dma_addr_t vring_map_single(const struct vring_virtqueue *vq, 402 void *cpu_addr, size_t size, 403 enum dma_data_direction direction) 404 { 405 if (!vq->use_dma_api) 406 return (dma_addr_t)virt_to_phys(cpu_addr); 407 408 return dma_map_single(vring_dma_dev(vq), 409 cpu_addr, size, direction); 410 } 411 412 static int vring_mapping_error(const struct vring_virtqueue *vq, 413 dma_addr_t addr) 414 { 415 if (!vq->use_dma_api) 416 return 0; 417 418 return dma_mapping_error(vring_dma_dev(vq), addr); 419 } 420 421 static void virtqueue_init(struct vring_virtqueue *vq, u32 num) 422 { 423 vq->vq.num_free = num; 424 425 if (vq->packed_ring) 426 vq->last_used_idx = 0 | (1 << VRING_PACKED_EVENT_F_WRAP_CTR); 427 else 428 vq->last_used_idx = 0; 429 430 vq->event_triggered = false; 431 vq->num_added = 0; 432 433 #ifdef DEBUG 434 vq->in_use = false; 435 vq->last_add_time_valid = false; 436 #endif 437 } 438 439 440 /* 441 * Split ring specific functions - *_split(). 442 */ 443 444 static unsigned int vring_unmap_one_split(const struct vring_virtqueue *vq, 445 struct vring_desc_extra *extra) 446 { 447 u16 flags; 448 449 flags = extra->flags; 450 451 if (flags & VRING_DESC_F_INDIRECT) { 452 if (!vq->use_dma_api) 453 goto out; 454 455 dma_unmap_single(vring_dma_dev(vq), 456 extra->addr, 457 extra->len, 458 (flags & VRING_DESC_F_WRITE) ? 459 DMA_FROM_DEVICE : DMA_TO_DEVICE); 460 } else { 461 if (!vring_need_unmap_buffer(vq, extra)) 462 goto out; 463 464 dma_unmap_page(vring_dma_dev(vq), 465 extra->addr, 466 extra->len, 467 (flags & VRING_DESC_F_WRITE) ? 468 DMA_FROM_DEVICE : DMA_TO_DEVICE); 469 } 470 471 out: 472 return extra->next; 473 } 474 475 static struct vring_desc *alloc_indirect_split(struct virtqueue *_vq, 476 unsigned int total_sg, 477 gfp_t gfp) 478 { 479 struct vring_desc_extra *extra; 480 struct vring_desc *desc; 481 unsigned int i, size; 482 483 /* 484 * We require lowmem mappings for the descriptors because 485 * otherwise virt_to_phys will give us bogus addresses in the 486 * virtqueue. 487 */ 488 gfp &= ~__GFP_HIGHMEM; 489 490 size = sizeof(*desc) * total_sg + sizeof(*extra) * total_sg; 491 492 desc = kmalloc(size, gfp); 493 if (!desc) 494 return NULL; 495 496 extra = (struct vring_desc_extra *)&desc[total_sg]; 497 498 for (i = 0; i < total_sg; i++) 499 extra[i].next = i + 1; 500 501 return desc; 502 } 503 504 static inline unsigned int virtqueue_add_desc_split(struct virtqueue *vq, 505 struct vring_desc *desc, 506 struct vring_desc_extra *extra, 507 unsigned int i, 508 dma_addr_t addr, 509 unsigned int len, 510 u16 flags, bool premapped) 511 { 512 u16 next; 513 514 desc[i].flags = cpu_to_virtio16(vq->vdev, flags); 515 desc[i].addr = cpu_to_virtio64(vq->vdev, addr); 516 desc[i].len = cpu_to_virtio32(vq->vdev, len); 517 518 extra[i].addr = premapped ? DMA_MAPPING_ERROR : addr; 519 extra[i].len = len; 520 extra[i].flags = flags; 521 522 next = extra[i].next; 523 524 desc[i].next = cpu_to_virtio16(vq->vdev, next); 525 526 return next; 527 } 528 529 static inline int virtqueue_add_split(struct virtqueue *_vq, 530 struct scatterlist *sgs[], 531 unsigned int total_sg, 532 unsigned int out_sgs, 533 unsigned int in_sgs, 534 void *data, 535 void *ctx, 536 bool premapped, 537 gfp_t gfp) 538 { 539 struct vring_virtqueue *vq = to_vvq(_vq); 540 struct vring_desc_extra *extra; 541 struct scatterlist *sg; 542 struct vring_desc *desc; 543 unsigned int i, n, avail, descs_used, prev, err_idx; 544 int head; 545 bool indirect; 546 547 START_USE(vq); 548 549 BUG_ON(data == NULL); 550 BUG_ON(ctx && vq->indirect); 551 552 if (unlikely(vq->broken)) { 553 END_USE(vq); 554 return -EIO; 555 } 556 557 LAST_ADD_TIME_UPDATE(vq); 558 559 BUG_ON(total_sg == 0); 560 561 head = vq->free_head; 562 563 if (virtqueue_use_indirect(vq, total_sg)) 564 desc = alloc_indirect_split(_vq, total_sg, gfp); 565 else { 566 desc = NULL; 567 WARN_ON_ONCE(total_sg > vq->split.vring.num && !vq->indirect); 568 } 569 570 if (desc) { 571 /* Use a single buffer which doesn't continue */ 572 indirect = true; 573 /* Set up rest to use this indirect table. */ 574 i = 0; 575 descs_used = 1; 576 extra = (struct vring_desc_extra *)&desc[total_sg]; 577 } else { 578 indirect = false; 579 desc = vq->split.vring.desc; 580 extra = vq->split.desc_extra; 581 i = head; 582 descs_used = total_sg; 583 } 584 585 if (unlikely(vq->vq.num_free < descs_used)) { 586 pr_debug("Can't add buf len %i - avail = %i\n", 587 descs_used, vq->vq.num_free); 588 /* FIXME: for historical reasons, we force a notify here if 589 * there are outgoing parts to the buffer. Presumably the 590 * host should service the ring ASAP. */ 591 if (out_sgs) 592 vq->notify(&vq->vq); 593 if (indirect) 594 kfree(desc); 595 END_USE(vq); 596 return -ENOSPC; 597 } 598 599 for (n = 0; n < out_sgs; n++) { 600 for (sg = sgs[n]; sg; sg = sg_next(sg)) { 601 dma_addr_t addr; 602 u32 len; 603 604 if (vring_map_one_sg(vq, sg, DMA_TO_DEVICE, &addr, &len, premapped)) 605 goto unmap_release; 606 607 prev = i; 608 /* Note that we trust indirect descriptor 609 * table since it use stream DMA mapping. 610 */ 611 i = virtqueue_add_desc_split(_vq, desc, extra, i, addr, len, 612 VRING_DESC_F_NEXT, 613 premapped); 614 } 615 } 616 for (; n < (out_sgs + in_sgs); n++) { 617 for (sg = sgs[n]; sg; sg = sg_next(sg)) { 618 dma_addr_t addr; 619 u32 len; 620 621 if (vring_map_one_sg(vq, sg, DMA_FROM_DEVICE, &addr, &len, premapped)) 622 goto unmap_release; 623 624 prev = i; 625 /* Note that we trust indirect descriptor 626 * table since it use stream DMA mapping. 627 */ 628 i = virtqueue_add_desc_split(_vq, desc, extra, i, addr, len, 629 VRING_DESC_F_NEXT | 630 VRING_DESC_F_WRITE, 631 premapped); 632 } 633 } 634 /* Last one doesn't continue. */ 635 desc[prev].flags &= cpu_to_virtio16(_vq->vdev, ~VRING_DESC_F_NEXT); 636 if (!indirect && vring_need_unmap_buffer(vq, &extra[prev])) 637 vq->split.desc_extra[prev & (vq->split.vring.num - 1)].flags &= 638 ~VRING_DESC_F_NEXT; 639 640 if (indirect) { 641 /* Now that the indirect table is filled in, map it. */ 642 dma_addr_t addr = vring_map_single( 643 vq, desc, total_sg * sizeof(struct vring_desc), 644 DMA_TO_DEVICE); 645 if (vring_mapping_error(vq, addr)) 646 goto unmap_release; 647 648 virtqueue_add_desc_split(_vq, vq->split.vring.desc, 649 vq->split.desc_extra, 650 head, addr, 651 total_sg * sizeof(struct vring_desc), 652 VRING_DESC_F_INDIRECT, false); 653 } 654 655 /* We're using some buffers from the free list. */ 656 vq->vq.num_free -= descs_used; 657 658 /* Update free pointer */ 659 if (indirect) 660 vq->free_head = vq->split.desc_extra[head].next; 661 else 662 vq->free_head = i; 663 664 /* Store token and indirect buffer state. */ 665 vq->split.desc_state[head].data = data; 666 if (indirect) 667 vq->split.desc_state[head].indir_desc = desc; 668 else 669 vq->split.desc_state[head].indir_desc = ctx; 670 671 /* Put entry in available array (but don't update avail->idx until they 672 * do sync). */ 673 avail = vq->split.avail_idx_shadow & (vq->split.vring.num - 1); 674 vq->split.vring.avail->ring[avail] = cpu_to_virtio16(_vq->vdev, head); 675 676 /* Descriptors and available array need to be set before we expose the 677 * new available array entries. */ 678 virtio_wmb(vq->weak_barriers); 679 vq->split.avail_idx_shadow++; 680 vq->split.vring.avail->idx = cpu_to_virtio16(_vq->vdev, 681 vq->split.avail_idx_shadow); 682 vq->num_added++; 683 684 pr_debug("Added buffer head %i to %p\n", head, vq); 685 END_USE(vq); 686 687 /* This is very unlikely, but theoretically possible. Kick 688 * just in case. */ 689 if (unlikely(vq->num_added == (1 << 16) - 1)) 690 virtqueue_kick(_vq); 691 692 return 0; 693 694 unmap_release: 695 err_idx = i; 696 697 if (indirect) 698 i = 0; 699 else 700 i = head; 701 702 for (n = 0; n < total_sg; n++) { 703 if (i == err_idx) 704 break; 705 706 i = vring_unmap_one_split(vq, &extra[i]); 707 } 708 709 if (indirect) 710 kfree(desc); 711 712 END_USE(vq); 713 return -ENOMEM; 714 } 715 716 static bool virtqueue_kick_prepare_split(struct virtqueue *_vq) 717 { 718 struct vring_virtqueue *vq = to_vvq(_vq); 719 u16 new, old; 720 bool needs_kick; 721 722 START_USE(vq); 723 /* We need to expose available array entries before checking avail 724 * event. */ 725 virtio_mb(vq->weak_barriers); 726 727 old = vq->split.avail_idx_shadow - vq->num_added; 728 new = vq->split.avail_idx_shadow; 729 vq->num_added = 0; 730 731 LAST_ADD_TIME_CHECK(vq); 732 LAST_ADD_TIME_INVALID(vq); 733 734 if (vq->event) { 735 needs_kick = vring_need_event(virtio16_to_cpu(_vq->vdev, 736 vring_avail_event(&vq->split.vring)), 737 new, old); 738 } else { 739 needs_kick = !(vq->split.vring.used->flags & 740 cpu_to_virtio16(_vq->vdev, 741 VRING_USED_F_NO_NOTIFY)); 742 } 743 END_USE(vq); 744 return needs_kick; 745 } 746 747 static void detach_buf_split(struct vring_virtqueue *vq, unsigned int head, 748 void **ctx) 749 { 750 struct vring_desc_extra *extra; 751 unsigned int i, j; 752 __virtio16 nextflag = cpu_to_virtio16(vq->vq.vdev, VRING_DESC_F_NEXT); 753 754 /* Clear data ptr. */ 755 vq->split.desc_state[head].data = NULL; 756 757 extra = vq->split.desc_extra; 758 759 /* Put back on free list: unmap first-level descriptors and find end */ 760 i = head; 761 762 while (vq->split.vring.desc[i].flags & nextflag) { 763 vring_unmap_one_split(vq, &extra[i]); 764 i = vq->split.desc_extra[i].next; 765 vq->vq.num_free++; 766 } 767 768 vring_unmap_one_split(vq, &extra[i]); 769 vq->split.desc_extra[i].next = vq->free_head; 770 vq->free_head = head; 771 772 /* Plus final descriptor */ 773 vq->vq.num_free++; 774 775 if (vq->indirect) { 776 struct vring_desc *indir_desc = 777 vq->split.desc_state[head].indir_desc; 778 u32 len, num; 779 780 /* Free the indirect table, if any, now that it's unmapped. */ 781 if (!indir_desc) 782 return; 783 len = vq->split.desc_extra[head].len; 784 785 BUG_ON(!(vq->split.desc_extra[head].flags & 786 VRING_DESC_F_INDIRECT)); 787 BUG_ON(len == 0 || len % sizeof(struct vring_desc)); 788 789 num = len / sizeof(struct vring_desc); 790 791 extra = (struct vring_desc_extra *)&indir_desc[num]; 792 793 if (vq->use_dma_api) { 794 for (j = 0; j < num; j++) 795 vring_unmap_one_split(vq, &extra[j]); 796 } 797 798 kfree(indir_desc); 799 vq->split.desc_state[head].indir_desc = NULL; 800 } else if (ctx) { 801 *ctx = vq->split.desc_state[head].indir_desc; 802 } 803 } 804 805 static bool more_used_split(const struct vring_virtqueue *vq) 806 { 807 return vq->last_used_idx != virtio16_to_cpu(vq->vq.vdev, 808 vq->split.vring.used->idx); 809 } 810 811 static void *virtqueue_get_buf_ctx_split(struct virtqueue *_vq, 812 unsigned int *len, 813 void **ctx) 814 { 815 struct vring_virtqueue *vq = to_vvq(_vq); 816 void *ret; 817 unsigned int i; 818 u16 last_used; 819 820 START_USE(vq); 821 822 if (unlikely(vq->broken)) { 823 END_USE(vq); 824 return NULL; 825 } 826 827 if (!more_used_split(vq)) { 828 pr_debug("No more buffers in queue\n"); 829 END_USE(vq); 830 return NULL; 831 } 832 833 /* Only get used array entries after they have been exposed by host. */ 834 virtio_rmb(vq->weak_barriers); 835 836 last_used = (vq->last_used_idx & (vq->split.vring.num - 1)); 837 i = virtio32_to_cpu(_vq->vdev, 838 vq->split.vring.used->ring[last_used].id); 839 *len = virtio32_to_cpu(_vq->vdev, 840 vq->split.vring.used->ring[last_used].len); 841 842 if (unlikely(i >= vq->split.vring.num)) { 843 BAD_RING(vq, "id %u out of range\n", i); 844 return NULL; 845 } 846 if (unlikely(!vq->split.desc_state[i].data)) { 847 BAD_RING(vq, "id %u is not a head!\n", i); 848 return NULL; 849 } 850 851 /* detach_buf_split clears data, so grab it now. */ 852 ret = vq->split.desc_state[i].data; 853 detach_buf_split(vq, i, ctx); 854 vq->last_used_idx++; 855 /* If we expect an interrupt for the next entry, tell host 856 * by writing event index and flush out the write before 857 * the read in the next get_buf call. */ 858 if (!(vq->split.avail_flags_shadow & VRING_AVAIL_F_NO_INTERRUPT)) 859 virtio_store_mb(vq->weak_barriers, 860 &vring_used_event(&vq->split.vring), 861 cpu_to_virtio16(_vq->vdev, vq->last_used_idx)); 862 863 LAST_ADD_TIME_INVALID(vq); 864 865 END_USE(vq); 866 return ret; 867 } 868 869 static void virtqueue_disable_cb_split(struct virtqueue *_vq) 870 { 871 struct vring_virtqueue *vq = to_vvq(_vq); 872 873 if (!(vq->split.avail_flags_shadow & VRING_AVAIL_F_NO_INTERRUPT)) { 874 vq->split.avail_flags_shadow |= VRING_AVAIL_F_NO_INTERRUPT; 875 876 /* 877 * If device triggered an event already it won't trigger one again: 878 * no need to disable. 879 */ 880 if (vq->event_triggered) 881 return; 882 883 if (vq->event) 884 /* TODO: this is a hack. Figure out a cleaner value to write. */ 885 vring_used_event(&vq->split.vring) = 0x0; 886 else 887 vq->split.vring.avail->flags = 888 cpu_to_virtio16(_vq->vdev, 889 vq->split.avail_flags_shadow); 890 } 891 } 892 893 static unsigned int virtqueue_enable_cb_prepare_split(struct virtqueue *_vq) 894 { 895 struct vring_virtqueue *vq = to_vvq(_vq); 896 u16 last_used_idx; 897 898 START_USE(vq); 899 900 /* We optimistically turn back on interrupts, then check if there was 901 * more to do. */ 902 /* Depending on the VIRTIO_RING_F_EVENT_IDX feature, we need to 903 * either clear the flags bit or point the event index at the next 904 * entry. Always do both to keep code simple. */ 905 if (vq->split.avail_flags_shadow & VRING_AVAIL_F_NO_INTERRUPT) { 906 vq->split.avail_flags_shadow &= ~VRING_AVAIL_F_NO_INTERRUPT; 907 if (!vq->event) 908 vq->split.vring.avail->flags = 909 cpu_to_virtio16(_vq->vdev, 910 vq->split.avail_flags_shadow); 911 } 912 vring_used_event(&vq->split.vring) = cpu_to_virtio16(_vq->vdev, 913 last_used_idx = vq->last_used_idx); 914 END_USE(vq); 915 return last_used_idx; 916 } 917 918 static bool virtqueue_poll_split(struct virtqueue *_vq, unsigned int last_used_idx) 919 { 920 struct vring_virtqueue *vq = to_vvq(_vq); 921 922 return (u16)last_used_idx != virtio16_to_cpu(_vq->vdev, 923 vq->split.vring.used->idx); 924 } 925 926 static bool virtqueue_enable_cb_delayed_split(struct virtqueue *_vq) 927 { 928 struct vring_virtqueue *vq = to_vvq(_vq); 929 u16 bufs; 930 931 START_USE(vq); 932 933 /* We optimistically turn back on interrupts, then check if there was 934 * more to do. */ 935 /* Depending on the VIRTIO_RING_F_USED_EVENT_IDX feature, we need to 936 * either clear the flags bit or point the event index at the next 937 * entry. Always update the event index to keep code simple. */ 938 if (vq->split.avail_flags_shadow & VRING_AVAIL_F_NO_INTERRUPT) { 939 vq->split.avail_flags_shadow &= ~VRING_AVAIL_F_NO_INTERRUPT; 940 if (!vq->event) 941 vq->split.vring.avail->flags = 942 cpu_to_virtio16(_vq->vdev, 943 vq->split.avail_flags_shadow); 944 } 945 /* TODO: tune this threshold */ 946 bufs = (u16)(vq->split.avail_idx_shadow - vq->last_used_idx) * 3 / 4; 947 948 virtio_store_mb(vq->weak_barriers, 949 &vring_used_event(&vq->split.vring), 950 cpu_to_virtio16(_vq->vdev, vq->last_used_idx + bufs)); 951 952 if (unlikely((u16)(virtio16_to_cpu(_vq->vdev, vq->split.vring.used->idx) 953 - vq->last_used_idx) > bufs)) { 954 END_USE(vq); 955 return false; 956 } 957 958 END_USE(vq); 959 return true; 960 } 961 962 static void *virtqueue_detach_unused_buf_split(struct virtqueue *_vq) 963 { 964 struct vring_virtqueue *vq = to_vvq(_vq); 965 unsigned int i; 966 void *buf; 967 968 START_USE(vq); 969 970 for (i = 0; i < vq->split.vring.num; i++) { 971 if (!vq->split.desc_state[i].data) 972 continue; 973 /* detach_buf_split clears data, so grab it now. */ 974 buf = vq->split.desc_state[i].data; 975 detach_buf_split(vq, i, NULL); 976 vq->split.avail_idx_shadow--; 977 vq->split.vring.avail->idx = cpu_to_virtio16(_vq->vdev, 978 vq->split.avail_idx_shadow); 979 END_USE(vq); 980 return buf; 981 } 982 /* That should have freed everything. */ 983 BUG_ON(vq->vq.num_free != vq->split.vring.num); 984 985 END_USE(vq); 986 return NULL; 987 } 988 989 static void virtqueue_vring_init_split(struct vring_virtqueue_split *vring_split, 990 struct vring_virtqueue *vq) 991 { 992 struct virtio_device *vdev; 993 994 vdev = vq->vq.vdev; 995 996 vring_split->avail_flags_shadow = 0; 997 vring_split->avail_idx_shadow = 0; 998 999 /* No callback? Tell other side not to bother us. */ 1000 if (!vq->vq.callback) { 1001 vring_split->avail_flags_shadow |= VRING_AVAIL_F_NO_INTERRUPT; 1002 if (!vq->event) 1003 vring_split->vring.avail->flags = cpu_to_virtio16(vdev, 1004 vring_split->avail_flags_shadow); 1005 } 1006 } 1007 1008 static void virtqueue_reinit_split(struct vring_virtqueue *vq) 1009 { 1010 int num; 1011 1012 num = vq->split.vring.num; 1013 1014 vq->split.vring.avail->flags = 0; 1015 vq->split.vring.avail->idx = 0; 1016 1017 /* reset avail event */ 1018 vq->split.vring.avail->ring[num] = 0; 1019 1020 vq->split.vring.used->flags = 0; 1021 vq->split.vring.used->idx = 0; 1022 1023 /* reset used event */ 1024 *(__virtio16 *)&(vq->split.vring.used->ring[num]) = 0; 1025 1026 virtqueue_init(vq, num); 1027 1028 virtqueue_vring_init_split(&vq->split, vq); 1029 } 1030 1031 static void virtqueue_vring_attach_split(struct vring_virtqueue *vq, 1032 struct vring_virtqueue_split *vring_split) 1033 { 1034 vq->split = *vring_split; 1035 1036 /* Put everything in free lists. */ 1037 vq->free_head = 0; 1038 } 1039 1040 static int vring_alloc_state_extra_split(struct vring_virtqueue_split *vring_split) 1041 { 1042 struct vring_desc_state_split *state; 1043 struct vring_desc_extra *extra; 1044 u32 num = vring_split->vring.num; 1045 1046 state = kmalloc_array(num, sizeof(struct vring_desc_state_split), GFP_KERNEL); 1047 if (!state) 1048 goto err_state; 1049 1050 extra = vring_alloc_desc_extra(num); 1051 if (!extra) 1052 goto err_extra; 1053 1054 memset(state, 0, num * sizeof(struct vring_desc_state_split)); 1055 1056 vring_split->desc_state = state; 1057 vring_split->desc_extra = extra; 1058 return 0; 1059 1060 err_extra: 1061 kfree(state); 1062 err_state: 1063 return -ENOMEM; 1064 } 1065 1066 static void vring_free_split(struct vring_virtqueue_split *vring_split, 1067 struct virtio_device *vdev, struct device *dma_dev) 1068 { 1069 vring_free_queue(vdev, vring_split->queue_size_in_bytes, 1070 vring_split->vring.desc, 1071 vring_split->queue_dma_addr, 1072 dma_dev); 1073 1074 kfree(vring_split->desc_state); 1075 kfree(vring_split->desc_extra); 1076 } 1077 1078 static int vring_alloc_queue_split(struct vring_virtqueue_split *vring_split, 1079 struct virtio_device *vdev, 1080 u32 num, 1081 unsigned int vring_align, 1082 bool may_reduce_num, 1083 struct device *dma_dev) 1084 { 1085 void *queue = NULL; 1086 dma_addr_t dma_addr; 1087 1088 /* We assume num is a power of 2. */ 1089 if (!is_power_of_2(num)) { 1090 dev_warn(&vdev->dev, "Bad virtqueue length %u\n", num); 1091 return -EINVAL; 1092 } 1093 1094 /* TODO: allocate each queue chunk individually */ 1095 for (; num && vring_size(num, vring_align) > PAGE_SIZE; num /= 2) { 1096 queue = vring_alloc_queue(vdev, vring_size(num, vring_align), 1097 &dma_addr, 1098 GFP_KERNEL | __GFP_NOWARN | __GFP_ZERO, 1099 dma_dev); 1100 if (queue) 1101 break; 1102 if (!may_reduce_num) 1103 return -ENOMEM; 1104 } 1105 1106 if (!num) 1107 return -ENOMEM; 1108 1109 if (!queue) { 1110 /* Try to get a single page. You are my only hope! */ 1111 queue = vring_alloc_queue(vdev, vring_size(num, vring_align), 1112 &dma_addr, GFP_KERNEL | __GFP_ZERO, 1113 dma_dev); 1114 } 1115 if (!queue) 1116 return -ENOMEM; 1117 1118 vring_init(&vring_split->vring, num, queue, vring_align); 1119 1120 vring_split->queue_dma_addr = dma_addr; 1121 vring_split->queue_size_in_bytes = vring_size(num, vring_align); 1122 1123 vring_split->vring_align = vring_align; 1124 vring_split->may_reduce_num = may_reduce_num; 1125 1126 return 0; 1127 } 1128 1129 static struct virtqueue *__vring_new_virtqueue_split(unsigned int index, 1130 struct vring_virtqueue_split *vring_split, 1131 struct virtio_device *vdev, 1132 bool weak_barriers, 1133 bool context, 1134 bool (*notify)(struct virtqueue *), 1135 void (*callback)(struct virtqueue *), 1136 const char *name, 1137 struct device *dma_dev) 1138 { 1139 struct vring_virtqueue *vq; 1140 int err; 1141 1142 vq = kmalloc(sizeof(*vq), GFP_KERNEL); 1143 if (!vq) 1144 return NULL; 1145 1146 vq->packed_ring = false; 1147 vq->vq.callback = callback; 1148 vq->vq.vdev = vdev; 1149 vq->vq.name = name; 1150 vq->vq.index = index; 1151 vq->vq.reset = false; 1152 vq->we_own_ring = false; 1153 vq->notify = notify; 1154 vq->weak_barriers = weak_barriers; 1155 #ifdef CONFIG_VIRTIO_HARDEN_NOTIFICATION 1156 vq->broken = true; 1157 #else 1158 vq->broken = false; 1159 #endif 1160 vq->dma_dev = dma_dev; 1161 vq->use_dma_api = vring_use_dma_api(vdev); 1162 1163 vq->indirect = virtio_has_feature(vdev, VIRTIO_RING_F_INDIRECT_DESC) && 1164 !context; 1165 vq->event = virtio_has_feature(vdev, VIRTIO_RING_F_EVENT_IDX); 1166 1167 if (virtio_has_feature(vdev, VIRTIO_F_ORDER_PLATFORM)) 1168 vq->weak_barriers = false; 1169 1170 err = vring_alloc_state_extra_split(vring_split); 1171 if (err) { 1172 kfree(vq); 1173 return NULL; 1174 } 1175 1176 virtqueue_vring_init_split(vring_split, vq); 1177 1178 virtqueue_init(vq, vring_split->vring.num); 1179 virtqueue_vring_attach_split(vq, vring_split); 1180 1181 spin_lock(&vdev->vqs_list_lock); 1182 list_add_tail(&vq->vq.list, &vdev->vqs); 1183 spin_unlock(&vdev->vqs_list_lock); 1184 return &vq->vq; 1185 } 1186 1187 static struct virtqueue *vring_create_virtqueue_split( 1188 unsigned int index, 1189 unsigned int num, 1190 unsigned int vring_align, 1191 struct virtio_device *vdev, 1192 bool weak_barriers, 1193 bool may_reduce_num, 1194 bool context, 1195 bool (*notify)(struct virtqueue *), 1196 void (*callback)(struct virtqueue *), 1197 const char *name, 1198 struct device *dma_dev) 1199 { 1200 struct vring_virtqueue_split vring_split = {}; 1201 struct virtqueue *vq; 1202 int err; 1203 1204 err = vring_alloc_queue_split(&vring_split, vdev, num, vring_align, 1205 may_reduce_num, dma_dev); 1206 if (err) 1207 return NULL; 1208 1209 vq = __vring_new_virtqueue_split(index, &vring_split, vdev, weak_barriers, 1210 context, notify, callback, name, dma_dev); 1211 if (!vq) { 1212 vring_free_split(&vring_split, vdev, dma_dev); 1213 return NULL; 1214 } 1215 1216 to_vvq(vq)->we_own_ring = true; 1217 1218 return vq; 1219 } 1220 1221 static int virtqueue_resize_split(struct virtqueue *_vq, u32 num) 1222 { 1223 struct vring_virtqueue_split vring_split = {}; 1224 struct vring_virtqueue *vq = to_vvq(_vq); 1225 struct virtio_device *vdev = _vq->vdev; 1226 int err; 1227 1228 err = vring_alloc_queue_split(&vring_split, vdev, num, 1229 vq->split.vring_align, 1230 vq->split.may_reduce_num, 1231 vring_dma_dev(vq)); 1232 if (err) 1233 goto err; 1234 1235 err = vring_alloc_state_extra_split(&vring_split); 1236 if (err) 1237 goto err_state_extra; 1238 1239 vring_free(&vq->vq); 1240 1241 virtqueue_vring_init_split(&vring_split, vq); 1242 1243 virtqueue_init(vq, vring_split.vring.num); 1244 virtqueue_vring_attach_split(vq, &vring_split); 1245 1246 return 0; 1247 1248 err_state_extra: 1249 vring_free_split(&vring_split, vdev, vring_dma_dev(vq)); 1250 err: 1251 virtqueue_reinit_split(vq); 1252 return -ENOMEM; 1253 } 1254 1255 1256 /* 1257 * Packed ring specific functions - *_packed(). 1258 */ 1259 static bool packed_used_wrap_counter(u16 last_used_idx) 1260 { 1261 return !!(last_used_idx & (1 << VRING_PACKED_EVENT_F_WRAP_CTR)); 1262 } 1263 1264 static u16 packed_last_used(u16 last_used_idx) 1265 { 1266 return last_used_idx & ~(-(1 << VRING_PACKED_EVENT_F_WRAP_CTR)); 1267 } 1268 1269 static void vring_unmap_extra_packed(const struct vring_virtqueue *vq, 1270 const struct vring_desc_extra *extra) 1271 { 1272 u16 flags; 1273 1274 flags = extra->flags; 1275 1276 if (flags & VRING_DESC_F_INDIRECT) { 1277 if (!vq->use_dma_api) 1278 return; 1279 1280 dma_unmap_single(vring_dma_dev(vq), 1281 extra->addr, extra->len, 1282 (flags & VRING_DESC_F_WRITE) ? 1283 DMA_FROM_DEVICE : DMA_TO_DEVICE); 1284 } else { 1285 if (!vring_need_unmap_buffer(vq, extra)) 1286 return; 1287 1288 dma_unmap_page(vring_dma_dev(vq), 1289 extra->addr, extra->len, 1290 (flags & VRING_DESC_F_WRITE) ? 1291 DMA_FROM_DEVICE : DMA_TO_DEVICE); 1292 } 1293 } 1294 1295 static struct vring_packed_desc *alloc_indirect_packed(unsigned int total_sg, 1296 gfp_t gfp) 1297 { 1298 struct vring_desc_extra *extra; 1299 struct vring_packed_desc *desc; 1300 int i, size; 1301 1302 /* 1303 * We require lowmem mappings for the descriptors because 1304 * otherwise virt_to_phys will give us bogus addresses in the 1305 * virtqueue. 1306 */ 1307 gfp &= ~__GFP_HIGHMEM; 1308 1309 size = (sizeof(*desc) + sizeof(*extra)) * total_sg; 1310 1311 desc = kmalloc(size, gfp); 1312 if (!desc) 1313 return NULL; 1314 1315 extra = (struct vring_desc_extra *)&desc[total_sg]; 1316 1317 for (i = 0; i < total_sg; i++) 1318 extra[i].next = i + 1; 1319 1320 return desc; 1321 } 1322 1323 static int virtqueue_add_indirect_packed(struct vring_virtqueue *vq, 1324 struct scatterlist *sgs[], 1325 unsigned int total_sg, 1326 unsigned int out_sgs, 1327 unsigned int in_sgs, 1328 void *data, 1329 bool premapped, 1330 gfp_t gfp) 1331 { 1332 struct vring_desc_extra *extra; 1333 struct vring_packed_desc *desc; 1334 struct scatterlist *sg; 1335 unsigned int i, n, err_idx, len; 1336 u16 head, id; 1337 dma_addr_t addr; 1338 1339 head = vq->packed.next_avail_idx; 1340 desc = alloc_indirect_packed(total_sg, gfp); 1341 if (!desc) 1342 return -ENOMEM; 1343 1344 extra = (struct vring_desc_extra *)&desc[total_sg]; 1345 1346 if (unlikely(vq->vq.num_free < 1)) { 1347 pr_debug("Can't add buf len 1 - avail = 0\n"); 1348 kfree(desc); 1349 END_USE(vq); 1350 return -ENOSPC; 1351 } 1352 1353 i = 0; 1354 id = vq->free_head; 1355 BUG_ON(id == vq->packed.vring.num); 1356 1357 for (n = 0; n < out_sgs + in_sgs; n++) { 1358 for (sg = sgs[n]; sg; sg = sg_next(sg)) { 1359 if (vring_map_one_sg(vq, sg, n < out_sgs ? 1360 DMA_TO_DEVICE : DMA_FROM_DEVICE, 1361 &addr, &len, premapped)) 1362 goto unmap_release; 1363 1364 desc[i].flags = cpu_to_le16(n < out_sgs ? 1365 0 : VRING_DESC_F_WRITE); 1366 desc[i].addr = cpu_to_le64(addr); 1367 desc[i].len = cpu_to_le32(len); 1368 1369 if (unlikely(vq->use_dma_api)) { 1370 extra[i].addr = premapped ? DMA_MAPPING_ERROR : addr; 1371 extra[i].len = len; 1372 extra[i].flags = n < out_sgs ? 0 : VRING_DESC_F_WRITE; 1373 } 1374 1375 i++; 1376 } 1377 } 1378 1379 /* Now that the indirect table is filled in, map it. */ 1380 addr = vring_map_single(vq, desc, 1381 total_sg * sizeof(struct vring_packed_desc), 1382 DMA_TO_DEVICE); 1383 if (vring_mapping_error(vq, addr)) 1384 goto unmap_release; 1385 1386 vq->packed.vring.desc[head].addr = cpu_to_le64(addr); 1387 vq->packed.vring.desc[head].len = cpu_to_le32(total_sg * 1388 sizeof(struct vring_packed_desc)); 1389 vq->packed.vring.desc[head].id = cpu_to_le16(id); 1390 1391 if (vq->use_dma_api) { 1392 vq->packed.desc_extra[id].addr = addr; 1393 vq->packed.desc_extra[id].len = total_sg * 1394 sizeof(struct vring_packed_desc); 1395 vq->packed.desc_extra[id].flags = VRING_DESC_F_INDIRECT | 1396 vq->packed.avail_used_flags; 1397 } 1398 1399 /* 1400 * A driver MUST NOT make the first descriptor in the list 1401 * available before all subsequent descriptors comprising 1402 * the list are made available. 1403 */ 1404 virtio_wmb(vq->weak_barriers); 1405 vq->packed.vring.desc[head].flags = cpu_to_le16(VRING_DESC_F_INDIRECT | 1406 vq->packed.avail_used_flags); 1407 1408 /* We're using some buffers from the free list. */ 1409 vq->vq.num_free -= 1; 1410 1411 /* Update free pointer */ 1412 n = head + 1; 1413 if (n >= vq->packed.vring.num) { 1414 n = 0; 1415 vq->packed.avail_wrap_counter ^= 1; 1416 vq->packed.avail_used_flags ^= 1417 1 << VRING_PACKED_DESC_F_AVAIL | 1418 1 << VRING_PACKED_DESC_F_USED; 1419 } 1420 vq->packed.next_avail_idx = n; 1421 vq->free_head = vq->packed.desc_extra[id].next; 1422 1423 /* Store token and indirect buffer state. */ 1424 vq->packed.desc_state[id].num = 1; 1425 vq->packed.desc_state[id].data = data; 1426 vq->packed.desc_state[id].indir_desc = desc; 1427 vq->packed.desc_state[id].last = id; 1428 1429 vq->num_added += 1; 1430 1431 pr_debug("Added buffer head %i to %p\n", head, vq); 1432 END_USE(vq); 1433 1434 return 0; 1435 1436 unmap_release: 1437 err_idx = i; 1438 1439 for (i = 0; i < err_idx; i++) 1440 vring_unmap_extra_packed(vq, &extra[i]); 1441 1442 kfree(desc); 1443 1444 END_USE(vq); 1445 return -ENOMEM; 1446 } 1447 1448 static inline int virtqueue_add_packed(struct virtqueue *_vq, 1449 struct scatterlist *sgs[], 1450 unsigned int total_sg, 1451 unsigned int out_sgs, 1452 unsigned int in_sgs, 1453 void *data, 1454 void *ctx, 1455 bool premapped, 1456 gfp_t gfp) 1457 { 1458 struct vring_virtqueue *vq = to_vvq(_vq); 1459 struct vring_packed_desc *desc; 1460 struct scatterlist *sg; 1461 unsigned int i, n, c, descs_used, err_idx, len; 1462 __le16 head_flags, flags; 1463 u16 head, id, prev, curr, avail_used_flags; 1464 int err; 1465 1466 START_USE(vq); 1467 1468 BUG_ON(data == NULL); 1469 BUG_ON(ctx && vq->indirect); 1470 1471 if (unlikely(vq->broken)) { 1472 END_USE(vq); 1473 return -EIO; 1474 } 1475 1476 LAST_ADD_TIME_UPDATE(vq); 1477 1478 BUG_ON(total_sg == 0); 1479 1480 if (virtqueue_use_indirect(vq, total_sg)) { 1481 err = virtqueue_add_indirect_packed(vq, sgs, total_sg, out_sgs, 1482 in_sgs, data, premapped, gfp); 1483 if (err != -ENOMEM) { 1484 END_USE(vq); 1485 return err; 1486 } 1487 1488 /* fall back on direct */ 1489 } 1490 1491 head = vq->packed.next_avail_idx; 1492 avail_used_flags = vq->packed.avail_used_flags; 1493 1494 WARN_ON_ONCE(total_sg > vq->packed.vring.num && !vq->indirect); 1495 1496 desc = vq->packed.vring.desc; 1497 i = head; 1498 descs_used = total_sg; 1499 1500 if (unlikely(vq->vq.num_free < descs_used)) { 1501 pr_debug("Can't add buf len %i - avail = %i\n", 1502 descs_used, vq->vq.num_free); 1503 END_USE(vq); 1504 return -ENOSPC; 1505 } 1506 1507 id = vq->free_head; 1508 BUG_ON(id == vq->packed.vring.num); 1509 1510 curr = id; 1511 c = 0; 1512 for (n = 0; n < out_sgs + in_sgs; n++) { 1513 for (sg = sgs[n]; sg; sg = sg_next(sg)) { 1514 dma_addr_t addr; 1515 1516 if (vring_map_one_sg(vq, sg, n < out_sgs ? 1517 DMA_TO_DEVICE : DMA_FROM_DEVICE, 1518 &addr, &len, premapped)) 1519 goto unmap_release; 1520 1521 flags = cpu_to_le16(vq->packed.avail_used_flags | 1522 (++c == total_sg ? 0 : VRING_DESC_F_NEXT) | 1523 (n < out_sgs ? 0 : VRING_DESC_F_WRITE)); 1524 if (i == head) 1525 head_flags = flags; 1526 else 1527 desc[i].flags = flags; 1528 1529 desc[i].addr = cpu_to_le64(addr); 1530 desc[i].len = cpu_to_le32(len); 1531 desc[i].id = cpu_to_le16(id); 1532 1533 if (unlikely(vq->use_dma_api)) { 1534 vq->packed.desc_extra[curr].addr = premapped ? 1535 DMA_MAPPING_ERROR : addr; 1536 vq->packed.desc_extra[curr].len = len; 1537 vq->packed.desc_extra[curr].flags = 1538 le16_to_cpu(flags); 1539 } 1540 prev = curr; 1541 curr = vq->packed.desc_extra[curr].next; 1542 1543 if ((unlikely(++i >= vq->packed.vring.num))) { 1544 i = 0; 1545 vq->packed.avail_used_flags ^= 1546 1 << VRING_PACKED_DESC_F_AVAIL | 1547 1 << VRING_PACKED_DESC_F_USED; 1548 } 1549 } 1550 } 1551 1552 if (i <= head) 1553 vq->packed.avail_wrap_counter ^= 1; 1554 1555 /* We're using some buffers from the free list. */ 1556 vq->vq.num_free -= descs_used; 1557 1558 /* Update free pointer */ 1559 vq->packed.next_avail_idx = i; 1560 vq->free_head = curr; 1561 1562 /* Store token. */ 1563 vq->packed.desc_state[id].num = descs_used; 1564 vq->packed.desc_state[id].data = data; 1565 vq->packed.desc_state[id].indir_desc = ctx; 1566 vq->packed.desc_state[id].last = prev; 1567 1568 /* 1569 * A driver MUST NOT make the first descriptor in the list 1570 * available before all subsequent descriptors comprising 1571 * the list are made available. 1572 */ 1573 virtio_wmb(vq->weak_barriers); 1574 vq->packed.vring.desc[head].flags = head_flags; 1575 vq->num_added += descs_used; 1576 1577 pr_debug("Added buffer head %i to %p\n", head, vq); 1578 END_USE(vq); 1579 1580 return 0; 1581 1582 unmap_release: 1583 err_idx = i; 1584 i = head; 1585 curr = vq->free_head; 1586 1587 vq->packed.avail_used_flags = avail_used_flags; 1588 1589 for (n = 0; n < total_sg; n++) { 1590 if (i == err_idx) 1591 break; 1592 vring_unmap_extra_packed(vq, &vq->packed.desc_extra[curr]); 1593 curr = vq->packed.desc_extra[curr].next; 1594 i++; 1595 if (i >= vq->packed.vring.num) 1596 i = 0; 1597 } 1598 1599 END_USE(vq); 1600 return -EIO; 1601 } 1602 1603 static bool virtqueue_kick_prepare_packed(struct virtqueue *_vq) 1604 { 1605 struct vring_virtqueue *vq = to_vvq(_vq); 1606 u16 new, old, off_wrap, flags, wrap_counter, event_idx; 1607 bool needs_kick; 1608 union { 1609 struct { 1610 __le16 off_wrap; 1611 __le16 flags; 1612 }; 1613 u32 u32; 1614 } snapshot; 1615 1616 START_USE(vq); 1617 1618 /* 1619 * We need to expose the new flags value before checking notification 1620 * suppressions. 1621 */ 1622 virtio_mb(vq->weak_barriers); 1623 1624 old = vq->packed.next_avail_idx - vq->num_added; 1625 new = vq->packed.next_avail_idx; 1626 vq->num_added = 0; 1627 1628 snapshot.u32 = *(u32 *)vq->packed.vring.device; 1629 flags = le16_to_cpu(snapshot.flags); 1630 1631 LAST_ADD_TIME_CHECK(vq); 1632 LAST_ADD_TIME_INVALID(vq); 1633 1634 if (flags != VRING_PACKED_EVENT_FLAG_DESC) { 1635 needs_kick = (flags != VRING_PACKED_EVENT_FLAG_DISABLE); 1636 goto out; 1637 } 1638 1639 off_wrap = le16_to_cpu(snapshot.off_wrap); 1640 1641 wrap_counter = off_wrap >> VRING_PACKED_EVENT_F_WRAP_CTR; 1642 event_idx = off_wrap & ~(1 << VRING_PACKED_EVENT_F_WRAP_CTR); 1643 if (wrap_counter != vq->packed.avail_wrap_counter) 1644 event_idx -= vq->packed.vring.num; 1645 1646 needs_kick = vring_need_event(event_idx, new, old); 1647 out: 1648 END_USE(vq); 1649 return needs_kick; 1650 } 1651 1652 static void detach_buf_packed(struct vring_virtqueue *vq, 1653 unsigned int id, void **ctx) 1654 { 1655 struct vring_desc_state_packed *state = NULL; 1656 struct vring_packed_desc *desc; 1657 unsigned int i, curr; 1658 1659 state = &vq->packed.desc_state[id]; 1660 1661 /* Clear data ptr. */ 1662 state->data = NULL; 1663 1664 vq->packed.desc_extra[state->last].next = vq->free_head; 1665 vq->free_head = id; 1666 vq->vq.num_free += state->num; 1667 1668 if (unlikely(vq->use_dma_api)) { 1669 curr = id; 1670 for (i = 0; i < state->num; i++) { 1671 vring_unmap_extra_packed(vq, 1672 &vq->packed.desc_extra[curr]); 1673 curr = vq->packed.desc_extra[curr].next; 1674 } 1675 } 1676 1677 if (vq->indirect) { 1678 struct vring_desc_extra *extra; 1679 u32 len, num; 1680 1681 /* Free the indirect table, if any, now that it's unmapped. */ 1682 desc = state->indir_desc; 1683 if (!desc) 1684 return; 1685 1686 if (vq->use_dma_api) { 1687 len = vq->packed.desc_extra[id].len; 1688 num = len / sizeof(struct vring_packed_desc); 1689 1690 extra = (struct vring_desc_extra *)&desc[num]; 1691 1692 for (i = 0; i < num; i++) 1693 vring_unmap_extra_packed(vq, &extra[i]); 1694 } 1695 kfree(desc); 1696 state->indir_desc = NULL; 1697 } else if (ctx) { 1698 *ctx = state->indir_desc; 1699 } 1700 } 1701 1702 static inline bool is_used_desc_packed(const struct vring_virtqueue *vq, 1703 u16 idx, bool used_wrap_counter) 1704 { 1705 bool avail, used; 1706 u16 flags; 1707 1708 flags = le16_to_cpu(vq->packed.vring.desc[idx].flags); 1709 avail = !!(flags & (1 << VRING_PACKED_DESC_F_AVAIL)); 1710 used = !!(flags & (1 << VRING_PACKED_DESC_F_USED)); 1711 1712 return avail == used && used == used_wrap_counter; 1713 } 1714 1715 static bool more_used_packed(const struct vring_virtqueue *vq) 1716 { 1717 u16 last_used; 1718 u16 last_used_idx; 1719 bool used_wrap_counter; 1720 1721 last_used_idx = READ_ONCE(vq->last_used_idx); 1722 last_used = packed_last_used(last_used_idx); 1723 used_wrap_counter = packed_used_wrap_counter(last_used_idx); 1724 return is_used_desc_packed(vq, last_used, used_wrap_counter); 1725 } 1726 1727 static void *virtqueue_get_buf_ctx_packed(struct virtqueue *_vq, 1728 unsigned int *len, 1729 void **ctx) 1730 { 1731 struct vring_virtqueue *vq = to_vvq(_vq); 1732 u16 last_used, id, last_used_idx; 1733 bool used_wrap_counter; 1734 void *ret; 1735 1736 START_USE(vq); 1737 1738 if (unlikely(vq->broken)) { 1739 END_USE(vq); 1740 return NULL; 1741 } 1742 1743 if (!more_used_packed(vq)) { 1744 pr_debug("No more buffers in queue\n"); 1745 END_USE(vq); 1746 return NULL; 1747 } 1748 1749 /* Only get used elements after they have been exposed by host. */ 1750 virtio_rmb(vq->weak_barriers); 1751 1752 last_used_idx = READ_ONCE(vq->last_used_idx); 1753 used_wrap_counter = packed_used_wrap_counter(last_used_idx); 1754 last_used = packed_last_used(last_used_idx); 1755 id = le16_to_cpu(vq->packed.vring.desc[last_used].id); 1756 *len = le32_to_cpu(vq->packed.vring.desc[last_used].len); 1757 1758 if (unlikely(id >= vq->packed.vring.num)) { 1759 BAD_RING(vq, "id %u out of range\n", id); 1760 return NULL; 1761 } 1762 if (unlikely(!vq->packed.desc_state[id].data)) { 1763 BAD_RING(vq, "id %u is not a head!\n", id); 1764 return NULL; 1765 } 1766 1767 /* detach_buf_packed clears data, so grab it now. */ 1768 ret = vq->packed.desc_state[id].data; 1769 detach_buf_packed(vq, id, ctx); 1770 1771 last_used += vq->packed.desc_state[id].num; 1772 if (unlikely(last_used >= vq->packed.vring.num)) { 1773 last_used -= vq->packed.vring.num; 1774 used_wrap_counter ^= 1; 1775 } 1776 1777 last_used = (last_used | (used_wrap_counter << VRING_PACKED_EVENT_F_WRAP_CTR)); 1778 WRITE_ONCE(vq->last_used_idx, last_used); 1779 1780 /* 1781 * If we expect an interrupt for the next entry, tell host 1782 * by writing event index and flush out the write before 1783 * the read in the next get_buf call. 1784 */ 1785 if (vq->packed.event_flags_shadow == VRING_PACKED_EVENT_FLAG_DESC) 1786 virtio_store_mb(vq->weak_barriers, 1787 &vq->packed.vring.driver->off_wrap, 1788 cpu_to_le16(vq->last_used_idx)); 1789 1790 LAST_ADD_TIME_INVALID(vq); 1791 1792 END_USE(vq); 1793 return ret; 1794 } 1795 1796 static void virtqueue_disable_cb_packed(struct virtqueue *_vq) 1797 { 1798 struct vring_virtqueue *vq = to_vvq(_vq); 1799 1800 if (vq->packed.event_flags_shadow != VRING_PACKED_EVENT_FLAG_DISABLE) { 1801 vq->packed.event_flags_shadow = VRING_PACKED_EVENT_FLAG_DISABLE; 1802 1803 /* 1804 * If device triggered an event already it won't trigger one again: 1805 * no need to disable. 1806 */ 1807 if (vq->event_triggered) 1808 return; 1809 1810 vq->packed.vring.driver->flags = 1811 cpu_to_le16(vq->packed.event_flags_shadow); 1812 } 1813 } 1814 1815 static unsigned int virtqueue_enable_cb_prepare_packed(struct virtqueue *_vq) 1816 { 1817 struct vring_virtqueue *vq = to_vvq(_vq); 1818 1819 START_USE(vq); 1820 1821 /* 1822 * We optimistically turn back on interrupts, then check if there was 1823 * more to do. 1824 */ 1825 1826 if (vq->event) { 1827 vq->packed.vring.driver->off_wrap = 1828 cpu_to_le16(vq->last_used_idx); 1829 /* 1830 * We need to update event offset and event wrap 1831 * counter first before updating event flags. 1832 */ 1833 virtio_wmb(vq->weak_barriers); 1834 } 1835 1836 if (vq->packed.event_flags_shadow == VRING_PACKED_EVENT_FLAG_DISABLE) { 1837 vq->packed.event_flags_shadow = vq->event ? 1838 VRING_PACKED_EVENT_FLAG_DESC : 1839 VRING_PACKED_EVENT_FLAG_ENABLE; 1840 vq->packed.vring.driver->flags = 1841 cpu_to_le16(vq->packed.event_flags_shadow); 1842 } 1843 1844 END_USE(vq); 1845 return vq->last_used_idx; 1846 } 1847 1848 static bool virtqueue_poll_packed(struct virtqueue *_vq, u16 off_wrap) 1849 { 1850 struct vring_virtqueue *vq = to_vvq(_vq); 1851 bool wrap_counter; 1852 u16 used_idx; 1853 1854 wrap_counter = off_wrap >> VRING_PACKED_EVENT_F_WRAP_CTR; 1855 used_idx = off_wrap & ~(1 << VRING_PACKED_EVENT_F_WRAP_CTR); 1856 1857 return is_used_desc_packed(vq, used_idx, wrap_counter); 1858 } 1859 1860 static bool virtqueue_enable_cb_delayed_packed(struct virtqueue *_vq) 1861 { 1862 struct vring_virtqueue *vq = to_vvq(_vq); 1863 u16 used_idx, wrap_counter, last_used_idx; 1864 u16 bufs; 1865 1866 START_USE(vq); 1867 1868 /* 1869 * We optimistically turn back on interrupts, then check if there was 1870 * more to do. 1871 */ 1872 1873 if (vq->event) { 1874 /* TODO: tune this threshold */ 1875 bufs = (vq->packed.vring.num - vq->vq.num_free) * 3 / 4; 1876 last_used_idx = READ_ONCE(vq->last_used_idx); 1877 wrap_counter = packed_used_wrap_counter(last_used_idx); 1878 1879 used_idx = packed_last_used(last_used_idx) + bufs; 1880 if (used_idx >= vq->packed.vring.num) { 1881 used_idx -= vq->packed.vring.num; 1882 wrap_counter ^= 1; 1883 } 1884 1885 vq->packed.vring.driver->off_wrap = cpu_to_le16(used_idx | 1886 (wrap_counter << VRING_PACKED_EVENT_F_WRAP_CTR)); 1887 1888 /* 1889 * We need to update event offset and event wrap 1890 * counter first before updating event flags. 1891 */ 1892 virtio_wmb(vq->weak_barriers); 1893 } 1894 1895 if (vq->packed.event_flags_shadow == VRING_PACKED_EVENT_FLAG_DISABLE) { 1896 vq->packed.event_flags_shadow = vq->event ? 1897 VRING_PACKED_EVENT_FLAG_DESC : 1898 VRING_PACKED_EVENT_FLAG_ENABLE; 1899 vq->packed.vring.driver->flags = 1900 cpu_to_le16(vq->packed.event_flags_shadow); 1901 } 1902 1903 /* 1904 * We need to update event suppression structure first 1905 * before re-checking for more used buffers. 1906 */ 1907 virtio_mb(vq->weak_barriers); 1908 1909 last_used_idx = READ_ONCE(vq->last_used_idx); 1910 wrap_counter = packed_used_wrap_counter(last_used_idx); 1911 used_idx = packed_last_used(last_used_idx); 1912 if (is_used_desc_packed(vq, used_idx, wrap_counter)) { 1913 END_USE(vq); 1914 return false; 1915 } 1916 1917 END_USE(vq); 1918 return true; 1919 } 1920 1921 static void *virtqueue_detach_unused_buf_packed(struct virtqueue *_vq) 1922 { 1923 struct vring_virtqueue *vq = to_vvq(_vq); 1924 unsigned int i; 1925 void *buf; 1926 1927 START_USE(vq); 1928 1929 for (i = 0; i < vq->packed.vring.num; i++) { 1930 if (!vq->packed.desc_state[i].data) 1931 continue; 1932 /* detach_buf clears data, so grab it now. */ 1933 buf = vq->packed.desc_state[i].data; 1934 detach_buf_packed(vq, i, NULL); 1935 END_USE(vq); 1936 return buf; 1937 } 1938 /* That should have freed everything. */ 1939 BUG_ON(vq->vq.num_free != vq->packed.vring.num); 1940 1941 END_USE(vq); 1942 return NULL; 1943 } 1944 1945 static struct vring_desc_extra *vring_alloc_desc_extra(unsigned int num) 1946 { 1947 struct vring_desc_extra *desc_extra; 1948 unsigned int i; 1949 1950 desc_extra = kmalloc_array(num, sizeof(struct vring_desc_extra), 1951 GFP_KERNEL); 1952 if (!desc_extra) 1953 return NULL; 1954 1955 memset(desc_extra, 0, num * sizeof(struct vring_desc_extra)); 1956 1957 for (i = 0; i < num - 1; i++) 1958 desc_extra[i].next = i + 1; 1959 1960 return desc_extra; 1961 } 1962 1963 static void vring_free_packed(struct vring_virtqueue_packed *vring_packed, 1964 struct virtio_device *vdev, 1965 struct device *dma_dev) 1966 { 1967 if (vring_packed->vring.desc) 1968 vring_free_queue(vdev, vring_packed->ring_size_in_bytes, 1969 vring_packed->vring.desc, 1970 vring_packed->ring_dma_addr, 1971 dma_dev); 1972 1973 if (vring_packed->vring.driver) 1974 vring_free_queue(vdev, vring_packed->event_size_in_bytes, 1975 vring_packed->vring.driver, 1976 vring_packed->driver_event_dma_addr, 1977 dma_dev); 1978 1979 if (vring_packed->vring.device) 1980 vring_free_queue(vdev, vring_packed->event_size_in_bytes, 1981 vring_packed->vring.device, 1982 vring_packed->device_event_dma_addr, 1983 dma_dev); 1984 1985 kfree(vring_packed->desc_state); 1986 kfree(vring_packed->desc_extra); 1987 } 1988 1989 static int vring_alloc_queue_packed(struct vring_virtqueue_packed *vring_packed, 1990 struct virtio_device *vdev, 1991 u32 num, struct device *dma_dev) 1992 { 1993 struct vring_packed_desc *ring; 1994 struct vring_packed_desc_event *driver, *device; 1995 dma_addr_t ring_dma_addr, driver_event_dma_addr, device_event_dma_addr; 1996 size_t ring_size_in_bytes, event_size_in_bytes; 1997 1998 ring_size_in_bytes = num * sizeof(struct vring_packed_desc); 1999 2000 ring = vring_alloc_queue(vdev, ring_size_in_bytes, 2001 &ring_dma_addr, 2002 GFP_KERNEL | __GFP_NOWARN | __GFP_ZERO, 2003 dma_dev); 2004 if (!ring) 2005 goto err; 2006 2007 vring_packed->vring.desc = ring; 2008 vring_packed->ring_dma_addr = ring_dma_addr; 2009 vring_packed->ring_size_in_bytes = ring_size_in_bytes; 2010 2011 event_size_in_bytes = sizeof(struct vring_packed_desc_event); 2012 2013 driver = vring_alloc_queue(vdev, event_size_in_bytes, 2014 &driver_event_dma_addr, 2015 GFP_KERNEL | __GFP_NOWARN | __GFP_ZERO, 2016 dma_dev); 2017 if (!driver) 2018 goto err; 2019 2020 vring_packed->vring.driver = driver; 2021 vring_packed->event_size_in_bytes = event_size_in_bytes; 2022 vring_packed->driver_event_dma_addr = driver_event_dma_addr; 2023 2024 device = vring_alloc_queue(vdev, event_size_in_bytes, 2025 &device_event_dma_addr, 2026 GFP_KERNEL | __GFP_NOWARN | __GFP_ZERO, 2027 dma_dev); 2028 if (!device) 2029 goto err; 2030 2031 vring_packed->vring.device = device; 2032 vring_packed->device_event_dma_addr = device_event_dma_addr; 2033 2034 vring_packed->vring.num = num; 2035 2036 return 0; 2037 2038 err: 2039 vring_free_packed(vring_packed, vdev, dma_dev); 2040 return -ENOMEM; 2041 } 2042 2043 static int vring_alloc_state_extra_packed(struct vring_virtqueue_packed *vring_packed) 2044 { 2045 struct vring_desc_state_packed *state; 2046 struct vring_desc_extra *extra; 2047 u32 num = vring_packed->vring.num; 2048 2049 state = kmalloc_array(num, sizeof(struct vring_desc_state_packed), GFP_KERNEL); 2050 if (!state) 2051 goto err_desc_state; 2052 2053 memset(state, 0, num * sizeof(struct vring_desc_state_packed)); 2054 2055 extra = vring_alloc_desc_extra(num); 2056 if (!extra) 2057 goto err_desc_extra; 2058 2059 vring_packed->desc_state = state; 2060 vring_packed->desc_extra = extra; 2061 2062 return 0; 2063 2064 err_desc_extra: 2065 kfree(state); 2066 err_desc_state: 2067 return -ENOMEM; 2068 } 2069 2070 static void virtqueue_vring_init_packed(struct vring_virtqueue_packed *vring_packed, 2071 bool callback) 2072 { 2073 vring_packed->next_avail_idx = 0; 2074 vring_packed->avail_wrap_counter = 1; 2075 vring_packed->event_flags_shadow = 0; 2076 vring_packed->avail_used_flags = 1 << VRING_PACKED_DESC_F_AVAIL; 2077 2078 /* No callback? Tell other side not to bother us. */ 2079 if (!callback) { 2080 vring_packed->event_flags_shadow = VRING_PACKED_EVENT_FLAG_DISABLE; 2081 vring_packed->vring.driver->flags = 2082 cpu_to_le16(vring_packed->event_flags_shadow); 2083 } 2084 } 2085 2086 static void virtqueue_vring_attach_packed(struct vring_virtqueue *vq, 2087 struct vring_virtqueue_packed *vring_packed) 2088 { 2089 vq->packed = *vring_packed; 2090 2091 /* Put everything in free lists. */ 2092 vq->free_head = 0; 2093 } 2094 2095 static void virtqueue_reinit_packed(struct vring_virtqueue *vq) 2096 { 2097 memset(vq->packed.vring.device, 0, vq->packed.event_size_in_bytes); 2098 memset(vq->packed.vring.driver, 0, vq->packed.event_size_in_bytes); 2099 2100 /* we need to reset the desc.flags. For more, see is_used_desc_packed() */ 2101 memset(vq->packed.vring.desc, 0, vq->packed.ring_size_in_bytes); 2102 2103 virtqueue_init(vq, vq->packed.vring.num); 2104 virtqueue_vring_init_packed(&vq->packed, !!vq->vq.callback); 2105 } 2106 2107 static struct virtqueue *__vring_new_virtqueue_packed(unsigned int index, 2108 struct vring_virtqueue_packed *vring_packed, 2109 struct virtio_device *vdev, 2110 bool weak_barriers, 2111 bool context, 2112 bool (*notify)(struct virtqueue *), 2113 void (*callback)(struct virtqueue *), 2114 const char *name, 2115 struct device *dma_dev) 2116 { 2117 struct vring_virtqueue *vq; 2118 int err; 2119 2120 vq = kmalloc(sizeof(*vq), GFP_KERNEL); 2121 if (!vq) 2122 return NULL; 2123 2124 vq->vq.callback = callback; 2125 vq->vq.vdev = vdev; 2126 vq->vq.name = name; 2127 vq->vq.index = index; 2128 vq->vq.reset = false; 2129 vq->we_own_ring = false; 2130 vq->notify = notify; 2131 vq->weak_barriers = weak_barriers; 2132 #ifdef CONFIG_VIRTIO_HARDEN_NOTIFICATION 2133 vq->broken = true; 2134 #else 2135 vq->broken = false; 2136 #endif 2137 vq->packed_ring = true; 2138 vq->dma_dev = dma_dev; 2139 vq->use_dma_api = vring_use_dma_api(vdev); 2140 2141 vq->indirect = virtio_has_feature(vdev, VIRTIO_RING_F_INDIRECT_DESC) && 2142 !context; 2143 vq->event = virtio_has_feature(vdev, VIRTIO_RING_F_EVENT_IDX); 2144 2145 if (virtio_has_feature(vdev, VIRTIO_F_ORDER_PLATFORM)) 2146 vq->weak_barriers = false; 2147 2148 err = vring_alloc_state_extra_packed(vring_packed); 2149 if (err) { 2150 kfree(vq); 2151 return NULL; 2152 } 2153 2154 virtqueue_vring_init_packed(vring_packed, !!callback); 2155 2156 virtqueue_init(vq, vring_packed->vring.num); 2157 virtqueue_vring_attach_packed(vq, vring_packed); 2158 2159 spin_lock(&vdev->vqs_list_lock); 2160 list_add_tail(&vq->vq.list, &vdev->vqs); 2161 spin_unlock(&vdev->vqs_list_lock); 2162 return &vq->vq; 2163 } 2164 2165 static struct virtqueue *vring_create_virtqueue_packed( 2166 unsigned int index, 2167 unsigned int num, 2168 unsigned int vring_align, 2169 struct virtio_device *vdev, 2170 bool weak_barriers, 2171 bool may_reduce_num, 2172 bool context, 2173 bool (*notify)(struct virtqueue *), 2174 void (*callback)(struct virtqueue *), 2175 const char *name, 2176 struct device *dma_dev) 2177 { 2178 struct vring_virtqueue_packed vring_packed = {}; 2179 struct virtqueue *vq; 2180 2181 if (vring_alloc_queue_packed(&vring_packed, vdev, num, dma_dev)) 2182 return NULL; 2183 2184 vq = __vring_new_virtqueue_packed(index, &vring_packed, vdev, weak_barriers, 2185 context, notify, callback, name, dma_dev); 2186 if (!vq) { 2187 vring_free_packed(&vring_packed, vdev, dma_dev); 2188 return NULL; 2189 } 2190 2191 to_vvq(vq)->we_own_ring = true; 2192 2193 return vq; 2194 } 2195 2196 static int virtqueue_resize_packed(struct virtqueue *_vq, u32 num) 2197 { 2198 struct vring_virtqueue_packed vring_packed = {}; 2199 struct vring_virtqueue *vq = to_vvq(_vq); 2200 struct virtio_device *vdev = _vq->vdev; 2201 int err; 2202 2203 if (vring_alloc_queue_packed(&vring_packed, vdev, num, vring_dma_dev(vq))) 2204 goto err_ring; 2205 2206 err = vring_alloc_state_extra_packed(&vring_packed); 2207 if (err) 2208 goto err_state_extra; 2209 2210 vring_free(&vq->vq); 2211 2212 virtqueue_vring_init_packed(&vring_packed, !!vq->vq.callback); 2213 2214 virtqueue_init(vq, vring_packed.vring.num); 2215 virtqueue_vring_attach_packed(vq, &vring_packed); 2216 2217 return 0; 2218 2219 err_state_extra: 2220 vring_free_packed(&vring_packed, vdev, vring_dma_dev(vq)); 2221 err_ring: 2222 virtqueue_reinit_packed(vq); 2223 return -ENOMEM; 2224 } 2225 2226 static int virtqueue_disable_and_recycle(struct virtqueue *_vq, 2227 void (*recycle)(struct virtqueue *vq, void *buf)) 2228 { 2229 struct vring_virtqueue *vq = to_vvq(_vq); 2230 struct virtio_device *vdev = vq->vq.vdev; 2231 void *buf; 2232 int err; 2233 2234 if (!vq->we_own_ring) 2235 return -EPERM; 2236 2237 if (!vdev->config->disable_vq_and_reset) 2238 return -ENOENT; 2239 2240 if (!vdev->config->enable_vq_after_reset) 2241 return -ENOENT; 2242 2243 err = vdev->config->disable_vq_and_reset(_vq); 2244 if (err) 2245 return err; 2246 2247 while ((buf = virtqueue_detach_unused_buf(_vq)) != NULL) 2248 recycle(_vq, buf); 2249 2250 return 0; 2251 } 2252 2253 static int virtqueue_enable_after_reset(struct virtqueue *_vq) 2254 { 2255 struct vring_virtqueue *vq = to_vvq(_vq); 2256 struct virtio_device *vdev = vq->vq.vdev; 2257 2258 if (vdev->config->enable_vq_after_reset(_vq)) 2259 return -EBUSY; 2260 2261 return 0; 2262 } 2263 2264 /* 2265 * Generic functions and exported symbols. 2266 */ 2267 2268 static inline int virtqueue_add(struct virtqueue *_vq, 2269 struct scatterlist *sgs[], 2270 unsigned int total_sg, 2271 unsigned int out_sgs, 2272 unsigned int in_sgs, 2273 void *data, 2274 void *ctx, 2275 bool premapped, 2276 gfp_t gfp) 2277 { 2278 struct vring_virtqueue *vq = to_vvq(_vq); 2279 2280 return vq->packed_ring ? virtqueue_add_packed(_vq, sgs, total_sg, 2281 out_sgs, in_sgs, data, ctx, premapped, gfp) : 2282 virtqueue_add_split(_vq, sgs, total_sg, 2283 out_sgs, in_sgs, data, ctx, premapped, gfp); 2284 } 2285 2286 /** 2287 * virtqueue_add_sgs - expose buffers to other end 2288 * @_vq: the struct virtqueue we're talking about. 2289 * @sgs: array of terminated scatterlists. 2290 * @out_sgs: the number of scatterlists readable by other side 2291 * @in_sgs: the number of scatterlists which are writable (after readable ones) 2292 * @data: the token identifying the buffer. 2293 * @gfp: how to do memory allocations (if necessary). 2294 * 2295 * Caller must ensure we don't call this with other virtqueue operations 2296 * at the same time (except where noted). 2297 * 2298 * Returns zero or a negative error (ie. ENOSPC, ENOMEM, EIO). 2299 */ 2300 int virtqueue_add_sgs(struct virtqueue *_vq, 2301 struct scatterlist *sgs[], 2302 unsigned int out_sgs, 2303 unsigned int in_sgs, 2304 void *data, 2305 gfp_t gfp) 2306 { 2307 unsigned int i, total_sg = 0; 2308 2309 /* Count them first. */ 2310 for (i = 0; i < out_sgs + in_sgs; i++) { 2311 struct scatterlist *sg; 2312 2313 for (sg = sgs[i]; sg; sg = sg_next(sg)) 2314 total_sg++; 2315 } 2316 return virtqueue_add(_vq, sgs, total_sg, out_sgs, in_sgs, 2317 data, NULL, false, gfp); 2318 } 2319 EXPORT_SYMBOL_GPL(virtqueue_add_sgs); 2320 2321 /** 2322 * virtqueue_add_outbuf - expose output buffers to other end 2323 * @vq: the struct virtqueue we're talking about. 2324 * @sg: scatterlist (must be well-formed and terminated!) 2325 * @num: the number of entries in @sg readable by other side 2326 * @data: the token identifying the buffer. 2327 * @gfp: how to do memory allocations (if necessary). 2328 * 2329 * Caller must ensure we don't call this with other virtqueue operations 2330 * at the same time (except where noted). 2331 * 2332 * Returns zero or a negative error (ie. ENOSPC, ENOMEM, EIO). 2333 */ 2334 int virtqueue_add_outbuf(struct virtqueue *vq, 2335 struct scatterlist *sg, unsigned int num, 2336 void *data, 2337 gfp_t gfp) 2338 { 2339 return virtqueue_add(vq, &sg, num, 1, 0, data, NULL, false, gfp); 2340 } 2341 EXPORT_SYMBOL_GPL(virtqueue_add_outbuf); 2342 2343 /** 2344 * virtqueue_add_outbuf_premapped - expose output buffers to other end 2345 * @vq: the struct virtqueue we're talking about. 2346 * @sg: scatterlist (must be well-formed and terminated!) 2347 * @num: the number of entries in @sg readable by other side 2348 * @data: the token identifying the buffer. 2349 * @gfp: how to do memory allocations (if necessary). 2350 * 2351 * Caller must ensure we don't call this with other virtqueue operations 2352 * at the same time (except where noted). 2353 * 2354 * Return: 2355 * Returns zero or a negative error (ie. ENOSPC, ENOMEM, EIO). 2356 */ 2357 int virtqueue_add_outbuf_premapped(struct virtqueue *vq, 2358 struct scatterlist *sg, unsigned int num, 2359 void *data, 2360 gfp_t gfp) 2361 { 2362 return virtqueue_add(vq, &sg, num, 1, 0, data, NULL, true, gfp); 2363 } 2364 EXPORT_SYMBOL_GPL(virtqueue_add_outbuf_premapped); 2365 2366 /** 2367 * virtqueue_add_inbuf - expose input buffers to other end 2368 * @vq: the struct virtqueue we're talking about. 2369 * @sg: scatterlist (must be well-formed and terminated!) 2370 * @num: the number of entries in @sg writable by other side 2371 * @data: the token identifying the buffer. 2372 * @gfp: how to do memory allocations (if necessary). 2373 * 2374 * Caller must ensure we don't call this with other virtqueue operations 2375 * at the same time (except where noted). 2376 * 2377 * Returns zero or a negative error (ie. ENOSPC, ENOMEM, EIO). 2378 */ 2379 int virtqueue_add_inbuf(struct virtqueue *vq, 2380 struct scatterlist *sg, unsigned int num, 2381 void *data, 2382 gfp_t gfp) 2383 { 2384 return virtqueue_add(vq, &sg, num, 0, 1, data, NULL, false, gfp); 2385 } 2386 EXPORT_SYMBOL_GPL(virtqueue_add_inbuf); 2387 2388 /** 2389 * virtqueue_add_inbuf_ctx - expose input buffers to other end 2390 * @vq: the struct virtqueue we're talking about. 2391 * @sg: scatterlist (must be well-formed and terminated!) 2392 * @num: the number of entries in @sg writable by other side 2393 * @data: the token identifying the buffer. 2394 * @ctx: extra context for the token 2395 * @gfp: how to do memory allocations (if necessary). 2396 * 2397 * Caller must ensure we don't call this with other virtqueue operations 2398 * at the same time (except where noted). 2399 * 2400 * Returns zero or a negative error (ie. ENOSPC, ENOMEM, EIO). 2401 */ 2402 int virtqueue_add_inbuf_ctx(struct virtqueue *vq, 2403 struct scatterlist *sg, unsigned int num, 2404 void *data, 2405 void *ctx, 2406 gfp_t gfp) 2407 { 2408 return virtqueue_add(vq, &sg, num, 0, 1, data, ctx, false, gfp); 2409 } 2410 EXPORT_SYMBOL_GPL(virtqueue_add_inbuf_ctx); 2411 2412 /** 2413 * virtqueue_add_inbuf_premapped - expose input buffers to other end 2414 * @vq: the struct virtqueue we're talking about. 2415 * @sg: scatterlist (must be well-formed and terminated!) 2416 * @num: the number of entries in @sg writable by other side 2417 * @data: the token identifying the buffer. 2418 * @ctx: extra context for the token 2419 * @gfp: how to do memory allocations (if necessary). 2420 * 2421 * Caller must ensure we don't call this with other virtqueue operations 2422 * at the same time (except where noted). 2423 * 2424 * Return: 2425 * Returns zero or a negative error (ie. ENOSPC, ENOMEM, EIO). 2426 */ 2427 int virtqueue_add_inbuf_premapped(struct virtqueue *vq, 2428 struct scatterlist *sg, unsigned int num, 2429 void *data, 2430 void *ctx, 2431 gfp_t gfp) 2432 { 2433 return virtqueue_add(vq, &sg, num, 0, 1, data, ctx, true, gfp); 2434 } 2435 EXPORT_SYMBOL_GPL(virtqueue_add_inbuf_premapped); 2436 2437 /** 2438 * virtqueue_dma_dev - get the dma dev 2439 * @_vq: the struct virtqueue we're talking about. 2440 * 2441 * Returns the dma dev. That can been used for dma api. 2442 */ 2443 struct device *virtqueue_dma_dev(struct virtqueue *_vq) 2444 { 2445 struct vring_virtqueue *vq = to_vvq(_vq); 2446 2447 if (vq->use_dma_api) 2448 return vring_dma_dev(vq); 2449 else 2450 return NULL; 2451 } 2452 EXPORT_SYMBOL_GPL(virtqueue_dma_dev); 2453 2454 /** 2455 * virtqueue_kick_prepare - first half of split virtqueue_kick call. 2456 * @_vq: the struct virtqueue 2457 * 2458 * Instead of virtqueue_kick(), you can do: 2459 * if (virtqueue_kick_prepare(vq)) 2460 * virtqueue_notify(vq); 2461 * 2462 * This is sometimes useful because the virtqueue_kick_prepare() needs 2463 * to be serialized, but the actual virtqueue_notify() call does not. 2464 */ 2465 bool virtqueue_kick_prepare(struct virtqueue *_vq) 2466 { 2467 struct vring_virtqueue *vq = to_vvq(_vq); 2468 2469 return vq->packed_ring ? virtqueue_kick_prepare_packed(_vq) : 2470 virtqueue_kick_prepare_split(_vq); 2471 } 2472 EXPORT_SYMBOL_GPL(virtqueue_kick_prepare); 2473 2474 /** 2475 * virtqueue_notify - second half of split virtqueue_kick call. 2476 * @_vq: the struct virtqueue 2477 * 2478 * This does not need to be serialized. 2479 * 2480 * Returns false if host notify failed or queue is broken, otherwise true. 2481 */ 2482 bool virtqueue_notify(struct virtqueue *_vq) 2483 { 2484 struct vring_virtqueue *vq = to_vvq(_vq); 2485 2486 if (unlikely(vq->broken)) 2487 return false; 2488 2489 /* Prod other side to tell it about changes. */ 2490 if (!vq->notify(_vq)) { 2491 vq->broken = true; 2492 return false; 2493 } 2494 return true; 2495 } 2496 EXPORT_SYMBOL_GPL(virtqueue_notify); 2497 2498 /** 2499 * virtqueue_kick - update after add_buf 2500 * @vq: the struct virtqueue 2501 * 2502 * After one or more virtqueue_add_* calls, invoke this to kick 2503 * the other side. 2504 * 2505 * Caller must ensure we don't call this with other virtqueue 2506 * operations at the same time (except where noted). 2507 * 2508 * Returns false if kick failed, otherwise true. 2509 */ 2510 bool virtqueue_kick(struct virtqueue *vq) 2511 { 2512 if (virtqueue_kick_prepare(vq)) 2513 return virtqueue_notify(vq); 2514 return true; 2515 } 2516 EXPORT_SYMBOL_GPL(virtqueue_kick); 2517 2518 /** 2519 * virtqueue_get_buf_ctx - get the next used buffer 2520 * @_vq: the struct virtqueue we're talking about. 2521 * @len: the length written into the buffer 2522 * @ctx: extra context for the token 2523 * 2524 * If the device wrote data into the buffer, @len will be set to the 2525 * amount written. This means you don't need to clear the buffer 2526 * beforehand to ensure there's no data leakage in the case of short 2527 * writes. 2528 * 2529 * Caller must ensure we don't call this with other virtqueue 2530 * operations at the same time (except where noted). 2531 * 2532 * Returns NULL if there are no used buffers, or the "data" token 2533 * handed to virtqueue_add_*(). 2534 */ 2535 void *virtqueue_get_buf_ctx(struct virtqueue *_vq, unsigned int *len, 2536 void **ctx) 2537 { 2538 struct vring_virtqueue *vq = to_vvq(_vq); 2539 2540 return vq->packed_ring ? virtqueue_get_buf_ctx_packed(_vq, len, ctx) : 2541 virtqueue_get_buf_ctx_split(_vq, len, ctx); 2542 } 2543 EXPORT_SYMBOL_GPL(virtqueue_get_buf_ctx); 2544 2545 void *virtqueue_get_buf(struct virtqueue *_vq, unsigned int *len) 2546 { 2547 return virtqueue_get_buf_ctx(_vq, len, NULL); 2548 } 2549 EXPORT_SYMBOL_GPL(virtqueue_get_buf); 2550 /** 2551 * virtqueue_disable_cb - disable callbacks 2552 * @_vq: the struct virtqueue we're talking about. 2553 * 2554 * Note that this is not necessarily synchronous, hence unreliable and only 2555 * useful as an optimization. 2556 * 2557 * Unlike other operations, this need not be serialized. 2558 */ 2559 void virtqueue_disable_cb(struct virtqueue *_vq) 2560 { 2561 struct vring_virtqueue *vq = to_vvq(_vq); 2562 2563 if (vq->packed_ring) 2564 virtqueue_disable_cb_packed(_vq); 2565 else 2566 virtqueue_disable_cb_split(_vq); 2567 } 2568 EXPORT_SYMBOL_GPL(virtqueue_disable_cb); 2569 2570 /** 2571 * virtqueue_enable_cb_prepare - restart callbacks after disable_cb 2572 * @_vq: the struct virtqueue we're talking about. 2573 * 2574 * This re-enables callbacks; it returns current queue state 2575 * in an opaque unsigned value. This value should be later tested by 2576 * virtqueue_poll, to detect a possible race between the driver checking for 2577 * more work, and enabling callbacks. 2578 * 2579 * Caller must ensure we don't call this with other virtqueue 2580 * operations at the same time (except where noted). 2581 */ 2582 unsigned int virtqueue_enable_cb_prepare(struct virtqueue *_vq) 2583 { 2584 struct vring_virtqueue *vq = to_vvq(_vq); 2585 2586 if (vq->event_triggered) 2587 vq->event_triggered = false; 2588 2589 return vq->packed_ring ? virtqueue_enable_cb_prepare_packed(_vq) : 2590 virtqueue_enable_cb_prepare_split(_vq); 2591 } 2592 EXPORT_SYMBOL_GPL(virtqueue_enable_cb_prepare); 2593 2594 /** 2595 * virtqueue_poll - query pending used buffers 2596 * @_vq: the struct virtqueue we're talking about. 2597 * @last_used_idx: virtqueue state (from call to virtqueue_enable_cb_prepare). 2598 * 2599 * Returns "true" if there are pending used buffers in the queue. 2600 * 2601 * This does not need to be serialized. 2602 */ 2603 bool virtqueue_poll(struct virtqueue *_vq, unsigned int last_used_idx) 2604 { 2605 struct vring_virtqueue *vq = to_vvq(_vq); 2606 2607 if (unlikely(vq->broken)) 2608 return false; 2609 2610 virtio_mb(vq->weak_barriers); 2611 return vq->packed_ring ? virtqueue_poll_packed(_vq, last_used_idx) : 2612 virtqueue_poll_split(_vq, last_used_idx); 2613 } 2614 EXPORT_SYMBOL_GPL(virtqueue_poll); 2615 2616 /** 2617 * virtqueue_enable_cb - restart callbacks after disable_cb. 2618 * @_vq: the struct virtqueue we're talking about. 2619 * 2620 * This re-enables callbacks; it returns "false" if there are pending 2621 * buffers in the queue, to detect a possible race between the driver 2622 * checking for more work, and enabling callbacks. 2623 * 2624 * Caller must ensure we don't call this with other virtqueue 2625 * operations at the same time (except where noted). 2626 */ 2627 bool virtqueue_enable_cb(struct virtqueue *_vq) 2628 { 2629 unsigned int last_used_idx = virtqueue_enable_cb_prepare(_vq); 2630 2631 return !virtqueue_poll(_vq, last_used_idx); 2632 } 2633 EXPORT_SYMBOL_GPL(virtqueue_enable_cb); 2634 2635 /** 2636 * virtqueue_enable_cb_delayed - restart callbacks after disable_cb. 2637 * @_vq: the struct virtqueue we're talking about. 2638 * 2639 * This re-enables callbacks but hints to the other side to delay 2640 * interrupts until most of the available buffers have been processed; 2641 * it returns "false" if there are many pending buffers in the queue, 2642 * to detect a possible race between the driver checking for more work, 2643 * and enabling callbacks. 2644 * 2645 * Caller must ensure we don't call this with other virtqueue 2646 * operations at the same time (except where noted). 2647 */ 2648 bool virtqueue_enable_cb_delayed(struct virtqueue *_vq) 2649 { 2650 struct vring_virtqueue *vq = to_vvq(_vq); 2651 2652 if (vq->event_triggered) 2653 vq->event_triggered = false; 2654 2655 return vq->packed_ring ? virtqueue_enable_cb_delayed_packed(_vq) : 2656 virtqueue_enable_cb_delayed_split(_vq); 2657 } 2658 EXPORT_SYMBOL_GPL(virtqueue_enable_cb_delayed); 2659 2660 /** 2661 * virtqueue_detach_unused_buf - detach first unused buffer 2662 * @_vq: the struct virtqueue we're talking about. 2663 * 2664 * Returns NULL or the "data" token handed to virtqueue_add_*(). 2665 * This is not valid on an active queue; it is useful for device 2666 * shutdown or the reset queue. 2667 */ 2668 void *virtqueue_detach_unused_buf(struct virtqueue *_vq) 2669 { 2670 struct vring_virtqueue *vq = to_vvq(_vq); 2671 2672 return vq->packed_ring ? virtqueue_detach_unused_buf_packed(_vq) : 2673 virtqueue_detach_unused_buf_split(_vq); 2674 } 2675 EXPORT_SYMBOL_GPL(virtqueue_detach_unused_buf); 2676 2677 static inline bool more_used(const struct vring_virtqueue *vq) 2678 { 2679 return vq->packed_ring ? more_used_packed(vq) : more_used_split(vq); 2680 } 2681 2682 /** 2683 * vring_interrupt - notify a virtqueue on an interrupt 2684 * @irq: the IRQ number (ignored) 2685 * @_vq: the struct virtqueue to notify 2686 * 2687 * Calls the callback function of @_vq to process the virtqueue 2688 * notification. 2689 */ 2690 irqreturn_t vring_interrupt(int irq, void *_vq) 2691 { 2692 struct vring_virtqueue *vq = to_vvq(_vq); 2693 2694 if (!more_used(vq)) { 2695 pr_debug("virtqueue interrupt with no work for %p\n", vq); 2696 return IRQ_NONE; 2697 } 2698 2699 if (unlikely(vq->broken)) { 2700 #ifdef CONFIG_VIRTIO_HARDEN_NOTIFICATION 2701 dev_warn_once(&vq->vq.vdev->dev, 2702 "virtio vring IRQ raised before DRIVER_OK"); 2703 return IRQ_NONE; 2704 #else 2705 return IRQ_HANDLED; 2706 #endif 2707 } 2708 2709 /* Just a hint for performance: so it's ok that this can be racy! */ 2710 if (vq->event) 2711 data_race(vq->event_triggered = true); 2712 2713 pr_debug("virtqueue callback for %p (%p)\n", vq, vq->vq.callback); 2714 if (vq->vq.callback) 2715 vq->vq.callback(&vq->vq); 2716 2717 return IRQ_HANDLED; 2718 } 2719 EXPORT_SYMBOL_GPL(vring_interrupt); 2720 2721 struct virtqueue *vring_create_virtqueue( 2722 unsigned int index, 2723 unsigned int num, 2724 unsigned int vring_align, 2725 struct virtio_device *vdev, 2726 bool weak_barriers, 2727 bool may_reduce_num, 2728 bool context, 2729 bool (*notify)(struct virtqueue *), 2730 void (*callback)(struct virtqueue *), 2731 const char *name) 2732 { 2733 2734 if (virtio_has_feature(vdev, VIRTIO_F_RING_PACKED)) 2735 return vring_create_virtqueue_packed(index, num, vring_align, 2736 vdev, weak_barriers, may_reduce_num, 2737 context, notify, callback, name, vdev->dev.parent); 2738 2739 return vring_create_virtqueue_split(index, num, vring_align, 2740 vdev, weak_barriers, may_reduce_num, 2741 context, notify, callback, name, vdev->dev.parent); 2742 } 2743 EXPORT_SYMBOL_GPL(vring_create_virtqueue); 2744 2745 struct virtqueue *vring_create_virtqueue_dma( 2746 unsigned int index, 2747 unsigned int num, 2748 unsigned int vring_align, 2749 struct virtio_device *vdev, 2750 bool weak_barriers, 2751 bool may_reduce_num, 2752 bool context, 2753 bool (*notify)(struct virtqueue *), 2754 void (*callback)(struct virtqueue *), 2755 const char *name, 2756 struct device *dma_dev) 2757 { 2758 2759 if (virtio_has_feature(vdev, VIRTIO_F_RING_PACKED)) 2760 return vring_create_virtqueue_packed(index, num, vring_align, 2761 vdev, weak_barriers, may_reduce_num, 2762 context, notify, callback, name, dma_dev); 2763 2764 return vring_create_virtqueue_split(index, num, vring_align, 2765 vdev, weak_barriers, may_reduce_num, 2766 context, notify, callback, name, dma_dev); 2767 } 2768 EXPORT_SYMBOL_GPL(vring_create_virtqueue_dma); 2769 2770 /** 2771 * virtqueue_resize - resize the vring of vq 2772 * @_vq: the struct virtqueue we're talking about. 2773 * @num: new ring num 2774 * @recycle: callback to recycle unused buffers 2775 * @recycle_done: callback to be invoked when recycle for all unused buffers done 2776 * 2777 * When it is really necessary to create a new vring, it will set the current vq 2778 * into the reset state. Then call the passed callback to recycle the buffer 2779 * that is no longer used. Only after the new vring is successfully created, the 2780 * old vring will be released. 2781 * 2782 * Caller must ensure we don't call this with other virtqueue operations 2783 * at the same time (except where noted). 2784 * 2785 * Returns zero or a negative error. 2786 * 0: success. 2787 * -ENOMEM: Failed to allocate a new ring, fall back to the original ring size. 2788 * vq can still work normally 2789 * -EBUSY: Failed to sync with device, vq may not work properly 2790 * -ENOENT: Transport or device not supported 2791 * -E2BIG/-EINVAL: num error 2792 * -EPERM: Operation not permitted 2793 * 2794 */ 2795 int virtqueue_resize(struct virtqueue *_vq, u32 num, 2796 void (*recycle)(struct virtqueue *vq, void *buf), 2797 void (*recycle_done)(struct virtqueue *vq)) 2798 { 2799 struct vring_virtqueue *vq = to_vvq(_vq); 2800 int err; 2801 2802 if (num > vq->vq.num_max) 2803 return -E2BIG; 2804 2805 if (!num) 2806 return -EINVAL; 2807 2808 if ((vq->packed_ring ? vq->packed.vring.num : vq->split.vring.num) == num) 2809 return 0; 2810 2811 err = virtqueue_disable_and_recycle(_vq, recycle); 2812 if (err) 2813 return err; 2814 if (recycle_done) 2815 recycle_done(_vq); 2816 2817 if (vq->packed_ring) 2818 err = virtqueue_resize_packed(_vq, num); 2819 else 2820 err = virtqueue_resize_split(_vq, num); 2821 2822 return virtqueue_enable_after_reset(_vq); 2823 } 2824 EXPORT_SYMBOL_GPL(virtqueue_resize); 2825 2826 /** 2827 * virtqueue_reset - detach and recycle all unused buffers 2828 * @_vq: the struct virtqueue we're talking about. 2829 * @recycle: callback to recycle unused buffers 2830 * @recycle_done: callback to be invoked when recycle for all unused buffers done 2831 * 2832 * Caller must ensure we don't call this with other virtqueue operations 2833 * at the same time (except where noted). 2834 * 2835 * Returns zero or a negative error. 2836 * 0: success. 2837 * -EBUSY: Failed to sync with device, vq may not work properly 2838 * -ENOENT: Transport or device not supported 2839 * -EPERM: Operation not permitted 2840 */ 2841 int virtqueue_reset(struct virtqueue *_vq, 2842 void (*recycle)(struct virtqueue *vq, void *buf), 2843 void (*recycle_done)(struct virtqueue *vq)) 2844 { 2845 struct vring_virtqueue *vq = to_vvq(_vq); 2846 int err; 2847 2848 err = virtqueue_disable_and_recycle(_vq, recycle); 2849 if (err) 2850 return err; 2851 if (recycle_done) 2852 recycle_done(_vq); 2853 2854 if (vq->packed_ring) 2855 virtqueue_reinit_packed(vq); 2856 else 2857 virtqueue_reinit_split(vq); 2858 2859 return virtqueue_enable_after_reset(_vq); 2860 } 2861 EXPORT_SYMBOL_GPL(virtqueue_reset); 2862 2863 struct virtqueue *vring_new_virtqueue(unsigned int index, 2864 unsigned int num, 2865 unsigned int vring_align, 2866 struct virtio_device *vdev, 2867 bool weak_barriers, 2868 bool context, 2869 void *pages, 2870 bool (*notify)(struct virtqueue *vq), 2871 void (*callback)(struct virtqueue *vq), 2872 const char *name) 2873 { 2874 struct vring_virtqueue_split vring_split = {}; 2875 2876 if (virtio_has_feature(vdev, VIRTIO_F_RING_PACKED)) { 2877 struct vring_virtqueue_packed vring_packed = {}; 2878 2879 vring_packed.vring.num = num; 2880 vring_packed.vring.desc = pages; 2881 return __vring_new_virtqueue_packed(index, &vring_packed, 2882 vdev, weak_barriers, 2883 context, notify, callback, 2884 name, vdev->dev.parent); 2885 } 2886 2887 vring_init(&vring_split.vring, num, pages, vring_align); 2888 return __vring_new_virtqueue_split(index, &vring_split, vdev, weak_barriers, 2889 context, notify, callback, name, 2890 vdev->dev.parent); 2891 } 2892 EXPORT_SYMBOL_GPL(vring_new_virtqueue); 2893 2894 static void vring_free(struct virtqueue *_vq) 2895 { 2896 struct vring_virtqueue *vq = to_vvq(_vq); 2897 2898 if (vq->we_own_ring) { 2899 if (vq->packed_ring) { 2900 vring_free_queue(vq->vq.vdev, 2901 vq->packed.ring_size_in_bytes, 2902 vq->packed.vring.desc, 2903 vq->packed.ring_dma_addr, 2904 vring_dma_dev(vq)); 2905 2906 vring_free_queue(vq->vq.vdev, 2907 vq->packed.event_size_in_bytes, 2908 vq->packed.vring.driver, 2909 vq->packed.driver_event_dma_addr, 2910 vring_dma_dev(vq)); 2911 2912 vring_free_queue(vq->vq.vdev, 2913 vq->packed.event_size_in_bytes, 2914 vq->packed.vring.device, 2915 vq->packed.device_event_dma_addr, 2916 vring_dma_dev(vq)); 2917 2918 kfree(vq->packed.desc_state); 2919 kfree(vq->packed.desc_extra); 2920 } else { 2921 vring_free_queue(vq->vq.vdev, 2922 vq->split.queue_size_in_bytes, 2923 vq->split.vring.desc, 2924 vq->split.queue_dma_addr, 2925 vring_dma_dev(vq)); 2926 } 2927 } 2928 if (!vq->packed_ring) { 2929 kfree(vq->split.desc_state); 2930 kfree(vq->split.desc_extra); 2931 } 2932 } 2933 2934 void vring_del_virtqueue(struct virtqueue *_vq) 2935 { 2936 struct vring_virtqueue *vq = to_vvq(_vq); 2937 2938 spin_lock(&vq->vq.vdev->vqs_list_lock); 2939 list_del(&_vq->list); 2940 spin_unlock(&vq->vq.vdev->vqs_list_lock); 2941 2942 vring_free(_vq); 2943 2944 kfree(vq); 2945 } 2946 EXPORT_SYMBOL_GPL(vring_del_virtqueue); 2947 2948 u32 vring_notification_data(struct virtqueue *_vq) 2949 { 2950 struct vring_virtqueue *vq = to_vvq(_vq); 2951 u16 next; 2952 2953 if (vq->packed_ring) 2954 next = (vq->packed.next_avail_idx & 2955 ~(-(1 << VRING_PACKED_EVENT_F_WRAP_CTR))) | 2956 vq->packed.avail_wrap_counter << 2957 VRING_PACKED_EVENT_F_WRAP_CTR; 2958 else 2959 next = vq->split.avail_idx_shadow; 2960 2961 return next << 16 | _vq->index; 2962 } 2963 EXPORT_SYMBOL_GPL(vring_notification_data); 2964 2965 /* Manipulates transport-specific feature bits. */ 2966 void vring_transport_features(struct virtio_device *vdev) 2967 { 2968 unsigned int i; 2969 2970 for (i = VIRTIO_TRANSPORT_F_START; i < VIRTIO_TRANSPORT_F_END; i++) { 2971 switch (i) { 2972 case VIRTIO_RING_F_INDIRECT_DESC: 2973 break; 2974 case VIRTIO_RING_F_EVENT_IDX: 2975 break; 2976 case VIRTIO_F_VERSION_1: 2977 break; 2978 case VIRTIO_F_ACCESS_PLATFORM: 2979 break; 2980 case VIRTIO_F_RING_PACKED: 2981 break; 2982 case VIRTIO_F_ORDER_PLATFORM: 2983 break; 2984 case VIRTIO_F_NOTIFICATION_DATA: 2985 break; 2986 default: 2987 /* We don't understand this bit. */ 2988 __virtio_clear_bit(vdev, i); 2989 } 2990 } 2991 } 2992 EXPORT_SYMBOL_GPL(vring_transport_features); 2993 2994 /** 2995 * virtqueue_get_vring_size - return the size of the virtqueue's vring 2996 * @_vq: the struct virtqueue containing the vring of interest. 2997 * 2998 * Returns the size of the vring. This is mainly used for boasting to 2999 * userspace. Unlike other operations, this need not be serialized. 3000 */ 3001 unsigned int virtqueue_get_vring_size(const struct virtqueue *_vq) 3002 { 3003 3004 const struct vring_virtqueue *vq = to_vvq(_vq); 3005 3006 return vq->packed_ring ? vq->packed.vring.num : vq->split.vring.num; 3007 } 3008 EXPORT_SYMBOL_GPL(virtqueue_get_vring_size); 3009 3010 /* 3011 * This function should only be called by the core, not directly by the driver. 3012 */ 3013 void __virtqueue_break(struct virtqueue *_vq) 3014 { 3015 struct vring_virtqueue *vq = to_vvq(_vq); 3016 3017 /* Pairs with READ_ONCE() in virtqueue_is_broken(). */ 3018 WRITE_ONCE(vq->broken, true); 3019 } 3020 EXPORT_SYMBOL_GPL(__virtqueue_break); 3021 3022 /* 3023 * This function should only be called by the core, not directly by the driver. 3024 */ 3025 void __virtqueue_unbreak(struct virtqueue *_vq) 3026 { 3027 struct vring_virtqueue *vq = to_vvq(_vq); 3028 3029 /* Pairs with READ_ONCE() in virtqueue_is_broken(). */ 3030 WRITE_ONCE(vq->broken, false); 3031 } 3032 EXPORT_SYMBOL_GPL(__virtqueue_unbreak); 3033 3034 bool virtqueue_is_broken(const struct virtqueue *_vq) 3035 { 3036 const struct vring_virtqueue *vq = to_vvq(_vq); 3037 3038 return READ_ONCE(vq->broken); 3039 } 3040 EXPORT_SYMBOL_GPL(virtqueue_is_broken); 3041 3042 /* 3043 * This should prevent the device from being used, allowing drivers to 3044 * recover. You may need to grab appropriate locks to flush. 3045 */ 3046 void virtio_break_device(struct virtio_device *dev) 3047 { 3048 struct virtqueue *_vq; 3049 3050 spin_lock(&dev->vqs_list_lock); 3051 list_for_each_entry(_vq, &dev->vqs, list) { 3052 struct vring_virtqueue *vq = to_vvq(_vq); 3053 3054 /* Pairs with READ_ONCE() in virtqueue_is_broken(). */ 3055 WRITE_ONCE(vq->broken, true); 3056 } 3057 spin_unlock(&dev->vqs_list_lock); 3058 } 3059 EXPORT_SYMBOL_GPL(virtio_break_device); 3060 3061 /* 3062 * This should allow the device to be used by the driver. You may 3063 * need to grab appropriate locks to flush the write to 3064 * vq->broken. This should only be used in some specific case e.g 3065 * (probing and restoring). This function should only be called by the 3066 * core, not directly by the driver. 3067 */ 3068 void __virtio_unbreak_device(struct virtio_device *dev) 3069 { 3070 struct virtqueue *_vq; 3071 3072 spin_lock(&dev->vqs_list_lock); 3073 list_for_each_entry(_vq, &dev->vqs, list) { 3074 struct vring_virtqueue *vq = to_vvq(_vq); 3075 3076 /* Pairs with READ_ONCE() in virtqueue_is_broken(). */ 3077 WRITE_ONCE(vq->broken, false); 3078 } 3079 spin_unlock(&dev->vqs_list_lock); 3080 } 3081 EXPORT_SYMBOL_GPL(__virtio_unbreak_device); 3082 3083 dma_addr_t virtqueue_get_desc_addr(const struct virtqueue *_vq) 3084 { 3085 const struct vring_virtqueue *vq = to_vvq(_vq); 3086 3087 BUG_ON(!vq->we_own_ring); 3088 3089 if (vq->packed_ring) 3090 return vq->packed.ring_dma_addr; 3091 3092 return vq->split.queue_dma_addr; 3093 } 3094 EXPORT_SYMBOL_GPL(virtqueue_get_desc_addr); 3095 3096 dma_addr_t virtqueue_get_avail_addr(const struct virtqueue *_vq) 3097 { 3098 const struct vring_virtqueue *vq = to_vvq(_vq); 3099 3100 BUG_ON(!vq->we_own_ring); 3101 3102 if (vq->packed_ring) 3103 return vq->packed.driver_event_dma_addr; 3104 3105 return vq->split.queue_dma_addr + 3106 ((char *)vq->split.vring.avail - (char *)vq->split.vring.desc); 3107 } 3108 EXPORT_SYMBOL_GPL(virtqueue_get_avail_addr); 3109 3110 dma_addr_t virtqueue_get_used_addr(const struct virtqueue *_vq) 3111 { 3112 const struct vring_virtqueue *vq = to_vvq(_vq); 3113 3114 BUG_ON(!vq->we_own_ring); 3115 3116 if (vq->packed_ring) 3117 return vq->packed.device_event_dma_addr; 3118 3119 return vq->split.queue_dma_addr + 3120 ((char *)vq->split.vring.used - (char *)vq->split.vring.desc); 3121 } 3122 EXPORT_SYMBOL_GPL(virtqueue_get_used_addr); 3123 3124 /* Only available for split ring */ 3125 const struct vring *virtqueue_get_vring(const struct virtqueue *vq) 3126 { 3127 return &to_vvq(vq)->split.vring; 3128 } 3129 EXPORT_SYMBOL_GPL(virtqueue_get_vring); 3130 3131 /** 3132 * virtqueue_dma_map_single_attrs - map DMA for _vq 3133 * @_vq: the struct virtqueue we're talking about. 3134 * @ptr: the pointer of the buffer to do dma 3135 * @size: the size of the buffer to do dma 3136 * @dir: DMA direction 3137 * @attrs: DMA Attrs 3138 * 3139 * The caller calls this to do dma mapping in advance. The DMA address can be 3140 * passed to this _vq when it is in pre-mapped mode. 3141 * 3142 * return DMA address. Caller should check that by virtqueue_dma_mapping_error(). 3143 */ 3144 dma_addr_t virtqueue_dma_map_single_attrs(struct virtqueue *_vq, void *ptr, 3145 size_t size, 3146 enum dma_data_direction dir, 3147 unsigned long attrs) 3148 { 3149 struct vring_virtqueue *vq = to_vvq(_vq); 3150 3151 if (!vq->use_dma_api) { 3152 kmsan_handle_dma(virt_to_page(ptr), offset_in_page(ptr), size, dir); 3153 return (dma_addr_t)virt_to_phys(ptr); 3154 } 3155 3156 return dma_map_single_attrs(vring_dma_dev(vq), ptr, size, dir, attrs); 3157 } 3158 EXPORT_SYMBOL_GPL(virtqueue_dma_map_single_attrs); 3159 3160 /** 3161 * virtqueue_dma_unmap_single_attrs - unmap DMA for _vq 3162 * @_vq: the struct virtqueue we're talking about. 3163 * @addr: the dma address to unmap 3164 * @size: the size of the buffer 3165 * @dir: DMA direction 3166 * @attrs: DMA Attrs 3167 * 3168 * Unmap the address that is mapped by the virtqueue_dma_map_* APIs. 3169 * 3170 */ 3171 void virtqueue_dma_unmap_single_attrs(struct virtqueue *_vq, dma_addr_t addr, 3172 size_t size, enum dma_data_direction dir, 3173 unsigned long attrs) 3174 { 3175 struct vring_virtqueue *vq = to_vvq(_vq); 3176 3177 if (!vq->use_dma_api) 3178 return; 3179 3180 dma_unmap_single_attrs(vring_dma_dev(vq), addr, size, dir, attrs); 3181 } 3182 EXPORT_SYMBOL_GPL(virtqueue_dma_unmap_single_attrs); 3183 3184 /** 3185 * virtqueue_dma_mapping_error - check dma address 3186 * @_vq: the struct virtqueue we're talking about. 3187 * @addr: DMA address 3188 * 3189 * Returns 0 means dma valid. Other means invalid dma address. 3190 */ 3191 int virtqueue_dma_mapping_error(struct virtqueue *_vq, dma_addr_t addr) 3192 { 3193 struct vring_virtqueue *vq = to_vvq(_vq); 3194 3195 if (!vq->use_dma_api) 3196 return 0; 3197 3198 return dma_mapping_error(vring_dma_dev(vq), addr); 3199 } 3200 EXPORT_SYMBOL_GPL(virtqueue_dma_mapping_error); 3201 3202 /** 3203 * virtqueue_dma_need_sync - check a dma address needs sync 3204 * @_vq: the struct virtqueue we're talking about. 3205 * @addr: DMA address 3206 * 3207 * Check if the dma address mapped by the virtqueue_dma_map_* APIs needs to be 3208 * synchronized 3209 * 3210 * return bool 3211 */ 3212 bool virtqueue_dma_need_sync(struct virtqueue *_vq, dma_addr_t addr) 3213 { 3214 struct vring_virtqueue *vq = to_vvq(_vq); 3215 3216 if (!vq->use_dma_api) 3217 return false; 3218 3219 return dma_need_sync(vring_dma_dev(vq), addr); 3220 } 3221 EXPORT_SYMBOL_GPL(virtqueue_dma_need_sync); 3222 3223 /** 3224 * virtqueue_dma_sync_single_range_for_cpu - dma sync for cpu 3225 * @_vq: the struct virtqueue we're talking about. 3226 * @addr: DMA address 3227 * @offset: DMA address offset 3228 * @size: buf size for sync 3229 * @dir: DMA direction 3230 * 3231 * Before calling this function, use virtqueue_dma_need_sync() to confirm that 3232 * the DMA address really needs to be synchronized 3233 * 3234 */ 3235 void virtqueue_dma_sync_single_range_for_cpu(struct virtqueue *_vq, 3236 dma_addr_t addr, 3237 unsigned long offset, size_t size, 3238 enum dma_data_direction dir) 3239 { 3240 struct vring_virtqueue *vq = to_vvq(_vq); 3241 struct device *dev = vring_dma_dev(vq); 3242 3243 if (!vq->use_dma_api) 3244 return; 3245 3246 dma_sync_single_range_for_cpu(dev, addr, offset, size, dir); 3247 } 3248 EXPORT_SYMBOL_GPL(virtqueue_dma_sync_single_range_for_cpu); 3249 3250 /** 3251 * virtqueue_dma_sync_single_range_for_device - dma sync for device 3252 * @_vq: the struct virtqueue we're talking about. 3253 * @addr: DMA address 3254 * @offset: DMA address offset 3255 * @size: buf size for sync 3256 * @dir: DMA direction 3257 * 3258 * Before calling this function, use virtqueue_dma_need_sync() to confirm that 3259 * the DMA address really needs to be synchronized 3260 */ 3261 void virtqueue_dma_sync_single_range_for_device(struct virtqueue *_vq, 3262 dma_addr_t addr, 3263 unsigned long offset, size_t size, 3264 enum dma_data_direction dir) 3265 { 3266 struct vring_virtqueue *vq = to_vvq(_vq); 3267 struct device *dev = vring_dma_dev(vq); 3268 3269 if (!vq->use_dma_api) 3270 return; 3271 3272 dma_sync_single_range_for_device(dev, addr, offset, size, dir); 3273 } 3274 EXPORT_SYMBOL_GPL(virtqueue_dma_sync_single_range_for_device); 3275 3276 MODULE_DESCRIPTION("Virtio ring implementation"); 3277 MODULE_LICENSE("GPL"); 3278