1 /* 2 * Freescale Hypervisor Management Driver 3 4 * Copyright (C) 2008-2011 Freescale Semiconductor, Inc. 5 * Author: Timur Tabi <timur@freescale.com> 6 * 7 * This file is licensed under the terms of the GNU General Public License 8 * version 2. This program is licensed "as is" without any warranty of any 9 * kind, whether express or implied. 10 * 11 * The Freescale hypervisor management driver provides several services to 12 * drivers and applications related to the Freescale hypervisor: 13 * 14 * 1. An ioctl interface for querying and managing partitions. 15 * 16 * 2. A file interface to reading incoming doorbells. 17 * 18 * 3. An interrupt handler for shutting down the partition upon receiving the 19 * shutdown doorbell from a manager partition. 20 * 21 * 4. A kernel interface for receiving callbacks when a managed partition 22 * shuts down. 23 */ 24 25 #include <linux/kernel.h> 26 #include <linux/module.h> 27 #include <linux/init.h> 28 #include <linux/types.h> 29 #include <linux/err.h> 30 #include <linux/fs.h> 31 #include <linux/miscdevice.h> 32 #include <linux/mm.h> 33 #include <linux/pagemap.h> 34 #include <linux/slab.h> 35 #include <linux/poll.h> 36 #include <linux/of.h> 37 #include <linux/reboot.h> 38 #include <linux/uaccess.h> 39 #include <linux/notifier.h> 40 #include <linux/interrupt.h> 41 42 #include <linux/io.h> 43 #include <asm/fsl_hcalls.h> 44 45 #include <linux/fsl_hypervisor.h> 46 47 static BLOCKING_NOTIFIER_HEAD(failover_subscribers); 48 49 /* 50 * Ioctl interface for FSL_HV_IOCTL_PARTITION_RESTART 51 * 52 * Restart a running partition 53 */ 54 static long ioctl_restart(struct fsl_hv_ioctl_restart __user *p) 55 { 56 struct fsl_hv_ioctl_restart param; 57 58 /* Get the parameters from the user */ 59 if (copy_from_user(¶m, p, sizeof(struct fsl_hv_ioctl_restart))) 60 return -EFAULT; 61 62 param.ret = fh_partition_restart(param.partition); 63 64 if (copy_to_user(&p->ret, ¶m.ret, sizeof(__u32))) 65 return -EFAULT; 66 67 return 0; 68 } 69 70 /* 71 * Ioctl interface for FSL_HV_IOCTL_PARTITION_STATUS 72 * 73 * Query the status of a partition 74 */ 75 static long ioctl_status(struct fsl_hv_ioctl_status __user *p) 76 { 77 struct fsl_hv_ioctl_status param; 78 u32 status; 79 80 /* Get the parameters from the user */ 81 if (copy_from_user(¶m, p, sizeof(struct fsl_hv_ioctl_status))) 82 return -EFAULT; 83 84 param.ret = fh_partition_get_status(param.partition, &status); 85 if (!param.ret) 86 param.status = status; 87 88 if (copy_to_user(p, ¶m, sizeof(struct fsl_hv_ioctl_status))) 89 return -EFAULT; 90 91 return 0; 92 } 93 94 /* 95 * Ioctl interface for FSL_HV_IOCTL_PARTITION_START 96 * 97 * Start a stopped partition. 98 */ 99 static long ioctl_start(struct fsl_hv_ioctl_start __user *p) 100 { 101 struct fsl_hv_ioctl_start param; 102 103 /* Get the parameters from the user */ 104 if (copy_from_user(¶m, p, sizeof(struct fsl_hv_ioctl_start))) 105 return -EFAULT; 106 107 param.ret = fh_partition_start(param.partition, param.entry_point, 108 param.load); 109 110 if (copy_to_user(&p->ret, ¶m.ret, sizeof(__u32))) 111 return -EFAULT; 112 113 return 0; 114 } 115 116 /* 117 * Ioctl interface for FSL_HV_IOCTL_PARTITION_STOP 118 * 119 * Stop a running partition 120 */ 121 static long ioctl_stop(struct fsl_hv_ioctl_stop __user *p) 122 { 123 struct fsl_hv_ioctl_stop param; 124 125 /* Get the parameters from the user */ 126 if (copy_from_user(¶m, p, sizeof(struct fsl_hv_ioctl_stop))) 127 return -EFAULT; 128 129 param.ret = fh_partition_stop(param.partition); 130 131 if (copy_to_user(&p->ret, ¶m.ret, sizeof(__u32))) 132 return -EFAULT; 133 134 return 0; 135 } 136 137 /* 138 * Ioctl interface for FSL_HV_IOCTL_MEMCPY 139 * 140 * The FH_MEMCPY hypercall takes an array of address/address/size structures 141 * to represent the data being copied. As a convenience to the user, this 142 * ioctl takes a user-create buffer and a pointer to a guest physically 143 * contiguous buffer in the remote partition, and creates the 144 * address/address/size array for the hypercall. 145 */ 146 static long ioctl_memcpy(struct fsl_hv_ioctl_memcpy __user *p) 147 { 148 struct fsl_hv_ioctl_memcpy param; 149 150 struct page **pages = NULL; 151 void *sg_list_unaligned = NULL; 152 struct fh_sg_list *sg_list = NULL; 153 154 unsigned int num_pages; 155 unsigned long lb_offset; /* Offset within a page of the local buffer */ 156 157 unsigned int i; 158 long ret = 0; 159 int num_pinned; /* return value from get_user_pages() */ 160 phys_addr_t remote_paddr; /* The next address in the remote buffer */ 161 uint32_t count; /* The number of bytes left to copy */ 162 163 /* Get the parameters from the user */ 164 if (copy_from_user(¶m, p, sizeof(struct fsl_hv_ioctl_memcpy))) 165 return -EFAULT; 166 167 /* 168 * One partition must be local, the other must be remote. In other 169 * words, if source and target are both -1, or are both not -1, then 170 * return an error. 171 */ 172 if ((param.source == -1) == (param.target == -1)) 173 return -EINVAL; 174 175 /* 176 * The array of pages returned by get_user_pages() covers only 177 * page-aligned memory. Since the user buffer is probably not 178 * page-aligned, we need to handle the discrepancy. 179 * 180 * We calculate the offset within a page of the S/G list, and make 181 * adjustments accordingly. This will result in a page list that looks 182 * like this: 183 * 184 * ---- <-- first page starts before the buffer 185 * | | 186 * |////|-> ---- 187 * |////| | | 188 * ---- | | 189 * | | 190 * ---- | | 191 * |////| | | 192 * |////| | | 193 * |////| | | 194 * ---- | | 195 * | | 196 * ---- | | 197 * |////| | | 198 * |////| | | 199 * |////| | | 200 * ---- | | 201 * | | 202 * ---- | | 203 * |////| | | 204 * |////|-> ---- 205 * | | <-- last page ends after the buffer 206 * ---- 207 * 208 * The distance between the start of the first page and the start of the 209 * buffer is lb_offset. The hashed (///) areas are the parts of the 210 * page list that contain the actual buffer. 211 * 212 * The advantage of this approach is that the number of pages is 213 * equal to the number of entries in the S/G list that we give to the 214 * hypervisor. 215 */ 216 lb_offset = param.local_vaddr & (PAGE_SIZE - 1); 217 num_pages = (param.count + lb_offset + PAGE_SIZE - 1) >> PAGE_SHIFT; 218 219 /* Allocate the buffers we need */ 220 221 /* 222 * 'pages' is an array of struct page pointers that's initialized by 223 * get_user_pages(). 224 */ 225 pages = kzalloc(num_pages * sizeof(struct page *), GFP_KERNEL); 226 if (!pages) { 227 pr_debug("fsl-hv: could not allocate page list\n"); 228 return -ENOMEM; 229 } 230 231 /* 232 * sg_list is the list of fh_sg_list objects that we pass to the 233 * hypervisor. 234 */ 235 sg_list_unaligned = kmalloc(num_pages * sizeof(struct fh_sg_list) + 236 sizeof(struct fh_sg_list) - 1, GFP_KERNEL); 237 if (!sg_list_unaligned) { 238 pr_debug("fsl-hv: could not allocate S/G list\n"); 239 ret = -ENOMEM; 240 goto exit; 241 } 242 sg_list = PTR_ALIGN(sg_list_unaligned, sizeof(struct fh_sg_list)); 243 244 /* Get the physical addresses of the source buffer */ 245 down_read(¤t->mm->mmap_sem); 246 num_pinned = get_user_pages(current, current->mm, 247 param.local_vaddr - lb_offset, num_pages, 248 (param.source == -1) ? READ : WRITE, 249 0, pages, NULL); 250 up_read(¤t->mm->mmap_sem); 251 252 if (num_pinned != num_pages) { 253 /* get_user_pages() failed */ 254 pr_debug("fsl-hv: could not lock source buffer\n"); 255 ret = (num_pinned < 0) ? num_pinned : -EFAULT; 256 goto exit; 257 } 258 259 /* 260 * Build the fh_sg_list[] array. The first page is special 261 * because it's misaligned. 262 */ 263 if (param.source == -1) { 264 sg_list[0].source = page_to_phys(pages[0]) + lb_offset; 265 sg_list[0].target = param.remote_paddr; 266 } else { 267 sg_list[0].source = param.remote_paddr; 268 sg_list[0].target = page_to_phys(pages[0]) + lb_offset; 269 } 270 sg_list[0].size = min_t(uint64_t, param.count, PAGE_SIZE - lb_offset); 271 272 remote_paddr = param.remote_paddr + sg_list[0].size; 273 count = param.count - sg_list[0].size; 274 275 for (i = 1; i < num_pages; i++) { 276 if (param.source == -1) { 277 /* local to remote */ 278 sg_list[i].source = page_to_phys(pages[i]); 279 sg_list[i].target = remote_paddr; 280 } else { 281 /* remote to local */ 282 sg_list[i].source = remote_paddr; 283 sg_list[i].target = page_to_phys(pages[i]); 284 } 285 sg_list[i].size = min_t(uint64_t, count, PAGE_SIZE); 286 287 remote_paddr += sg_list[i].size; 288 count -= sg_list[i].size; 289 } 290 291 param.ret = fh_partition_memcpy(param.source, param.target, 292 virt_to_phys(sg_list), num_pages); 293 294 exit: 295 if (pages) { 296 for (i = 0; i < num_pages; i++) 297 if (pages[i]) 298 put_page(pages[i]); 299 } 300 301 kfree(sg_list_unaligned); 302 kfree(pages); 303 304 if (!ret) 305 if (copy_to_user(&p->ret, ¶m.ret, sizeof(__u32))) 306 return -EFAULT; 307 308 return ret; 309 } 310 311 /* 312 * Ioctl interface for FSL_HV_IOCTL_DOORBELL 313 * 314 * Ring a doorbell 315 */ 316 static long ioctl_doorbell(struct fsl_hv_ioctl_doorbell __user *p) 317 { 318 struct fsl_hv_ioctl_doorbell param; 319 320 /* Get the parameters from the user. */ 321 if (copy_from_user(¶m, p, sizeof(struct fsl_hv_ioctl_doorbell))) 322 return -EFAULT; 323 324 param.ret = ev_doorbell_send(param.doorbell); 325 326 if (copy_to_user(&p->ret, ¶m.ret, sizeof(__u32))) 327 return -EFAULT; 328 329 return 0; 330 } 331 332 static long ioctl_dtprop(struct fsl_hv_ioctl_prop __user *p, int set) 333 { 334 struct fsl_hv_ioctl_prop param; 335 char __user *upath, *upropname; 336 void __user *upropval; 337 char *path = NULL, *propname = NULL; 338 void *propval = NULL; 339 int ret = 0; 340 341 /* Get the parameters from the user. */ 342 if (copy_from_user(¶m, p, sizeof(struct fsl_hv_ioctl_prop))) 343 return -EFAULT; 344 345 upath = (char __user *)(uintptr_t)param.path; 346 upropname = (char __user *)(uintptr_t)param.propname; 347 upropval = (void __user *)(uintptr_t)param.propval; 348 349 path = strndup_user(upath, FH_DTPROP_MAX_PATHLEN); 350 if (IS_ERR(path)) { 351 ret = PTR_ERR(path); 352 goto out; 353 } 354 355 propname = strndup_user(upropname, FH_DTPROP_MAX_PATHLEN); 356 if (IS_ERR(propname)) { 357 ret = PTR_ERR(propname); 358 goto out; 359 } 360 361 if (param.proplen > FH_DTPROP_MAX_PROPLEN) { 362 ret = -EINVAL; 363 goto out; 364 } 365 366 propval = kmalloc(param.proplen, GFP_KERNEL); 367 if (!propval) { 368 ret = -ENOMEM; 369 goto out; 370 } 371 372 if (set) { 373 if (copy_from_user(propval, upropval, param.proplen)) { 374 ret = -EFAULT; 375 goto out; 376 } 377 378 param.ret = fh_partition_set_dtprop(param.handle, 379 virt_to_phys(path), 380 virt_to_phys(propname), 381 virt_to_phys(propval), 382 param.proplen); 383 } else { 384 param.ret = fh_partition_get_dtprop(param.handle, 385 virt_to_phys(path), 386 virt_to_phys(propname), 387 virt_to_phys(propval), 388 ¶m.proplen); 389 390 if (param.ret == 0) { 391 if (copy_to_user(upropval, propval, param.proplen) || 392 put_user(param.proplen, &p->proplen)) { 393 ret = -EFAULT; 394 goto out; 395 } 396 } 397 } 398 399 if (put_user(param.ret, &p->ret)) 400 ret = -EFAULT; 401 402 out: 403 kfree(path); 404 kfree(propval); 405 kfree(propname); 406 407 return ret; 408 } 409 410 /* 411 * Ioctl main entry point 412 */ 413 static long fsl_hv_ioctl(struct file *file, unsigned int cmd, 414 unsigned long argaddr) 415 { 416 void __user *arg = (void __user *)argaddr; 417 long ret; 418 419 switch (cmd) { 420 case FSL_HV_IOCTL_PARTITION_RESTART: 421 ret = ioctl_restart(arg); 422 break; 423 case FSL_HV_IOCTL_PARTITION_GET_STATUS: 424 ret = ioctl_status(arg); 425 break; 426 case FSL_HV_IOCTL_PARTITION_START: 427 ret = ioctl_start(arg); 428 break; 429 case FSL_HV_IOCTL_PARTITION_STOP: 430 ret = ioctl_stop(arg); 431 break; 432 case FSL_HV_IOCTL_MEMCPY: 433 ret = ioctl_memcpy(arg); 434 break; 435 case FSL_HV_IOCTL_DOORBELL: 436 ret = ioctl_doorbell(arg); 437 break; 438 case FSL_HV_IOCTL_GETPROP: 439 ret = ioctl_dtprop(arg, 0); 440 break; 441 case FSL_HV_IOCTL_SETPROP: 442 ret = ioctl_dtprop(arg, 1); 443 break; 444 default: 445 pr_debug("fsl-hv: bad ioctl dir=%u type=%u cmd=%u size=%u\n", 446 _IOC_DIR(cmd), _IOC_TYPE(cmd), _IOC_NR(cmd), 447 _IOC_SIZE(cmd)); 448 return -ENOTTY; 449 } 450 451 return ret; 452 } 453 454 /* Linked list of processes that have us open */ 455 static struct list_head db_list; 456 457 /* spinlock for db_list */ 458 static DEFINE_SPINLOCK(db_list_lock); 459 460 /* The size of the doorbell event queue. This must be a power of two. */ 461 #define QSIZE 16 462 463 /* Returns the next head/tail pointer, wrapping around the queue if necessary */ 464 #define nextp(x) (((x) + 1) & (QSIZE - 1)) 465 466 /* Per-open data structure */ 467 struct doorbell_queue { 468 struct list_head list; 469 spinlock_t lock; 470 wait_queue_head_t wait; 471 unsigned int head; 472 unsigned int tail; 473 uint32_t q[QSIZE]; 474 }; 475 476 /* Linked list of ISRs that we registered */ 477 struct list_head isr_list; 478 479 /* Per-ISR data structure */ 480 struct doorbell_isr { 481 struct list_head list; 482 unsigned int irq; 483 uint32_t doorbell; /* The doorbell handle */ 484 uint32_t partition; /* The partition handle, if used */ 485 }; 486 487 /* 488 * Add a doorbell to all of the doorbell queues 489 */ 490 static void fsl_hv_queue_doorbell(uint32_t doorbell) 491 { 492 struct doorbell_queue *dbq; 493 unsigned long flags; 494 495 /* Prevent another core from modifying db_list */ 496 spin_lock_irqsave(&db_list_lock, flags); 497 498 list_for_each_entry(dbq, &db_list, list) { 499 if (dbq->head != nextp(dbq->tail)) { 500 dbq->q[dbq->tail] = doorbell; 501 /* 502 * This memory barrier eliminates the need to grab 503 * the spinlock for dbq. 504 */ 505 smp_wmb(); 506 dbq->tail = nextp(dbq->tail); 507 wake_up_interruptible(&dbq->wait); 508 } 509 } 510 511 spin_unlock_irqrestore(&db_list_lock, flags); 512 } 513 514 /* 515 * Interrupt handler for all doorbells 516 * 517 * We use the same interrupt handler for all doorbells. Whenever a doorbell 518 * is rung, and we receive an interrupt, we just put the handle for that 519 * doorbell (passed to us as *data) into all of the queues. 520 */ 521 static irqreturn_t fsl_hv_isr(int irq, void *data) 522 { 523 fsl_hv_queue_doorbell((uintptr_t) data); 524 525 return IRQ_HANDLED; 526 } 527 528 /* 529 * State change thread function 530 * 531 * The state change notification arrives in an interrupt, but we can't call 532 * blocking_notifier_call_chain() in an interrupt handler. We could call 533 * atomic_notifier_call_chain(), but that would require the clients' call-back 534 * function to run in interrupt context. Since we don't want to impose that 535 * restriction on the clients, we use a threaded IRQ to process the 536 * notification in kernel context. 537 */ 538 static irqreturn_t fsl_hv_state_change_thread(int irq, void *data) 539 { 540 struct doorbell_isr *dbisr = data; 541 542 blocking_notifier_call_chain(&failover_subscribers, dbisr->partition, 543 NULL); 544 545 return IRQ_HANDLED; 546 } 547 548 /* 549 * Interrupt handler for state-change doorbells 550 */ 551 static irqreturn_t fsl_hv_state_change_isr(int irq, void *data) 552 { 553 unsigned int status; 554 struct doorbell_isr *dbisr = data; 555 int ret; 556 557 /* It's still a doorbell, so add it to all the queues. */ 558 fsl_hv_queue_doorbell(dbisr->doorbell); 559 560 /* Determine the new state, and if it's stopped, notify the clients. */ 561 ret = fh_partition_get_status(dbisr->partition, &status); 562 if (!ret && (status == FH_PARTITION_STOPPED)) 563 return IRQ_WAKE_THREAD; 564 565 return IRQ_HANDLED; 566 } 567 568 /* 569 * Returns a bitmask indicating whether a read will block 570 */ 571 static unsigned int fsl_hv_poll(struct file *filp, struct poll_table_struct *p) 572 { 573 struct doorbell_queue *dbq = filp->private_data; 574 unsigned long flags; 575 unsigned int mask; 576 577 spin_lock_irqsave(&dbq->lock, flags); 578 579 poll_wait(filp, &dbq->wait, p); 580 mask = (dbq->head == dbq->tail) ? 0 : (POLLIN | POLLRDNORM); 581 582 spin_unlock_irqrestore(&dbq->lock, flags); 583 584 return mask; 585 } 586 587 /* 588 * Return the handles for any incoming doorbells 589 * 590 * If there are doorbell handles in the queue for this open instance, then 591 * return them to the caller as an array of 32-bit integers. Otherwise, 592 * block until there is at least one handle to return. 593 */ 594 static ssize_t fsl_hv_read(struct file *filp, char __user *buf, size_t len, 595 loff_t *off) 596 { 597 struct doorbell_queue *dbq = filp->private_data; 598 uint32_t __user *p = (uint32_t __user *) buf; /* for put_user() */ 599 unsigned long flags; 600 ssize_t count = 0; 601 602 /* Make sure we stop when the user buffer is full. */ 603 while (len >= sizeof(uint32_t)) { 604 uint32_t dbell; /* Local copy of doorbell queue data */ 605 606 spin_lock_irqsave(&dbq->lock, flags); 607 608 /* 609 * If the queue is empty, then either we're done or we need 610 * to block. If the application specified O_NONBLOCK, then 611 * we return the appropriate error code. 612 */ 613 if (dbq->head == dbq->tail) { 614 spin_unlock_irqrestore(&dbq->lock, flags); 615 if (count) 616 break; 617 if (filp->f_flags & O_NONBLOCK) 618 return -EAGAIN; 619 if (wait_event_interruptible(dbq->wait, 620 dbq->head != dbq->tail)) 621 return -ERESTARTSYS; 622 continue; 623 } 624 625 /* 626 * Even though we have an smp_wmb() in the ISR, the core 627 * might speculatively execute the "dbell = ..." below while 628 * it's evaluating the if-statement above. In that case, the 629 * value put into dbell could be stale if the core accepts the 630 * speculation. To prevent that, we need a read memory barrier 631 * here as well. 632 */ 633 smp_rmb(); 634 635 /* Copy the data to a temporary local buffer, because 636 * we can't call copy_to_user() from inside a spinlock 637 */ 638 dbell = dbq->q[dbq->head]; 639 dbq->head = nextp(dbq->head); 640 641 spin_unlock_irqrestore(&dbq->lock, flags); 642 643 if (put_user(dbell, p)) 644 return -EFAULT; 645 p++; 646 count += sizeof(uint32_t); 647 len -= sizeof(uint32_t); 648 } 649 650 return count; 651 } 652 653 /* 654 * Open the driver and prepare for reading doorbells. 655 * 656 * Every time an application opens the driver, we create a doorbell queue 657 * for that file handle. This queue is used for any incoming doorbells. 658 */ 659 static int fsl_hv_open(struct inode *inode, struct file *filp) 660 { 661 struct doorbell_queue *dbq; 662 unsigned long flags; 663 int ret = 0; 664 665 dbq = kzalloc(sizeof(struct doorbell_queue), GFP_KERNEL); 666 if (!dbq) { 667 pr_err("fsl-hv: out of memory\n"); 668 return -ENOMEM; 669 } 670 671 spin_lock_init(&dbq->lock); 672 init_waitqueue_head(&dbq->wait); 673 674 spin_lock_irqsave(&db_list_lock, flags); 675 list_add(&dbq->list, &db_list); 676 spin_unlock_irqrestore(&db_list_lock, flags); 677 678 filp->private_data = dbq; 679 680 return ret; 681 } 682 683 /* 684 * Close the driver 685 */ 686 static int fsl_hv_close(struct inode *inode, struct file *filp) 687 { 688 struct doorbell_queue *dbq = filp->private_data; 689 unsigned long flags; 690 691 int ret = 0; 692 693 spin_lock_irqsave(&db_list_lock, flags); 694 list_del(&dbq->list); 695 spin_unlock_irqrestore(&db_list_lock, flags); 696 697 kfree(dbq); 698 699 return ret; 700 } 701 702 static const struct file_operations fsl_hv_fops = { 703 .owner = THIS_MODULE, 704 .open = fsl_hv_open, 705 .release = fsl_hv_close, 706 .poll = fsl_hv_poll, 707 .read = fsl_hv_read, 708 .unlocked_ioctl = fsl_hv_ioctl, 709 .compat_ioctl = fsl_hv_ioctl, 710 }; 711 712 static struct miscdevice fsl_hv_misc_dev = { 713 MISC_DYNAMIC_MINOR, 714 "fsl-hv", 715 &fsl_hv_fops 716 }; 717 718 static irqreturn_t fsl_hv_shutdown_isr(int irq, void *data) 719 { 720 orderly_poweroff(false); 721 722 return IRQ_HANDLED; 723 } 724 725 /* 726 * Returns the handle of the parent of the given node 727 * 728 * The handle is the value of the 'hv-handle' property 729 */ 730 static int get_parent_handle(struct device_node *np) 731 { 732 struct device_node *parent; 733 const uint32_t *prop; 734 uint32_t handle; 735 int len; 736 737 parent = of_get_parent(np); 738 if (!parent) 739 /* It's not really possible for this to fail */ 740 return -ENODEV; 741 742 /* 743 * The proper name for the handle property is "hv-handle", but some 744 * older versions of the hypervisor used "reg". 745 */ 746 prop = of_get_property(parent, "hv-handle", &len); 747 if (!prop) 748 prop = of_get_property(parent, "reg", &len); 749 750 if (!prop || (len != sizeof(uint32_t))) { 751 /* This can happen only if the node is malformed */ 752 of_node_put(parent); 753 return -ENODEV; 754 } 755 756 handle = be32_to_cpup(prop); 757 of_node_put(parent); 758 759 return handle; 760 } 761 762 /* 763 * Register a callback for failover events 764 * 765 * This function is called by device drivers to register their callback 766 * functions for fail-over events. 767 */ 768 int fsl_hv_failover_register(struct notifier_block *nb) 769 { 770 return blocking_notifier_chain_register(&failover_subscribers, nb); 771 } 772 EXPORT_SYMBOL(fsl_hv_failover_register); 773 774 /* 775 * Unregister a callback for failover events 776 */ 777 int fsl_hv_failover_unregister(struct notifier_block *nb) 778 { 779 return blocking_notifier_chain_unregister(&failover_subscribers, nb); 780 } 781 EXPORT_SYMBOL(fsl_hv_failover_unregister); 782 783 /* 784 * Return TRUE if we're running under FSL hypervisor 785 * 786 * This function checks to see if we're running under the Freescale 787 * hypervisor, and returns zero if we're not, or non-zero if we are. 788 * 789 * First, it checks if MSR[GS]==1, which means we're running under some 790 * hypervisor. Then it checks if there is a hypervisor node in the device 791 * tree. Currently, that means there needs to be a node in the root called 792 * "hypervisor" and which has a property named "fsl,hv-version". 793 */ 794 static int has_fsl_hypervisor(void) 795 { 796 struct device_node *node; 797 int ret; 798 799 node = of_find_node_by_path("/hypervisor"); 800 if (!node) 801 return 0; 802 803 ret = of_find_property(node, "fsl,hv-version", NULL) != NULL; 804 805 of_node_put(node); 806 807 return ret; 808 } 809 810 /* 811 * Freescale hypervisor management driver init 812 * 813 * This function is called when this module is loaded. 814 * 815 * Register ourselves as a miscellaneous driver. This will register the 816 * fops structure and create the right sysfs entries for udev. 817 */ 818 static int __init fsl_hypervisor_init(void) 819 { 820 struct device_node *np; 821 struct doorbell_isr *dbisr, *n; 822 int ret; 823 824 pr_info("Freescale hypervisor management driver\n"); 825 826 if (!has_fsl_hypervisor()) { 827 pr_info("fsl-hv: no hypervisor found\n"); 828 return -ENODEV; 829 } 830 831 ret = misc_register(&fsl_hv_misc_dev); 832 if (ret) { 833 pr_err("fsl-hv: cannot register device\n"); 834 return ret; 835 } 836 837 INIT_LIST_HEAD(&db_list); 838 INIT_LIST_HEAD(&isr_list); 839 840 for_each_compatible_node(np, NULL, "epapr,hv-receive-doorbell") { 841 unsigned int irq; 842 const uint32_t *handle; 843 844 handle = of_get_property(np, "interrupts", NULL); 845 irq = irq_of_parse_and_map(np, 0); 846 if (!handle || (irq == NO_IRQ)) { 847 pr_err("fsl-hv: no 'interrupts' property in %s node\n", 848 np->full_name); 849 continue; 850 } 851 852 dbisr = kzalloc(sizeof(*dbisr), GFP_KERNEL); 853 if (!dbisr) 854 goto out_of_memory; 855 856 dbisr->irq = irq; 857 dbisr->doorbell = be32_to_cpup(handle); 858 859 if (of_device_is_compatible(np, "fsl,hv-shutdown-doorbell")) { 860 /* The shutdown doorbell gets its own ISR */ 861 ret = request_irq(irq, fsl_hv_shutdown_isr, 0, 862 np->name, NULL); 863 } else if (of_device_is_compatible(np, 864 "fsl,hv-state-change-doorbell")) { 865 /* 866 * The state change doorbell triggers a notification if 867 * the state of the managed partition changes to 868 * "stopped". We need a separate interrupt handler for 869 * that, and we also need to know the handle of the 870 * target partition, not just the handle of the 871 * doorbell. 872 */ 873 dbisr->partition = ret = get_parent_handle(np); 874 if (ret < 0) { 875 pr_err("fsl-hv: node %s has missing or " 876 "malformed parent\n", np->full_name); 877 kfree(dbisr); 878 continue; 879 } 880 ret = request_threaded_irq(irq, fsl_hv_state_change_isr, 881 fsl_hv_state_change_thread, 882 0, np->name, dbisr); 883 } else 884 ret = request_irq(irq, fsl_hv_isr, 0, np->name, dbisr); 885 886 if (ret < 0) { 887 pr_err("fsl-hv: could not request irq %u for node %s\n", 888 irq, np->full_name); 889 kfree(dbisr); 890 continue; 891 } 892 893 list_add(&dbisr->list, &isr_list); 894 895 pr_info("fsl-hv: registered handler for doorbell %u\n", 896 dbisr->doorbell); 897 } 898 899 return 0; 900 901 out_of_memory: 902 list_for_each_entry_safe(dbisr, n, &isr_list, list) { 903 free_irq(dbisr->irq, dbisr); 904 list_del(&dbisr->list); 905 kfree(dbisr); 906 } 907 908 misc_deregister(&fsl_hv_misc_dev); 909 910 return -ENOMEM; 911 } 912 913 /* 914 * Freescale hypervisor management driver termination 915 * 916 * This function is called when this driver is unloaded. 917 */ 918 static void __exit fsl_hypervisor_exit(void) 919 { 920 struct doorbell_isr *dbisr, *n; 921 922 list_for_each_entry_safe(dbisr, n, &isr_list, list) { 923 free_irq(dbisr->irq, dbisr); 924 list_del(&dbisr->list); 925 kfree(dbisr); 926 } 927 928 misc_deregister(&fsl_hv_misc_dev); 929 } 930 931 module_init(fsl_hypervisor_init); 932 module_exit(fsl_hypervisor_exit); 933 934 MODULE_AUTHOR("Timur Tabi <timur@freescale.com>"); 935 MODULE_DESCRIPTION("Freescale hypervisor management driver"); 936 MODULE_LICENSE("GPL v2"); 937