1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright 2020-2021 Amazon.com, Inc. or its affiliates. All Rights Reserved. 4 */ 5 6 /** 7 * DOC: Enclave lifetime management driver for Nitro Enclaves (NE). 8 * Nitro is a hypervisor that has been developed by Amazon. 9 */ 10 11 #include <linux/anon_inodes.h> 12 #include <linux/capability.h> 13 #include <linux/cpu.h> 14 #include <linux/device.h> 15 #include <linux/file.h> 16 #include <linux/hugetlb.h> 17 #include <linux/limits.h> 18 #include <linux/list.h> 19 #include <linux/miscdevice.h> 20 #include <linux/mm.h> 21 #include <linux/mman.h> 22 #include <linux/module.h> 23 #include <linux/mutex.h> 24 #include <linux/nitro_enclaves.h> 25 #include <linux/pci.h> 26 #include <linux/poll.h> 27 #include <linux/range.h> 28 #include <linux/slab.h> 29 #include <linux/types.h> 30 #include <uapi/linux/vm_sockets.h> 31 32 #include "ne_misc_dev.h" 33 #include "ne_pci_dev.h" 34 35 /** 36 * NE_CPUS_SIZE - Size for max 128 CPUs, for now, in a cpu-list string, comma 37 * separated. The NE CPU pool includes CPUs from a single NUMA 38 * node. 39 */ 40 #define NE_CPUS_SIZE (512) 41 42 /** 43 * NE_EIF_LOAD_OFFSET - The offset where to copy the Enclave Image Format (EIF) 44 * image in enclave memory. 45 */ 46 #define NE_EIF_LOAD_OFFSET (8 * 1024UL * 1024UL) 47 48 /** 49 * NE_MIN_ENCLAVE_MEM_SIZE - The minimum memory size an enclave can be launched 50 * with. 51 */ 52 #define NE_MIN_ENCLAVE_MEM_SIZE (64 * 1024UL * 1024UL) 53 54 /** 55 * NE_MIN_MEM_REGION_SIZE - The minimum size of an enclave memory region. 56 */ 57 #define NE_MIN_MEM_REGION_SIZE (2 * 1024UL * 1024UL) 58 59 /** 60 * NE_PARENT_VM_CID - The CID for the vsock device of the primary / parent VM. 61 */ 62 #define NE_PARENT_VM_CID (3) 63 64 static long ne_ioctl(struct file *file, unsigned int cmd, unsigned long arg); 65 66 static const struct file_operations ne_fops = { 67 .owner = THIS_MODULE, 68 .llseek = noop_llseek, 69 .unlocked_ioctl = ne_ioctl, 70 }; 71 72 static struct miscdevice ne_misc_dev = { 73 .minor = MISC_DYNAMIC_MINOR, 74 .name = "nitro_enclaves", 75 .fops = &ne_fops, 76 .mode = 0660, 77 }; 78 79 struct ne_devs ne_devs = { 80 .ne_misc_dev = &ne_misc_dev, 81 }; 82 83 /* 84 * TODO: Update logic to create new sysfs entries instead of using 85 * a kernel parameter e.g. if multiple sysfs files needed. 86 */ 87 static int ne_set_kernel_param(const char *val, const struct kernel_param *kp); 88 89 static const struct kernel_param_ops ne_cpu_pool_ops = { 90 .get = param_get_string, 91 .set = ne_set_kernel_param, 92 }; 93 94 static char ne_cpus[NE_CPUS_SIZE]; 95 static struct kparam_string ne_cpus_arg = { 96 .maxlen = sizeof(ne_cpus), 97 .string = ne_cpus, 98 }; 99 100 module_param_cb(ne_cpus, &ne_cpu_pool_ops, &ne_cpus_arg, 0644); 101 /* https://www.kernel.org/doc/html/latest/admin-guide/kernel-parameters.html#cpu-lists */ 102 MODULE_PARM_DESC(ne_cpus, "<cpu-list> - CPU pool used for Nitro Enclaves"); 103 104 /** 105 * struct ne_cpu_pool - CPU pool used for Nitro Enclaves. 106 * @avail_threads_per_core: Available full CPU cores to be dedicated to 107 * enclave(s). The cpumasks from the array, indexed 108 * by core id, contain all the threads from the 109 * available cores, that are not set for created 110 * enclave(s). The full CPU cores are part of the 111 * NE CPU pool. 112 * @mutex: Mutex for the access to the NE CPU pool. 113 * @nr_parent_vm_cores : The size of the available threads per core array. 114 * The total number of CPU cores available on the 115 * primary / parent VM. 116 * @nr_threads_per_core: The number of threads that a full CPU core has. 117 * @numa_node: NUMA node of the CPUs in the pool. 118 */ 119 struct ne_cpu_pool { 120 cpumask_var_t *avail_threads_per_core; 121 struct mutex mutex; 122 unsigned int nr_parent_vm_cores; 123 unsigned int nr_threads_per_core; 124 int numa_node; 125 }; 126 127 static struct ne_cpu_pool ne_cpu_pool; 128 129 /** 130 * struct ne_phys_contig_mem_regions - Contiguous physical memory regions. 131 * @num: The number of regions that currently has. 132 * @regions: The array of physical memory regions. 133 */ 134 struct ne_phys_contig_mem_regions { 135 unsigned long num; 136 struct range *regions; 137 }; 138 139 /** 140 * ne_check_enclaves_created() - Verify if at least one enclave has been created. 141 * @void: No parameters provided. 142 * 143 * Context: Process context. 144 * Return: 145 * * True if at least one enclave is created. 146 * * False otherwise. 147 */ 148 static bool ne_check_enclaves_created(void) 149 { 150 struct ne_pci_dev *ne_pci_dev = ne_devs.ne_pci_dev; 151 bool ret = false; 152 153 if (!ne_pci_dev) 154 return ret; 155 156 mutex_lock(&ne_pci_dev->enclaves_list_mutex); 157 158 if (!list_empty(&ne_pci_dev->enclaves_list)) 159 ret = true; 160 161 mutex_unlock(&ne_pci_dev->enclaves_list_mutex); 162 163 return ret; 164 } 165 166 /** 167 * ne_setup_cpu_pool() - Set the NE CPU pool after handling sanity checks such 168 * as not sharing CPU cores with the primary / parent VM 169 * or not using CPU 0, which should remain available for 170 * the primary / parent VM. Offline the CPUs from the 171 * pool after the checks passed. 172 * @ne_cpu_list: The CPU list used for setting NE CPU pool. 173 * 174 * Context: Process context. 175 * Return: 176 * * 0 on success. 177 * * Negative return value on failure. 178 */ 179 static int ne_setup_cpu_pool(const char *ne_cpu_list) 180 { 181 int core_id = -1; 182 unsigned int cpu = 0; 183 cpumask_var_t cpu_pool; 184 unsigned int cpu_sibling = 0; 185 unsigned int i = 0; 186 int numa_node = -1; 187 int rc = -EINVAL; 188 189 if (!zalloc_cpumask_var(&cpu_pool, GFP_KERNEL)) 190 return -ENOMEM; 191 192 mutex_lock(&ne_cpu_pool.mutex); 193 194 rc = cpulist_parse(ne_cpu_list, cpu_pool); 195 if (rc < 0) { 196 pr_err("%s: Error in cpulist parse [rc=%d]\n", ne_misc_dev.name, rc); 197 198 goto free_pool_cpumask; 199 } 200 201 cpu = cpumask_any(cpu_pool); 202 if (cpu >= nr_cpu_ids) { 203 pr_err("%s: No CPUs available in CPU pool\n", ne_misc_dev.name); 204 205 rc = -EINVAL; 206 207 goto free_pool_cpumask; 208 } 209 210 /* 211 * Check if the CPUs are online, to further get info about them 212 * e.g. numa node, core id, siblings. 213 */ 214 for_each_cpu(cpu, cpu_pool) 215 if (cpu_is_offline(cpu)) { 216 pr_err("%s: CPU %d is offline, has to be online to get its metadata\n", 217 ne_misc_dev.name, cpu); 218 219 rc = -EINVAL; 220 221 goto free_pool_cpumask; 222 } 223 224 /* 225 * Check if the CPUs from the NE CPU pool are from the same NUMA node. 226 */ 227 for_each_cpu(cpu, cpu_pool) 228 if (numa_node < 0) { 229 numa_node = cpu_to_node(cpu); 230 if (numa_node < 0) { 231 pr_err("%s: Invalid NUMA node %d\n", 232 ne_misc_dev.name, numa_node); 233 234 rc = -EINVAL; 235 236 goto free_pool_cpumask; 237 } 238 } else { 239 if (numa_node != cpu_to_node(cpu)) { 240 pr_err("%s: CPUs with different NUMA nodes\n", 241 ne_misc_dev.name); 242 243 rc = -EINVAL; 244 245 goto free_pool_cpumask; 246 } 247 } 248 249 /* 250 * Check if CPU 0 and its siblings are included in the provided CPU pool 251 * They should remain available for the primary / parent VM. 252 */ 253 if (cpumask_test_cpu(0, cpu_pool)) { 254 pr_err("%s: CPU 0 has to remain available\n", ne_misc_dev.name); 255 256 rc = -EINVAL; 257 258 goto free_pool_cpumask; 259 } 260 261 for_each_cpu(cpu_sibling, topology_sibling_cpumask(0)) { 262 if (cpumask_test_cpu(cpu_sibling, cpu_pool)) { 263 pr_err("%s: CPU sibling %d for CPU 0 is in CPU pool\n", 264 ne_misc_dev.name, cpu_sibling); 265 266 rc = -EINVAL; 267 268 goto free_pool_cpumask; 269 } 270 } 271 272 /* 273 * Check if CPU siblings are included in the provided CPU pool. The 274 * expectation is that full CPU cores are made available in the CPU pool 275 * for enclaves. 276 */ 277 for_each_cpu(cpu, cpu_pool) { 278 for_each_cpu(cpu_sibling, topology_sibling_cpumask(cpu)) { 279 if (!cpumask_test_cpu(cpu_sibling, cpu_pool)) { 280 pr_err("%s: CPU %d is not in CPU pool\n", 281 ne_misc_dev.name, cpu_sibling); 282 283 rc = -EINVAL; 284 285 goto free_pool_cpumask; 286 } 287 } 288 } 289 290 /* Calculate the number of threads from a full CPU core. */ 291 cpu = cpumask_any(cpu_pool); 292 for_each_cpu(cpu_sibling, topology_sibling_cpumask(cpu)) 293 ne_cpu_pool.nr_threads_per_core++; 294 295 ne_cpu_pool.nr_parent_vm_cores = nr_cpu_ids / ne_cpu_pool.nr_threads_per_core; 296 297 ne_cpu_pool.avail_threads_per_core = kcalloc(ne_cpu_pool.nr_parent_vm_cores, 298 sizeof(*ne_cpu_pool.avail_threads_per_core), 299 GFP_KERNEL); 300 if (!ne_cpu_pool.avail_threads_per_core) { 301 rc = -ENOMEM; 302 303 goto free_pool_cpumask; 304 } 305 306 for (i = 0; i < ne_cpu_pool.nr_parent_vm_cores; i++) 307 if (!zalloc_cpumask_var(&ne_cpu_pool.avail_threads_per_core[i], GFP_KERNEL)) { 308 rc = -ENOMEM; 309 310 goto free_cores_cpumask; 311 } 312 313 /* 314 * Split the NE CPU pool in threads per core to keep the CPU topology 315 * after offlining the CPUs. 316 */ 317 for_each_cpu(cpu, cpu_pool) { 318 core_id = topology_core_id(cpu); 319 if (core_id < 0 || core_id >= ne_cpu_pool.nr_parent_vm_cores) { 320 pr_err("%s: Invalid core id %d for CPU %d\n", 321 ne_misc_dev.name, core_id, cpu); 322 323 rc = -EINVAL; 324 325 goto clear_cpumask; 326 } 327 328 cpumask_set_cpu(cpu, ne_cpu_pool.avail_threads_per_core[core_id]); 329 } 330 331 /* 332 * CPUs that are given to enclave(s) should not be considered online 333 * by Linux anymore, as the hypervisor will degrade them to floating. 334 * The physical CPUs (full cores) are carved out of the primary / parent 335 * VM and given to the enclave VM. The same number of vCPUs would run 336 * on less pCPUs for the primary / parent VM. 337 * 338 * We offline them here, to not degrade performance and expose correct 339 * topology to Linux and user space. 340 */ 341 for_each_cpu(cpu, cpu_pool) { 342 rc = remove_cpu(cpu); 343 if (rc != 0) { 344 pr_err("%s: CPU %d is not offlined [rc=%d]\n", 345 ne_misc_dev.name, cpu, rc); 346 347 goto online_cpus; 348 } 349 } 350 351 free_cpumask_var(cpu_pool); 352 353 ne_cpu_pool.numa_node = numa_node; 354 355 mutex_unlock(&ne_cpu_pool.mutex); 356 357 return 0; 358 359 online_cpus: 360 for_each_cpu(cpu, cpu_pool) 361 add_cpu(cpu); 362 clear_cpumask: 363 for (i = 0; i < ne_cpu_pool.nr_parent_vm_cores; i++) 364 cpumask_clear(ne_cpu_pool.avail_threads_per_core[i]); 365 free_cores_cpumask: 366 for (i = 0; i < ne_cpu_pool.nr_parent_vm_cores; i++) 367 free_cpumask_var(ne_cpu_pool.avail_threads_per_core[i]); 368 kfree(ne_cpu_pool.avail_threads_per_core); 369 free_pool_cpumask: 370 free_cpumask_var(cpu_pool); 371 ne_cpu_pool.nr_parent_vm_cores = 0; 372 ne_cpu_pool.nr_threads_per_core = 0; 373 ne_cpu_pool.numa_node = -1; 374 mutex_unlock(&ne_cpu_pool.mutex); 375 376 return rc; 377 } 378 379 /** 380 * ne_teardown_cpu_pool() - Online the CPUs from the NE CPU pool and cleanup the 381 * CPU pool. 382 * @void: No parameters provided. 383 * 384 * Context: Process context. 385 */ 386 static void ne_teardown_cpu_pool(void) 387 { 388 unsigned int cpu = 0; 389 unsigned int i = 0; 390 int rc = -EINVAL; 391 392 mutex_lock(&ne_cpu_pool.mutex); 393 394 if (!ne_cpu_pool.nr_parent_vm_cores) { 395 mutex_unlock(&ne_cpu_pool.mutex); 396 397 return; 398 } 399 400 for (i = 0; i < ne_cpu_pool.nr_parent_vm_cores; i++) { 401 for_each_cpu(cpu, ne_cpu_pool.avail_threads_per_core[i]) { 402 rc = add_cpu(cpu); 403 if (rc != 0) 404 pr_err("%s: CPU %d is not onlined [rc=%d]\n", 405 ne_misc_dev.name, cpu, rc); 406 } 407 408 cpumask_clear(ne_cpu_pool.avail_threads_per_core[i]); 409 410 free_cpumask_var(ne_cpu_pool.avail_threads_per_core[i]); 411 } 412 413 kfree(ne_cpu_pool.avail_threads_per_core); 414 ne_cpu_pool.nr_parent_vm_cores = 0; 415 ne_cpu_pool.nr_threads_per_core = 0; 416 ne_cpu_pool.numa_node = -1; 417 418 mutex_unlock(&ne_cpu_pool.mutex); 419 } 420 421 /** 422 * ne_set_kernel_param() - Set the NE CPU pool value via the NE kernel parameter. 423 * @val: NE CPU pool string value. 424 * @kp : NE kernel parameter associated with the NE CPU pool. 425 * 426 * Context: Process context. 427 * Return: 428 * * 0 on success. 429 * * Negative return value on failure. 430 */ 431 static int ne_set_kernel_param(const char *val, const struct kernel_param *kp) 432 { 433 char error_val[] = ""; 434 int rc = -EINVAL; 435 436 if (!capable(CAP_SYS_ADMIN)) 437 return -EPERM; 438 439 if (ne_check_enclaves_created()) { 440 pr_err("%s: The CPU pool is used by enclave(s)\n", ne_misc_dev.name); 441 442 return -EPERM; 443 } 444 445 ne_teardown_cpu_pool(); 446 447 rc = ne_setup_cpu_pool(val); 448 if (rc < 0) { 449 pr_err("%s: Error in setup CPU pool [rc=%d]\n", ne_misc_dev.name, rc); 450 451 param_set_copystring(error_val, kp); 452 453 return rc; 454 } 455 456 rc = param_set_copystring(val, kp); 457 if (rc < 0) { 458 pr_err("%s: Error in param set copystring [rc=%d]\n", ne_misc_dev.name, rc); 459 460 ne_teardown_cpu_pool(); 461 462 param_set_copystring(error_val, kp); 463 464 return rc; 465 } 466 467 return 0; 468 } 469 470 /** 471 * ne_donated_cpu() - Check if the provided CPU is already used by the enclave. 472 * @ne_enclave : Private data associated with the current enclave. 473 * @cpu: CPU to check if already used. 474 * 475 * Context: Process context. This function is called with the ne_enclave mutex held. 476 * Return: 477 * * True if the provided CPU is already used by the enclave. 478 * * False otherwise. 479 */ 480 static bool ne_donated_cpu(struct ne_enclave *ne_enclave, unsigned int cpu) 481 { 482 if (cpumask_test_cpu(cpu, ne_enclave->vcpu_ids)) 483 return true; 484 485 return false; 486 } 487 488 /** 489 * ne_get_unused_core_from_cpu_pool() - Get the id of a full core from the 490 * NE CPU pool. 491 * @void: No parameters provided. 492 * 493 * Context: Process context. This function is called with the ne_enclave and 494 * ne_cpu_pool mutexes held. 495 * Return: 496 * * Core id. 497 * * -1 if no CPU core available in the pool. 498 */ 499 static int ne_get_unused_core_from_cpu_pool(void) 500 { 501 int core_id = -1; 502 unsigned int i = 0; 503 504 for (i = 0; i < ne_cpu_pool.nr_parent_vm_cores; i++) 505 if (!cpumask_empty(ne_cpu_pool.avail_threads_per_core[i])) { 506 core_id = i; 507 508 break; 509 } 510 511 return core_id; 512 } 513 514 /** 515 * ne_set_enclave_threads_per_core() - Set the threads of the provided core in 516 * the enclave data structure. 517 * @ne_enclave : Private data associated with the current enclave. 518 * @core_id: Core id to get its threads from the NE CPU pool. 519 * @vcpu_id: vCPU id part of the provided core. 520 * 521 * Context: Process context. This function is called with the ne_enclave and 522 * ne_cpu_pool mutexes held. 523 * Return: 524 * * 0 on success. 525 * * Negative return value on failure. 526 */ 527 static int ne_set_enclave_threads_per_core(struct ne_enclave *ne_enclave, 528 int core_id, u32 vcpu_id) 529 { 530 unsigned int cpu = 0; 531 532 if (core_id < 0 && vcpu_id == 0) { 533 dev_err_ratelimited(ne_misc_dev.this_device, 534 "No CPUs available in NE CPU pool\n"); 535 536 return -NE_ERR_NO_CPUS_AVAIL_IN_POOL; 537 } 538 539 if (core_id < 0) { 540 dev_err_ratelimited(ne_misc_dev.this_device, 541 "CPU %d is not in NE CPU pool\n", vcpu_id); 542 543 return -NE_ERR_VCPU_NOT_IN_CPU_POOL; 544 } 545 546 if (core_id >= ne_enclave->nr_parent_vm_cores) { 547 dev_err_ratelimited(ne_misc_dev.this_device, 548 "Invalid core id %d - ne_enclave\n", core_id); 549 550 return -NE_ERR_VCPU_INVALID_CPU_CORE; 551 } 552 553 for_each_cpu(cpu, ne_cpu_pool.avail_threads_per_core[core_id]) 554 cpumask_set_cpu(cpu, ne_enclave->threads_per_core[core_id]); 555 556 cpumask_clear(ne_cpu_pool.avail_threads_per_core[core_id]); 557 558 return 0; 559 } 560 561 /** 562 * ne_get_cpu_from_cpu_pool() - Get a CPU from the NE CPU pool, either from the 563 * remaining sibling(s) of a CPU core or the first 564 * sibling of a new CPU core. 565 * @ne_enclave : Private data associated with the current enclave. 566 * @vcpu_id: vCPU to get from the NE CPU pool. 567 * 568 * Context: Process context. This function is called with the ne_enclave mutex held. 569 * Return: 570 * * 0 on success. 571 * * Negative return value on failure. 572 */ 573 static int ne_get_cpu_from_cpu_pool(struct ne_enclave *ne_enclave, u32 *vcpu_id) 574 { 575 int core_id = -1; 576 unsigned int cpu = 0; 577 unsigned int i = 0; 578 int rc = -EINVAL; 579 580 /* 581 * If previously allocated a thread of a core to this enclave, first 582 * check remaining sibling(s) for new CPU allocations, so that full 583 * CPU cores are used for the enclave. 584 */ 585 for (i = 0; i < ne_enclave->nr_parent_vm_cores; i++) 586 for_each_cpu(cpu, ne_enclave->threads_per_core[i]) 587 if (!ne_donated_cpu(ne_enclave, cpu)) { 588 *vcpu_id = cpu; 589 590 return 0; 591 } 592 593 mutex_lock(&ne_cpu_pool.mutex); 594 595 /* 596 * If no remaining siblings, get a core from the NE CPU pool and keep 597 * track of all the threads in the enclave threads per core data structure. 598 */ 599 core_id = ne_get_unused_core_from_cpu_pool(); 600 601 rc = ne_set_enclave_threads_per_core(ne_enclave, core_id, *vcpu_id); 602 if (rc < 0) 603 goto unlock_mutex; 604 605 *vcpu_id = cpumask_any(ne_enclave->threads_per_core[core_id]); 606 607 rc = 0; 608 609 unlock_mutex: 610 mutex_unlock(&ne_cpu_pool.mutex); 611 612 return rc; 613 } 614 615 /** 616 * ne_get_vcpu_core_from_cpu_pool() - Get from the NE CPU pool the id of the 617 * core associated with the provided vCPU. 618 * @vcpu_id: Provided vCPU id to get its associated core id. 619 * 620 * Context: Process context. This function is called with the ne_enclave and 621 * ne_cpu_pool mutexes held. 622 * Return: 623 * * Core id. 624 * * -1 if the provided vCPU is not in the pool. 625 */ 626 static int ne_get_vcpu_core_from_cpu_pool(u32 vcpu_id) 627 { 628 int core_id = -1; 629 unsigned int i = 0; 630 631 for (i = 0; i < ne_cpu_pool.nr_parent_vm_cores; i++) 632 if (cpumask_test_cpu(vcpu_id, ne_cpu_pool.avail_threads_per_core[i])) { 633 core_id = i; 634 635 break; 636 } 637 638 return core_id; 639 } 640 641 /** 642 * ne_check_cpu_in_cpu_pool() - Check if the given vCPU is in the available CPUs 643 * from the pool. 644 * @ne_enclave : Private data associated with the current enclave. 645 * @vcpu_id: ID of the vCPU to check if available in the NE CPU pool. 646 * 647 * Context: Process context. This function is called with the ne_enclave mutex held. 648 * Return: 649 * * 0 on success. 650 * * Negative return value on failure. 651 */ 652 static int ne_check_cpu_in_cpu_pool(struct ne_enclave *ne_enclave, u32 vcpu_id) 653 { 654 int core_id = -1; 655 unsigned int i = 0; 656 int rc = -EINVAL; 657 658 if (ne_donated_cpu(ne_enclave, vcpu_id)) { 659 dev_err_ratelimited(ne_misc_dev.this_device, 660 "CPU %d already used\n", vcpu_id); 661 662 return -NE_ERR_VCPU_ALREADY_USED; 663 } 664 665 /* 666 * If previously allocated a thread of a core to this enclave, but not 667 * the full core, first check remaining sibling(s). 668 */ 669 for (i = 0; i < ne_enclave->nr_parent_vm_cores; i++) 670 if (cpumask_test_cpu(vcpu_id, ne_enclave->threads_per_core[i])) 671 return 0; 672 673 mutex_lock(&ne_cpu_pool.mutex); 674 675 /* 676 * If no remaining siblings, get from the NE CPU pool the core 677 * associated with the vCPU and keep track of all the threads in the 678 * enclave threads per core data structure. 679 */ 680 core_id = ne_get_vcpu_core_from_cpu_pool(vcpu_id); 681 682 rc = ne_set_enclave_threads_per_core(ne_enclave, core_id, vcpu_id); 683 if (rc < 0) 684 goto unlock_mutex; 685 686 rc = 0; 687 688 unlock_mutex: 689 mutex_unlock(&ne_cpu_pool.mutex); 690 691 return rc; 692 } 693 694 /** 695 * ne_add_vcpu_ioctl() - Add a vCPU to the slot associated with the current 696 * enclave. 697 * @ne_enclave : Private data associated with the current enclave. 698 * @vcpu_id: ID of the CPU to be associated with the given slot, 699 * apic id on x86. 700 * 701 * Context: Process context. This function is called with the ne_enclave mutex held. 702 * Return: 703 * * 0 on success. 704 * * Negative return value on failure. 705 */ 706 static int ne_add_vcpu_ioctl(struct ne_enclave *ne_enclave, u32 vcpu_id) 707 { 708 struct ne_pci_dev_cmd_reply cmd_reply = {}; 709 struct pci_dev *pdev = ne_devs.ne_pci_dev->pdev; 710 int rc = -EINVAL; 711 struct slot_add_vcpu_req slot_add_vcpu_req = {}; 712 713 if (ne_enclave->mm != current->mm) 714 return -EIO; 715 716 slot_add_vcpu_req.slot_uid = ne_enclave->slot_uid; 717 slot_add_vcpu_req.vcpu_id = vcpu_id; 718 719 rc = ne_do_request(pdev, SLOT_ADD_VCPU, 720 &slot_add_vcpu_req, sizeof(slot_add_vcpu_req), 721 &cmd_reply, sizeof(cmd_reply)); 722 if (rc < 0) { 723 dev_err_ratelimited(ne_misc_dev.this_device, 724 "Error in slot add vCPU [rc=%d]\n", rc); 725 726 return rc; 727 } 728 729 cpumask_set_cpu(vcpu_id, ne_enclave->vcpu_ids); 730 731 ne_enclave->nr_vcpus++; 732 733 return 0; 734 } 735 736 /** 737 * ne_sanity_check_user_mem_region() - Sanity check the user space memory 738 * region received during the set user 739 * memory region ioctl call. 740 * @ne_enclave : Private data associated with the current enclave. 741 * @mem_region : User space memory region to be sanity checked. 742 * 743 * Context: Process context. This function is called with the ne_enclave mutex held. 744 * Return: 745 * * 0 on success. 746 * * Negative return value on failure. 747 */ 748 static int ne_sanity_check_user_mem_region(struct ne_enclave *ne_enclave, 749 struct ne_user_memory_region mem_region) 750 { 751 struct ne_mem_region *ne_mem_region = NULL; 752 753 if (ne_enclave->mm != current->mm) 754 return -EIO; 755 756 if (mem_region.memory_size & (NE_MIN_MEM_REGION_SIZE - 1)) { 757 dev_err_ratelimited(ne_misc_dev.this_device, 758 "User space memory size is not multiple of 2 MiB\n"); 759 760 return -NE_ERR_INVALID_MEM_REGION_SIZE; 761 } 762 763 if (!IS_ALIGNED(mem_region.userspace_addr, NE_MIN_MEM_REGION_SIZE)) { 764 dev_err_ratelimited(ne_misc_dev.this_device, 765 "User space address is not 2 MiB aligned\n"); 766 767 return -NE_ERR_UNALIGNED_MEM_REGION_ADDR; 768 } 769 770 if ((mem_region.userspace_addr & (NE_MIN_MEM_REGION_SIZE - 1)) || 771 !access_ok((void __user *)(unsigned long)mem_region.userspace_addr, 772 mem_region.memory_size)) { 773 dev_err_ratelimited(ne_misc_dev.this_device, 774 "Invalid user space address range\n"); 775 776 return -NE_ERR_INVALID_MEM_REGION_ADDR; 777 } 778 779 list_for_each_entry(ne_mem_region, &ne_enclave->mem_regions_list, 780 mem_region_list_entry) { 781 u64 memory_size = ne_mem_region->memory_size; 782 u64 userspace_addr = ne_mem_region->userspace_addr; 783 784 if ((userspace_addr <= mem_region.userspace_addr && 785 mem_region.userspace_addr < (userspace_addr + memory_size)) || 786 (mem_region.userspace_addr <= userspace_addr && 787 (mem_region.userspace_addr + mem_region.memory_size) > userspace_addr)) { 788 dev_err_ratelimited(ne_misc_dev.this_device, 789 "User space memory region already used\n"); 790 791 return -NE_ERR_MEM_REGION_ALREADY_USED; 792 } 793 } 794 795 return 0; 796 } 797 798 /** 799 * ne_sanity_check_user_mem_region_page() - Sanity check a page from the user space 800 * memory region received during the set 801 * user memory region ioctl call. 802 * @ne_enclave : Private data associated with the current enclave. 803 * @mem_region_page: Page from the user space memory region to be sanity checked. 804 * 805 * Context: Process context. This function is called with the ne_enclave mutex held. 806 * Return: 807 * * 0 on success. 808 * * Negative return value on failure. 809 */ 810 static int ne_sanity_check_user_mem_region_page(struct ne_enclave *ne_enclave, 811 struct page *mem_region_page) 812 { 813 if (!PageHuge(mem_region_page)) { 814 dev_err_ratelimited(ne_misc_dev.this_device, 815 "Not a hugetlbfs page\n"); 816 817 return -NE_ERR_MEM_NOT_HUGE_PAGE; 818 } 819 820 if (page_size(mem_region_page) & (NE_MIN_MEM_REGION_SIZE - 1)) { 821 dev_err_ratelimited(ne_misc_dev.this_device, 822 "Page size not multiple of 2 MiB\n"); 823 824 return -NE_ERR_INVALID_PAGE_SIZE; 825 } 826 827 if (ne_enclave->numa_node != page_to_nid(mem_region_page)) { 828 dev_err_ratelimited(ne_misc_dev.this_device, 829 "Page is not from NUMA node %d\n", 830 ne_enclave->numa_node); 831 832 return -NE_ERR_MEM_DIFFERENT_NUMA_NODE; 833 } 834 835 return 0; 836 } 837 838 /** 839 * ne_sanity_check_phys_mem_region() - Sanity check the start address and the size 840 * of a physical memory region. 841 * @phys_mem_region_paddr : Physical start address of the region to be sanity checked. 842 * @phys_mem_region_size : Length of the region to be sanity checked. 843 * 844 * Context: Process context. This function is called with the ne_enclave mutex held. 845 * Return: 846 * * 0 on success. 847 * * Negative return value on failure. 848 */ 849 static int ne_sanity_check_phys_mem_region(u64 phys_mem_region_paddr, 850 u64 phys_mem_region_size) 851 { 852 if (phys_mem_region_size & (NE_MIN_MEM_REGION_SIZE - 1)) { 853 dev_err_ratelimited(ne_misc_dev.this_device, 854 "Physical mem region size is not multiple of 2 MiB\n"); 855 856 return -EINVAL; 857 } 858 859 if (!IS_ALIGNED(phys_mem_region_paddr, NE_MIN_MEM_REGION_SIZE)) { 860 dev_err_ratelimited(ne_misc_dev.this_device, 861 "Physical mem region address is not 2 MiB aligned\n"); 862 863 return -EINVAL; 864 } 865 866 return 0; 867 } 868 869 /** 870 * ne_merge_phys_contig_memory_regions() - Add a memory region and merge the adjacent 871 * regions if they are physically contiguous. 872 * @phys_contig_regions : Private data associated with the contiguous physical memory regions. 873 * @page_paddr : Physical start address of the region to be added. 874 * @page_size : Length of the region to be added. 875 * 876 * Context: Process context. This function is called with the ne_enclave mutex held. 877 * Return: 878 * * 0 on success. 879 * * Negative return value on failure. 880 */ 881 static int 882 ne_merge_phys_contig_memory_regions(struct ne_phys_contig_mem_regions *phys_contig_regions, 883 u64 page_paddr, u64 page_size) 884 { 885 unsigned long num = phys_contig_regions->num; 886 int rc = 0; 887 888 rc = ne_sanity_check_phys_mem_region(page_paddr, page_size); 889 if (rc < 0) 890 return rc; 891 892 /* Physically contiguous, just merge */ 893 if (num && (phys_contig_regions->regions[num - 1].end + 1) == page_paddr) { 894 phys_contig_regions->regions[num - 1].end += page_size; 895 } else { 896 phys_contig_regions->regions[num].start = page_paddr; 897 phys_contig_regions->regions[num].end = page_paddr + page_size - 1; 898 phys_contig_regions->num++; 899 } 900 901 return 0; 902 } 903 904 /** 905 * ne_set_user_memory_region_ioctl() - Add user space memory region to the slot 906 * associated with the current enclave. 907 * @ne_enclave : Private data associated with the current enclave. 908 * @mem_region : User space memory region to be associated with the given slot. 909 * 910 * Context: Process context. This function is called with the ne_enclave mutex held. 911 * Return: 912 * * 0 on success. 913 * * Negative return value on failure. 914 */ 915 static int ne_set_user_memory_region_ioctl(struct ne_enclave *ne_enclave, 916 struct ne_user_memory_region mem_region) 917 { 918 long gup_rc = 0; 919 unsigned long i = 0; 920 unsigned long max_nr_pages = 0; 921 unsigned long memory_size = 0; 922 struct ne_mem_region *ne_mem_region = NULL; 923 struct pci_dev *pdev = ne_devs.ne_pci_dev->pdev; 924 struct ne_phys_contig_mem_regions phys_contig_mem_regions = {}; 925 int rc = -EINVAL; 926 927 rc = ne_sanity_check_user_mem_region(ne_enclave, mem_region); 928 if (rc < 0) 929 return rc; 930 931 ne_mem_region = kzalloc(sizeof(*ne_mem_region), GFP_KERNEL); 932 if (!ne_mem_region) 933 return -ENOMEM; 934 935 max_nr_pages = mem_region.memory_size / NE_MIN_MEM_REGION_SIZE; 936 937 ne_mem_region->pages = kcalloc(max_nr_pages, sizeof(*ne_mem_region->pages), 938 GFP_KERNEL); 939 if (!ne_mem_region->pages) { 940 rc = -ENOMEM; 941 942 goto free_mem_region; 943 } 944 945 phys_contig_mem_regions.regions = kcalloc(max_nr_pages, 946 sizeof(*phys_contig_mem_regions.regions), 947 GFP_KERNEL); 948 if (!phys_contig_mem_regions.regions) { 949 rc = -ENOMEM; 950 951 goto free_mem_region; 952 } 953 954 do { 955 i = ne_mem_region->nr_pages; 956 957 if (i == max_nr_pages) { 958 dev_err_ratelimited(ne_misc_dev.this_device, 959 "Reached max nr of pages in the pages data struct\n"); 960 961 rc = -ENOMEM; 962 963 goto put_pages; 964 } 965 966 gup_rc = get_user_pages(mem_region.userspace_addr + memory_size, 1, FOLL_GET, 967 ne_mem_region->pages + i, NULL); 968 if (gup_rc < 0) { 969 rc = gup_rc; 970 971 dev_err_ratelimited(ne_misc_dev.this_device, 972 "Error in get user pages [rc=%d]\n", rc); 973 974 goto put_pages; 975 } 976 977 rc = ne_sanity_check_user_mem_region_page(ne_enclave, ne_mem_region->pages[i]); 978 if (rc < 0) 979 goto put_pages; 980 981 rc = ne_merge_phys_contig_memory_regions(&phys_contig_mem_regions, 982 page_to_phys(ne_mem_region->pages[i]), 983 page_size(ne_mem_region->pages[i])); 984 if (rc < 0) 985 goto put_pages; 986 987 memory_size += page_size(ne_mem_region->pages[i]); 988 989 ne_mem_region->nr_pages++; 990 } while (memory_size < mem_region.memory_size); 991 992 if ((ne_enclave->nr_mem_regions + phys_contig_mem_regions.num) > 993 ne_enclave->max_mem_regions) { 994 dev_err_ratelimited(ne_misc_dev.this_device, 995 "Reached max memory regions %lld\n", 996 ne_enclave->max_mem_regions); 997 998 rc = -NE_ERR_MEM_MAX_REGIONS; 999 1000 goto put_pages; 1001 } 1002 1003 for (i = 0; i < phys_contig_mem_regions.num; i++) { 1004 u64 phys_region_addr = phys_contig_mem_regions.regions[i].start; 1005 u64 phys_region_size = range_len(&phys_contig_mem_regions.regions[i]); 1006 1007 rc = ne_sanity_check_phys_mem_region(phys_region_addr, phys_region_size); 1008 if (rc < 0) 1009 goto put_pages; 1010 } 1011 1012 ne_mem_region->memory_size = mem_region.memory_size; 1013 ne_mem_region->userspace_addr = mem_region.userspace_addr; 1014 1015 list_add(&ne_mem_region->mem_region_list_entry, &ne_enclave->mem_regions_list); 1016 1017 for (i = 0; i < phys_contig_mem_regions.num; i++) { 1018 struct ne_pci_dev_cmd_reply cmd_reply = {}; 1019 struct slot_add_mem_req slot_add_mem_req = {}; 1020 1021 slot_add_mem_req.slot_uid = ne_enclave->slot_uid; 1022 slot_add_mem_req.paddr = phys_contig_mem_regions.regions[i].start; 1023 slot_add_mem_req.size = range_len(&phys_contig_mem_regions.regions[i]); 1024 1025 rc = ne_do_request(pdev, SLOT_ADD_MEM, 1026 &slot_add_mem_req, sizeof(slot_add_mem_req), 1027 &cmd_reply, sizeof(cmd_reply)); 1028 if (rc < 0) { 1029 dev_err_ratelimited(ne_misc_dev.this_device, 1030 "Error in slot add mem [rc=%d]\n", rc); 1031 1032 kfree(phys_contig_mem_regions.regions); 1033 1034 /* 1035 * Exit here without put pages as memory regions may 1036 * already been added. 1037 */ 1038 return rc; 1039 } 1040 1041 ne_enclave->mem_size += slot_add_mem_req.size; 1042 ne_enclave->nr_mem_regions++; 1043 } 1044 1045 kfree(phys_contig_mem_regions.regions); 1046 1047 return 0; 1048 1049 put_pages: 1050 for (i = 0; i < ne_mem_region->nr_pages; i++) 1051 put_page(ne_mem_region->pages[i]); 1052 free_mem_region: 1053 kfree(phys_contig_mem_regions.regions); 1054 kfree(ne_mem_region->pages); 1055 kfree(ne_mem_region); 1056 1057 return rc; 1058 } 1059 1060 /** 1061 * ne_start_enclave_ioctl() - Trigger enclave start after the enclave resources, 1062 * such as memory and CPU, have been set. 1063 * @ne_enclave : Private data associated with the current enclave. 1064 * @enclave_start_info : Enclave info that includes enclave cid and flags. 1065 * 1066 * Context: Process context. This function is called with the ne_enclave mutex held. 1067 * Return: 1068 * * 0 on success. 1069 * * Negative return value on failure. 1070 */ 1071 static int ne_start_enclave_ioctl(struct ne_enclave *ne_enclave, 1072 struct ne_enclave_start_info *enclave_start_info) 1073 { 1074 struct ne_pci_dev_cmd_reply cmd_reply = {}; 1075 unsigned int cpu = 0; 1076 struct enclave_start_req enclave_start_req = {}; 1077 unsigned int i = 0; 1078 struct pci_dev *pdev = ne_devs.ne_pci_dev->pdev; 1079 int rc = -EINVAL; 1080 1081 if (!ne_enclave->nr_mem_regions) { 1082 dev_err_ratelimited(ne_misc_dev.this_device, 1083 "Enclave has no mem regions\n"); 1084 1085 return -NE_ERR_NO_MEM_REGIONS_ADDED; 1086 } 1087 1088 if (ne_enclave->mem_size < NE_MIN_ENCLAVE_MEM_SIZE) { 1089 dev_err_ratelimited(ne_misc_dev.this_device, 1090 "Enclave memory is less than %ld\n", 1091 NE_MIN_ENCLAVE_MEM_SIZE); 1092 1093 return -NE_ERR_ENCLAVE_MEM_MIN_SIZE; 1094 } 1095 1096 if (!ne_enclave->nr_vcpus) { 1097 dev_err_ratelimited(ne_misc_dev.this_device, 1098 "Enclave has no vCPUs\n"); 1099 1100 return -NE_ERR_NO_VCPUS_ADDED; 1101 } 1102 1103 for (i = 0; i < ne_enclave->nr_parent_vm_cores; i++) 1104 for_each_cpu(cpu, ne_enclave->threads_per_core[i]) 1105 if (!cpumask_test_cpu(cpu, ne_enclave->vcpu_ids)) { 1106 dev_err_ratelimited(ne_misc_dev.this_device, 1107 "Full CPU cores not used\n"); 1108 1109 return -NE_ERR_FULL_CORES_NOT_USED; 1110 } 1111 1112 enclave_start_req.enclave_cid = enclave_start_info->enclave_cid; 1113 enclave_start_req.flags = enclave_start_info->flags; 1114 enclave_start_req.slot_uid = ne_enclave->slot_uid; 1115 1116 rc = ne_do_request(pdev, ENCLAVE_START, 1117 &enclave_start_req, sizeof(enclave_start_req), 1118 &cmd_reply, sizeof(cmd_reply)); 1119 if (rc < 0) { 1120 dev_err_ratelimited(ne_misc_dev.this_device, 1121 "Error in enclave start [rc=%d]\n", rc); 1122 1123 return rc; 1124 } 1125 1126 ne_enclave->state = NE_STATE_RUNNING; 1127 1128 enclave_start_info->enclave_cid = cmd_reply.enclave_cid; 1129 1130 return 0; 1131 } 1132 1133 /** 1134 * ne_enclave_ioctl() - Ioctl function provided by the enclave file. 1135 * @file: File associated with this ioctl function. 1136 * @cmd: The command that is set for the ioctl call. 1137 * @arg: The argument that is provided for the ioctl call. 1138 * 1139 * Context: Process context. 1140 * Return: 1141 * * 0 on success. 1142 * * Negative return value on failure. 1143 */ 1144 static long ne_enclave_ioctl(struct file *file, unsigned int cmd, unsigned long arg) 1145 { 1146 struct ne_enclave *ne_enclave = file->private_data; 1147 1148 switch (cmd) { 1149 case NE_ADD_VCPU: { 1150 int rc = -EINVAL; 1151 u32 vcpu_id = 0; 1152 1153 if (copy_from_user(&vcpu_id, (void __user *)arg, sizeof(vcpu_id))) 1154 return -EFAULT; 1155 1156 mutex_lock(&ne_enclave->enclave_info_mutex); 1157 1158 if (ne_enclave->state != NE_STATE_INIT) { 1159 dev_err_ratelimited(ne_misc_dev.this_device, 1160 "Enclave is not in init state\n"); 1161 1162 mutex_unlock(&ne_enclave->enclave_info_mutex); 1163 1164 return -NE_ERR_NOT_IN_INIT_STATE; 1165 } 1166 1167 if (vcpu_id >= (ne_enclave->nr_parent_vm_cores * 1168 ne_enclave->nr_threads_per_core)) { 1169 dev_err_ratelimited(ne_misc_dev.this_device, 1170 "vCPU id higher than max CPU id\n"); 1171 1172 mutex_unlock(&ne_enclave->enclave_info_mutex); 1173 1174 return -NE_ERR_INVALID_VCPU; 1175 } 1176 1177 if (!vcpu_id) { 1178 /* Use the CPU pool for choosing a CPU for the enclave. */ 1179 rc = ne_get_cpu_from_cpu_pool(ne_enclave, &vcpu_id); 1180 if (rc < 0) { 1181 dev_err_ratelimited(ne_misc_dev.this_device, 1182 "Error in get CPU from pool [rc=%d]\n", 1183 rc); 1184 1185 mutex_unlock(&ne_enclave->enclave_info_mutex); 1186 1187 return rc; 1188 } 1189 } else { 1190 /* Check if the provided vCPU is available in the NE CPU pool. */ 1191 rc = ne_check_cpu_in_cpu_pool(ne_enclave, vcpu_id); 1192 if (rc < 0) { 1193 dev_err_ratelimited(ne_misc_dev.this_device, 1194 "Error in check CPU %d in pool [rc=%d]\n", 1195 vcpu_id, rc); 1196 1197 mutex_unlock(&ne_enclave->enclave_info_mutex); 1198 1199 return rc; 1200 } 1201 } 1202 1203 rc = ne_add_vcpu_ioctl(ne_enclave, vcpu_id); 1204 if (rc < 0) { 1205 mutex_unlock(&ne_enclave->enclave_info_mutex); 1206 1207 return rc; 1208 } 1209 1210 mutex_unlock(&ne_enclave->enclave_info_mutex); 1211 1212 if (copy_to_user((void __user *)arg, &vcpu_id, sizeof(vcpu_id))) 1213 return -EFAULT; 1214 1215 return 0; 1216 } 1217 1218 case NE_GET_IMAGE_LOAD_INFO: { 1219 struct ne_image_load_info image_load_info = {}; 1220 1221 if (copy_from_user(&image_load_info, (void __user *)arg, sizeof(image_load_info))) 1222 return -EFAULT; 1223 1224 mutex_lock(&ne_enclave->enclave_info_mutex); 1225 1226 if (ne_enclave->state != NE_STATE_INIT) { 1227 dev_err_ratelimited(ne_misc_dev.this_device, 1228 "Enclave is not in init state\n"); 1229 1230 mutex_unlock(&ne_enclave->enclave_info_mutex); 1231 1232 return -NE_ERR_NOT_IN_INIT_STATE; 1233 } 1234 1235 mutex_unlock(&ne_enclave->enclave_info_mutex); 1236 1237 if (!image_load_info.flags || 1238 image_load_info.flags >= NE_IMAGE_LOAD_MAX_FLAG_VAL) { 1239 dev_err_ratelimited(ne_misc_dev.this_device, 1240 "Incorrect flag in enclave image load info\n"); 1241 1242 return -NE_ERR_INVALID_FLAG_VALUE; 1243 } 1244 1245 if (image_load_info.flags == NE_EIF_IMAGE) 1246 image_load_info.memory_offset = NE_EIF_LOAD_OFFSET; 1247 1248 if (copy_to_user((void __user *)arg, &image_load_info, sizeof(image_load_info))) 1249 return -EFAULT; 1250 1251 return 0; 1252 } 1253 1254 case NE_SET_USER_MEMORY_REGION: { 1255 struct ne_user_memory_region mem_region = {}; 1256 int rc = -EINVAL; 1257 1258 if (copy_from_user(&mem_region, (void __user *)arg, sizeof(mem_region))) 1259 return -EFAULT; 1260 1261 if (mem_region.flags >= NE_MEMORY_REGION_MAX_FLAG_VAL) { 1262 dev_err_ratelimited(ne_misc_dev.this_device, 1263 "Incorrect flag for user memory region\n"); 1264 1265 return -NE_ERR_INVALID_FLAG_VALUE; 1266 } 1267 1268 mutex_lock(&ne_enclave->enclave_info_mutex); 1269 1270 if (ne_enclave->state != NE_STATE_INIT) { 1271 dev_err_ratelimited(ne_misc_dev.this_device, 1272 "Enclave is not in init state\n"); 1273 1274 mutex_unlock(&ne_enclave->enclave_info_mutex); 1275 1276 return -NE_ERR_NOT_IN_INIT_STATE; 1277 } 1278 1279 rc = ne_set_user_memory_region_ioctl(ne_enclave, mem_region); 1280 if (rc < 0) { 1281 mutex_unlock(&ne_enclave->enclave_info_mutex); 1282 1283 return rc; 1284 } 1285 1286 mutex_unlock(&ne_enclave->enclave_info_mutex); 1287 1288 return 0; 1289 } 1290 1291 case NE_START_ENCLAVE: { 1292 struct ne_enclave_start_info enclave_start_info = {}; 1293 int rc = -EINVAL; 1294 1295 if (copy_from_user(&enclave_start_info, (void __user *)arg, 1296 sizeof(enclave_start_info))) 1297 return -EFAULT; 1298 1299 if (enclave_start_info.flags >= NE_ENCLAVE_START_MAX_FLAG_VAL) { 1300 dev_err_ratelimited(ne_misc_dev.this_device, 1301 "Incorrect flag in enclave start info\n"); 1302 1303 return -NE_ERR_INVALID_FLAG_VALUE; 1304 } 1305 1306 /* 1307 * Do not use well-known CIDs - 0, 1, 2 - for enclaves. 1308 * VMADDR_CID_ANY = -1U 1309 * VMADDR_CID_HYPERVISOR = 0 1310 * VMADDR_CID_LOCAL = 1 1311 * VMADDR_CID_HOST = 2 1312 * Note: 0 is used as a placeholder to auto-generate an enclave CID. 1313 * http://man7.org/linux/man-pages/man7/vsock.7.html 1314 */ 1315 if (enclave_start_info.enclave_cid > 0 && 1316 enclave_start_info.enclave_cid <= VMADDR_CID_HOST) { 1317 dev_err_ratelimited(ne_misc_dev.this_device, 1318 "Well-known CID value, not to be used for enclaves\n"); 1319 1320 return -NE_ERR_INVALID_ENCLAVE_CID; 1321 } 1322 1323 if (enclave_start_info.enclave_cid == U32_MAX) { 1324 dev_err_ratelimited(ne_misc_dev.this_device, 1325 "Well-known CID value, not to be used for enclaves\n"); 1326 1327 return -NE_ERR_INVALID_ENCLAVE_CID; 1328 } 1329 1330 /* 1331 * Do not use the CID of the primary / parent VM for enclaves. 1332 */ 1333 if (enclave_start_info.enclave_cid == NE_PARENT_VM_CID) { 1334 dev_err_ratelimited(ne_misc_dev.this_device, 1335 "CID of the parent VM, not to be used for enclaves\n"); 1336 1337 return -NE_ERR_INVALID_ENCLAVE_CID; 1338 } 1339 1340 /* 64-bit CIDs are not yet supported for the vsock device. */ 1341 if (enclave_start_info.enclave_cid > U32_MAX) { 1342 dev_err_ratelimited(ne_misc_dev.this_device, 1343 "64-bit CIDs not yet supported for the vsock device\n"); 1344 1345 return -NE_ERR_INVALID_ENCLAVE_CID; 1346 } 1347 1348 mutex_lock(&ne_enclave->enclave_info_mutex); 1349 1350 if (ne_enclave->state != NE_STATE_INIT) { 1351 dev_err_ratelimited(ne_misc_dev.this_device, 1352 "Enclave is not in init state\n"); 1353 1354 mutex_unlock(&ne_enclave->enclave_info_mutex); 1355 1356 return -NE_ERR_NOT_IN_INIT_STATE; 1357 } 1358 1359 rc = ne_start_enclave_ioctl(ne_enclave, &enclave_start_info); 1360 if (rc < 0) { 1361 mutex_unlock(&ne_enclave->enclave_info_mutex); 1362 1363 return rc; 1364 } 1365 1366 mutex_unlock(&ne_enclave->enclave_info_mutex); 1367 1368 if (copy_to_user((void __user *)arg, &enclave_start_info, 1369 sizeof(enclave_start_info))) 1370 return -EFAULT; 1371 1372 return 0; 1373 } 1374 1375 default: 1376 return -ENOTTY; 1377 } 1378 1379 return 0; 1380 } 1381 1382 /** 1383 * ne_enclave_remove_all_mem_region_entries() - Remove all memory region entries 1384 * from the enclave data structure. 1385 * @ne_enclave : Private data associated with the current enclave. 1386 * 1387 * Context: Process context. This function is called with the ne_enclave mutex held. 1388 */ 1389 static void ne_enclave_remove_all_mem_region_entries(struct ne_enclave *ne_enclave) 1390 { 1391 unsigned long i = 0; 1392 struct ne_mem_region *ne_mem_region = NULL; 1393 struct ne_mem_region *ne_mem_region_tmp = NULL; 1394 1395 list_for_each_entry_safe(ne_mem_region, ne_mem_region_tmp, 1396 &ne_enclave->mem_regions_list, 1397 mem_region_list_entry) { 1398 list_del(&ne_mem_region->mem_region_list_entry); 1399 1400 for (i = 0; i < ne_mem_region->nr_pages; i++) 1401 put_page(ne_mem_region->pages[i]); 1402 1403 kfree(ne_mem_region->pages); 1404 1405 kfree(ne_mem_region); 1406 } 1407 } 1408 1409 /** 1410 * ne_enclave_remove_all_vcpu_id_entries() - Remove all vCPU id entries from 1411 * the enclave data structure. 1412 * @ne_enclave : Private data associated with the current enclave. 1413 * 1414 * Context: Process context. This function is called with the ne_enclave mutex held. 1415 */ 1416 static void ne_enclave_remove_all_vcpu_id_entries(struct ne_enclave *ne_enclave) 1417 { 1418 unsigned int cpu = 0; 1419 unsigned int i = 0; 1420 1421 mutex_lock(&ne_cpu_pool.mutex); 1422 1423 for (i = 0; i < ne_enclave->nr_parent_vm_cores; i++) { 1424 for_each_cpu(cpu, ne_enclave->threads_per_core[i]) 1425 /* Update the available NE CPU pool. */ 1426 cpumask_set_cpu(cpu, ne_cpu_pool.avail_threads_per_core[i]); 1427 1428 free_cpumask_var(ne_enclave->threads_per_core[i]); 1429 } 1430 1431 mutex_unlock(&ne_cpu_pool.mutex); 1432 1433 kfree(ne_enclave->threads_per_core); 1434 1435 free_cpumask_var(ne_enclave->vcpu_ids); 1436 } 1437 1438 /** 1439 * ne_pci_dev_remove_enclave_entry() - Remove the enclave entry from the data 1440 * structure that is part of the NE PCI 1441 * device private data. 1442 * @ne_enclave : Private data associated with the current enclave. 1443 * @ne_pci_dev : Private data associated with the PCI device. 1444 * 1445 * Context: Process context. This function is called with the ne_pci_dev enclave 1446 * mutex held. 1447 */ 1448 static void ne_pci_dev_remove_enclave_entry(struct ne_enclave *ne_enclave, 1449 struct ne_pci_dev *ne_pci_dev) 1450 { 1451 struct ne_enclave *ne_enclave_entry = NULL; 1452 struct ne_enclave *ne_enclave_entry_tmp = NULL; 1453 1454 list_for_each_entry_safe(ne_enclave_entry, ne_enclave_entry_tmp, 1455 &ne_pci_dev->enclaves_list, enclave_list_entry) { 1456 if (ne_enclave_entry->slot_uid == ne_enclave->slot_uid) { 1457 list_del(&ne_enclave_entry->enclave_list_entry); 1458 1459 break; 1460 } 1461 } 1462 } 1463 1464 /** 1465 * ne_enclave_release() - Release function provided by the enclave file. 1466 * @inode: Inode associated with this file release function. 1467 * @file: File associated with this release function. 1468 * 1469 * Context: Process context. 1470 * Return: 1471 * * 0 on success. 1472 * * Negative return value on failure. 1473 */ 1474 static int ne_enclave_release(struct inode *inode, struct file *file) 1475 { 1476 struct ne_pci_dev_cmd_reply cmd_reply = {}; 1477 struct enclave_stop_req enclave_stop_request = {}; 1478 struct ne_enclave *ne_enclave = file->private_data; 1479 struct ne_pci_dev *ne_pci_dev = ne_devs.ne_pci_dev; 1480 struct pci_dev *pdev = ne_pci_dev->pdev; 1481 int rc = -EINVAL; 1482 struct slot_free_req slot_free_req = {}; 1483 1484 if (!ne_enclave) 1485 return 0; 1486 1487 /* 1488 * Early exit in case there is an error in the enclave creation logic 1489 * and fput() is called on the cleanup path. 1490 */ 1491 if (!ne_enclave->slot_uid) 1492 return 0; 1493 1494 /* 1495 * Acquire the enclave list mutex before the enclave mutex 1496 * in order to avoid deadlocks with @ref ne_event_work_handler. 1497 */ 1498 mutex_lock(&ne_pci_dev->enclaves_list_mutex); 1499 mutex_lock(&ne_enclave->enclave_info_mutex); 1500 1501 if (ne_enclave->state != NE_STATE_INIT && ne_enclave->state != NE_STATE_STOPPED) { 1502 enclave_stop_request.slot_uid = ne_enclave->slot_uid; 1503 1504 rc = ne_do_request(pdev, ENCLAVE_STOP, 1505 &enclave_stop_request, sizeof(enclave_stop_request), 1506 &cmd_reply, sizeof(cmd_reply)); 1507 if (rc < 0) { 1508 dev_err_ratelimited(ne_misc_dev.this_device, 1509 "Error in enclave stop [rc=%d]\n", rc); 1510 1511 goto unlock_mutex; 1512 } 1513 1514 memset(&cmd_reply, 0, sizeof(cmd_reply)); 1515 } 1516 1517 slot_free_req.slot_uid = ne_enclave->slot_uid; 1518 1519 rc = ne_do_request(pdev, SLOT_FREE, 1520 &slot_free_req, sizeof(slot_free_req), 1521 &cmd_reply, sizeof(cmd_reply)); 1522 if (rc < 0) { 1523 dev_err_ratelimited(ne_misc_dev.this_device, 1524 "Error in slot free [rc=%d]\n", rc); 1525 1526 goto unlock_mutex; 1527 } 1528 1529 ne_pci_dev_remove_enclave_entry(ne_enclave, ne_pci_dev); 1530 ne_enclave_remove_all_mem_region_entries(ne_enclave); 1531 ne_enclave_remove_all_vcpu_id_entries(ne_enclave); 1532 1533 mutex_unlock(&ne_enclave->enclave_info_mutex); 1534 mutex_unlock(&ne_pci_dev->enclaves_list_mutex); 1535 1536 kfree(ne_enclave); 1537 1538 return 0; 1539 1540 unlock_mutex: 1541 mutex_unlock(&ne_enclave->enclave_info_mutex); 1542 mutex_unlock(&ne_pci_dev->enclaves_list_mutex); 1543 1544 return rc; 1545 } 1546 1547 /** 1548 * ne_enclave_poll() - Poll functionality used for enclave out-of-band events. 1549 * @file: File associated with this poll function. 1550 * @wait: Poll table data structure. 1551 * 1552 * Context: Process context. 1553 * Return: 1554 * * Poll mask. 1555 */ 1556 static __poll_t ne_enclave_poll(struct file *file, poll_table *wait) 1557 { 1558 __poll_t mask = 0; 1559 struct ne_enclave *ne_enclave = file->private_data; 1560 1561 poll_wait(file, &ne_enclave->eventq, wait); 1562 1563 if (ne_enclave->has_event) 1564 mask |= EPOLLHUP; 1565 1566 return mask; 1567 } 1568 1569 static const struct file_operations ne_enclave_fops = { 1570 .owner = THIS_MODULE, 1571 .llseek = noop_llseek, 1572 .poll = ne_enclave_poll, 1573 .unlocked_ioctl = ne_enclave_ioctl, 1574 .release = ne_enclave_release, 1575 }; 1576 1577 /** 1578 * ne_create_vm_ioctl() - Alloc slot to be associated with an enclave. Create 1579 * enclave file descriptor to be further used for enclave 1580 * resources handling e.g. memory regions and CPUs. 1581 * @ne_pci_dev : Private data associated with the PCI device. 1582 * @slot_uid: User pointer to store the generated unique slot id 1583 * associated with an enclave to. 1584 * 1585 * Context: Process context. This function is called with the ne_pci_dev enclave 1586 * mutex held. 1587 * Return: 1588 * * Enclave fd on success. 1589 * * Negative return value on failure. 1590 */ 1591 static int ne_create_vm_ioctl(struct ne_pci_dev *ne_pci_dev, u64 __user *slot_uid) 1592 { 1593 struct ne_pci_dev_cmd_reply cmd_reply = {}; 1594 int enclave_fd = -1; 1595 struct file *enclave_file = NULL; 1596 unsigned int i = 0; 1597 struct ne_enclave *ne_enclave = NULL; 1598 struct pci_dev *pdev = ne_pci_dev->pdev; 1599 int rc = -EINVAL; 1600 struct slot_alloc_req slot_alloc_req = {}; 1601 1602 mutex_lock(&ne_cpu_pool.mutex); 1603 1604 for (i = 0; i < ne_cpu_pool.nr_parent_vm_cores; i++) 1605 if (!cpumask_empty(ne_cpu_pool.avail_threads_per_core[i])) 1606 break; 1607 1608 if (i == ne_cpu_pool.nr_parent_vm_cores) { 1609 dev_err_ratelimited(ne_misc_dev.this_device, 1610 "No CPUs available in CPU pool\n"); 1611 1612 mutex_unlock(&ne_cpu_pool.mutex); 1613 1614 return -NE_ERR_NO_CPUS_AVAIL_IN_POOL; 1615 } 1616 1617 mutex_unlock(&ne_cpu_pool.mutex); 1618 1619 ne_enclave = kzalloc(sizeof(*ne_enclave), GFP_KERNEL); 1620 if (!ne_enclave) 1621 return -ENOMEM; 1622 1623 mutex_lock(&ne_cpu_pool.mutex); 1624 1625 ne_enclave->nr_parent_vm_cores = ne_cpu_pool.nr_parent_vm_cores; 1626 ne_enclave->nr_threads_per_core = ne_cpu_pool.nr_threads_per_core; 1627 ne_enclave->numa_node = ne_cpu_pool.numa_node; 1628 1629 mutex_unlock(&ne_cpu_pool.mutex); 1630 1631 ne_enclave->threads_per_core = kcalloc(ne_enclave->nr_parent_vm_cores, 1632 sizeof(*ne_enclave->threads_per_core), 1633 GFP_KERNEL); 1634 if (!ne_enclave->threads_per_core) { 1635 rc = -ENOMEM; 1636 1637 goto free_ne_enclave; 1638 } 1639 1640 for (i = 0; i < ne_enclave->nr_parent_vm_cores; i++) 1641 if (!zalloc_cpumask_var(&ne_enclave->threads_per_core[i], GFP_KERNEL)) { 1642 rc = -ENOMEM; 1643 1644 goto free_cpumask; 1645 } 1646 1647 if (!zalloc_cpumask_var(&ne_enclave->vcpu_ids, GFP_KERNEL)) { 1648 rc = -ENOMEM; 1649 1650 goto free_cpumask; 1651 } 1652 1653 enclave_fd = get_unused_fd_flags(O_CLOEXEC); 1654 if (enclave_fd < 0) { 1655 rc = enclave_fd; 1656 1657 dev_err_ratelimited(ne_misc_dev.this_device, 1658 "Error in getting unused fd [rc=%d]\n", rc); 1659 1660 goto free_cpumask; 1661 } 1662 1663 enclave_file = anon_inode_getfile("ne-vm", &ne_enclave_fops, ne_enclave, O_RDWR); 1664 if (IS_ERR(enclave_file)) { 1665 rc = PTR_ERR(enclave_file); 1666 1667 dev_err_ratelimited(ne_misc_dev.this_device, 1668 "Error in anon inode get file [rc=%d]\n", rc); 1669 1670 goto put_fd; 1671 } 1672 1673 rc = ne_do_request(pdev, SLOT_ALLOC, 1674 &slot_alloc_req, sizeof(slot_alloc_req), 1675 &cmd_reply, sizeof(cmd_reply)); 1676 if (rc < 0) { 1677 dev_err_ratelimited(ne_misc_dev.this_device, 1678 "Error in slot alloc [rc=%d]\n", rc); 1679 1680 goto put_file; 1681 } 1682 1683 init_waitqueue_head(&ne_enclave->eventq); 1684 ne_enclave->has_event = false; 1685 mutex_init(&ne_enclave->enclave_info_mutex); 1686 ne_enclave->max_mem_regions = cmd_reply.mem_regions; 1687 INIT_LIST_HEAD(&ne_enclave->mem_regions_list); 1688 ne_enclave->mm = current->mm; 1689 ne_enclave->slot_uid = cmd_reply.slot_uid; 1690 ne_enclave->state = NE_STATE_INIT; 1691 1692 list_add(&ne_enclave->enclave_list_entry, &ne_pci_dev->enclaves_list); 1693 1694 if (copy_to_user(slot_uid, &ne_enclave->slot_uid, sizeof(ne_enclave->slot_uid))) { 1695 /* 1696 * As we're holding the only reference to 'enclave_file', fput() 1697 * will call ne_enclave_release() which will do a proper cleanup 1698 * of all so far allocated resources, leaving only the unused fd 1699 * for us to free. 1700 */ 1701 fput(enclave_file); 1702 put_unused_fd(enclave_fd); 1703 1704 return -EFAULT; 1705 } 1706 1707 fd_install(enclave_fd, enclave_file); 1708 1709 return enclave_fd; 1710 1711 put_file: 1712 fput(enclave_file); 1713 put_fd: 1714 put_unused_fd(enclave_fd); 1715 free_cpumask: 1716 free_cpumask_var(ne_enclave->vcpu_ids); 1717 for (i = 0; i < ne_enclave->nr_parent_vm_cores; i++) 1718 free_cpumask_var(ne_enclave->threads_per_core[i]); 1719 kfree(ne_enclave->threads_per_core); 1720 free_ne_enclave: 1721 kfree(ne_enclave); 1722 1723 return rc; 1724 } 1725 1726 /** 1727 * ne_ioctl() - Ioctl function provided by the NE misc device. 1728 * @file: File associated with this ioctl function. 1729 * @cmd: The command that is set for the ioctl call. 1730 * @arg: The argument that is provided for the ioctl call. 1731 * 1732 * Context: Process context. 1733 * Return: 1734 * * Ioctl result (e.g. enclave file descriptor) on success. 1735 * * Negative return value on failure. 1736 */ 1737 static long ne_ioctl(struct file *file, unsigned int cmd, unsigned long arg) 1738 { 1739 switch (cmd) { 1740 case NE_CREATE_VM: { 1741 int enclave_fd = -1; 1742 struct ne_pci_dev *ne_pci_dev = ne_devs.ne_pci_dev; 1743 u64 __user *slot_uid = (void __user *)arg; 1744 1745 mutex_lock(&ne_pci_dev->enclaves_list_mutex); 1746 enclave_fd = ne_create_vm_ioctl(ne_pci_dev, slot_uid); 1747 mutex_unlock(&ne_pci_dev->enclaves_list_mutex); 1748 1749 return enclave_fd; 1750 } 1751 1752 default: 1753 return -ENOTTY; 1754 } 1755 1756 return 0; 1757 } 1758 1759 #if defined(CONFIG_NITRO_ENCLAVES_MISC_DEV_TEST) 1760 #include "ne_misc_dev_test.c" 1761 1762 static inline int ne_misc_dev_test_init(void) 1763 { 1764 return __kunit_test_suites_init(ne_misc_dev_test_suites); 1765 } 1766 1767 static inline void ne_misc_dev_test_exit(void) 1768 { 1769 __kunit_test_suites_exit(ne_misc_dev_test_suites); 1770 } 1771 #else 1772 static inline int ne_misc_dev_test_init(void) 1773 { 1774 return 0; 1775 } 1776 1777 static inline void ne_misc_dev_test_exit(void) 1778 { 1779 } 1780 #endif 1781 1782 static int __init ne_init(void) 1783 { 1784 int rc = 0; 1785 1786 rc = ne_misc_dev_test_init(); 1787 if (rc < 0) 1788 return rc; 1789 1790 mutex_init(&ne_cpu_pool.mutex); 1791 1792 return pci_register_driver(&ne_pci_driver); 1793 } 1794 1795 static void __exit ne_exit(void) 1796 { 1797 pci_unregister_driver(&ne_pci_driver); 1798 1799 ne_teardown_cpu_pool(); 1800 1801 ne_misc_dev_test_exit(); 1802 } 1803 1804 module_init(ne_init); 1805 module_exit(ne_exit); 1806 1807 MODULE_AUTHOR("Amazon.com, Inc. or its affiliates"); 1808 MODULE_DESCRIPTION("Nitro Enclaves Driver"); 1809 MODULE_LICENSE("GPL v2"); 1810