xref: /linux/drivers/virt/fsl_hypervisor.c (revision 15a1fbdcfb519c2bd291ed01c6c94e0b89537a77)
1 /*
2  * Freescale Hypervisor Management Driver
3 
4  * Copyright (C) 2008-2011 Freescale Semiconductor, Inc.
5  * Author: Timur Tabi <timur@freescale.com>
6  *
7  * This file is licensed under the terms of the GNU General Public License
8  * version 2.  This program is licensed "as is" without any warranty of any
9  * kind, whether express or implied.
10  *
11  * The Freescale hypervisor management driver provides several services to
12  * drivers and applications related to the Freescale hypervisor:
13  *
14  * 1. An ioctl interface for querying and managing partitions.
15  *
16  * 2. A file interface to reading incoming doorbells.
17  *
18  * 3. An interrupt handler for shutting down the partition upon receiving the
19  *    shutdown doorbell from a manager partition.
20  *
21  * 4. A kernel interface for receiving callbacks when a managed partition
22  *    shuts down.
23  */
24 
25 #include <linux/kernel.h>
26 #include <linux/module.h>
27 #include <linux/init.h>
28 #include <linux/types.h>
29 #include <linux/err.h>
30 #include <linux/fs.h>
31 #include <linux/miscdevice.h>
32 #include <linux/mm.h>
33 #include <linux/pagemap.h>
34 #include <linux/slab.h>
35 #include <linux/poll.h>
36 #include <linux/of.h>
37 #include <linux/of_irq.h>
38 #include <linux/reboot.h>
39 #include <linux/uaccess.h>
40 #include <linux/notifier.h>
41 #include <linux/interrupt.h>
42 
43 #include <linux/io.h>
44 #include <asm/fsl_hcalls.h>
45 
46 #include <linux/fsl_hypervisor.h>
47 
48 static BLOCKING_NOTIFIER_HEAD(failover_subscribers);
49 
50 /*
51  * Ioctl interface for FSL_HV_IOCTL_PARTITION_RESTART
52  *
53  * Restart a running partition
54  */
55 static long ioctl_restart(struct fsl_hv_ioctl_restart __user *p)
56 {
57 	struct fsl_hv_ioctl_restart param;
58 
59 	/* Get the parameters from the user */
60 	if (copy_from_user(&param, p, sizeof(struct fsl_hv_ioctl_restart)))
61 		return -EFAULT;
62 
63 	param.ret = fh_partition_restart(param.partition);
64 
65 	if (copy_to_user(&p->ret, &param.ret, sizeof(__u32)))
66 		return -EFAULT;
67 
68 	return 0;
69 }
70 
71 /*
72  * Ioctl interface for FSL_HV_IOCTL_PARTITION_STATUS
73  *
74  * Query the status of a partition
75  */
76 static long ioctl_status(struct fsl_hv_ioctl_status __user *p)
77 {
78 	struct fsl_hv_ioctl_status param;
79 	u32 status;
80 
81 	/* Get the parameters from the user */
82 	if (copy_from_user(&param, p, sizeof(struct fsl_hv_ioctl_status)))
83 		return -EFAULT;
84 
85 	param.ret = fh_partition_get_status(param.partition, &status);
86 	if (!param.ret)
87 		param.status = status;
88 
89 	if (copy_to_user(p, &param, sizeof(struct fsl_hv_ioctl_status)))
90 		return -EFAULT;
91 
92 	return 0;
93 }
94 
95 /*
96  * Ioctl interface for FSL_HV_IOCTL_PARTITION_START
97  *
98  * Start a stopped partition.
99  */
100 static long ioctl_start(struct fsl_hv_ioctl_start __user *p)
101 {
102 	struct fsl_hv_ioctl_start param;
103 
104 	/* Get the parameters from the user */
105 	if (copy_from_user(&param, p, sizeof(struct fsl_hv_ioctl_start)))
106 		return -EFAULT;
107 
108 	param.ret = fh_partition_start(param.partition, param.entry_point,
109 				       param.load);
110 
111 	if (copy_to_user(&p->ret, &param.ret, sizeof(__u32)))
112 		return -EFAULT;
113 
114 	return 0;
115 }
116 
117 /*
118  * Ioctl interface for FSL_HV_IOCTL_PARTITION_STOP
119  *
120  * Stop a running partition
121  */
122 static long ioctl_stop(struct fsl_hv_ioctl_stop __user *p)
123 {
124 	struct fsl_hv_ioctl_stop param;
125 
126 	/* Get the parameters from the user */
127 	if (copy_from_user(&param, p, sizeof(struct fsl_hv_ioctl_stop)))
128 		return -EFAULT;
129 
130 	param.ret = fh_partition_stop(param.partition);
131 
132 	if (copy_to_user(&p->ret, &param.ret, sizeof(__u32)))
133 		return -EFAULT;
134 
135 	return 0;
136 }
137 
138 /*
139  * Ioctl interface for FSL_HV_IOCTL_MEMCPY
140  *
141  * The FH_MEMCPY hypercall takes an array of address/address/size structures
142  * to represent the data being copied.  As a convenience to the user, this
143  * ioctl takes a user-create buffer and a pointer to a guest physically
144  * contiguous buffer in the remote partition, and creates the
145  * address/address/size array for the hypercall.
146  */
147 static long ioctl_memcpy(struct fsl_hv_ioctl_memcpy __user *p)
148 {
149 	struct fsl_hv_ioctl_memcpy param;
150 
151 	struct page **pages = NULL;
152 	void *sg_list_unaligned = NULL;
153 	struct fh_sg_list *sg_list = NULL;
154 
155 	unsigned int num_pages;
156 	unsigned long lb_offset; /* Offset within a page of the local buffer */
157 
158 	unsigned int i;
159 	long ret = 0;
160 	int num_pinned; /* return value from get_user_pages() */
161 	phys_addr_t remote_paddr; /* The next address in the remote buffer */
162 	uint32_t count; /* The number of bytes left to copy */
163 
164 	/* Get the parameters from the user */
165 	if (copy_from_user(&param, p, sizeof(struct fsl_hv_ioctl_memcpy)))
166 		return -EFAULT;
167 
168 	/*
169 	 * One partition must be local, the other must be remote.  In other
170 	 * words, if source and target are both -1, or are both not -1, then
171 	 * return an error.
172 	 */
173 	if ((param.source == -1) == (param.target == -1))
174 		return -EINVAL;
175 
176 	/*
177 	 * The array of pages returned by get_user_pages() covers only
178 	 * page-aligned memory.  Since the user buffer is probably not
179 	 * page-aligned, we need to handle the discrepancy.
180 	 *
181 	 * We calculate the offset within a page of the S/G list, and make
182 	 * adjustments accordingly.  This will result in a page list that looks
183 	 * like this:
184 	 *
185 	 *      ----    <-- first page starts before the buffer
186 	 *     |    |
187 	 *     |////|-> ----
188 	 *     |////|  |    |
189 	 *      ----   |    |
190 	 *             |    |
191 	 *      ----   |    |
192 	 *     |////|  |    |
193 	 *     |////|  |    |
194 	 *     |////|  |    |
195 	 *      ----   |    |
196 	 *             |    |
197 	 *      ----   |    |
198 	 *     |////|  |    |
199 	 *     |////|  |    |
200 	 *     |////|  |    |
201 	 *      ----   |    |
202 	 *             |    |
203 	 *      ----   |    |
204 	 *     |////|  |    |
205 	 *     |////|-> ----
206 	 *     |    |   <-- last page ends after the buffer
207 	 *      ----
208 	 *
209 	 * The distance between the start of the first page and the start of the
210 	 * buffer is lb_offset.  The hashed (///) areas are the parts of the
211 	 * page list that contain the actual buffer.
212 	 *
213 	 * The advantage of this approach is that the number of pages is
214 	 * equal to the number of entries in the S/G list that we give to the
215 	 * hypervisor.
216 	 */
217 	lb_offset = param.local_vaddr & (PAGE_SIZE - 1);
218 	if (param.count == 0 ||
219 	    param.count > U64_MAX - lb_offset - PAGE_SIZE + 1)
220 		return -EINVAL;
221 	num_pages = (param.count + lb_offset + PAGE_SIZE - 1) >> PAGE_SHIFT;
222 
223 	/* Allocate the buffers we need */
224 
225 	/*
226 	 * 'pages' is an array of struct page pointers that's initialized by
227 	 * get_user_pages().
228 	 */
229 	pages = kcalloc(num_pages, sizeof(struct page *), GFP_KERNEL);
230 	if (!pages) {
231 		pr_debug("fsl-hv: could not allocate page list\n");
232 		return -ENOMEM;
233 	}
234 
235 	/*
236 	 * sg_list is the list of fh_sg_list objects that we pass to the
237 	 * hypervisor.
238 	 */
239 	sg_list_unaligned = kmalloc(num_pages * sizeof(struct fh_sg_list) +
240 		sizeof(struct fh_sg_list) - 1, GFP_KERNEL);
241 	if (!sg_list_unaligned) {
242 		pr_debug("fsl-hv: could not allocate S/G list\n");
243 		ret = -ENOMEM;
244 		goto exit;
245 	}
246 	sg_list = PTR_ALIGN(sg_list_unaligned, sizeof(struct fh_sg_list));
247 
248 	/* Get the physical addresses of the source buffer */
249 	num_pinned = get_user_pages_fast(param.local_vaddr - lb_offset,
250 		num_pages, param.source != -1 ? FOLL_WRITE : 0, pages);
251 
252 	if (num_pinned != num_pages) {
253 		/* get_user_pages() failed */
254 		pr_debug("fsl-hv: could not lock source buffer\n");
255 		ret = (num_pinned < 0) ? num_pinned : -EFAULT;
256 		goto exit;
257 	}
258 
259 	/*
260 	 * Build the fh_sg_list[] array.  The first page is special
261 	 * because it's misaligned.
262 	 */
263 	if (param.source == -1) {
264 		sg_list[0].source = page_to_phys(pages[0]) + lb_offset;
265 		sg_list[0].target = param.remote_paddr;
266 	} else {
267 		sg_list[0].source = param.remote_paddr;
268 		sg_list[0].target = page_to_phys(pages[0]) + lb_offset;
269 	}
270 	sg_list[0].size = min_t(uint64_t, param.count, PAGE_SIZE - lb_offset);
271 
272 	remote_paddr = param.remote_paddr + sg_list[0].size;
273 	count = param.count - sg_list[0].size;
274 
275 	for (i = 1; i < num_pages; i++) {
276 		if (param.source == -1) {
277 			/* local to remote */
278 			sg_list[i].source = page_to_phys(pages[i]);
279 			sg_list[i].target = remote_paddr;
280 		} else {
281 			/* remote to local */
282 			sg_list[i].source = remote_paddr;
283 			sg_list[i].target = page_to_phys(pages[i]);
284 		}
285 		sg_list[i].size = min_t(uint64_t, count, PAGE_SIZE);
286 
287 		remote_paddr += sg_list[i].size;
288 		count -= sg_list[i].size;
289 	}
290 
291 	param.ret = fh_partition_memcpy(param.source, param.target,
292 		virt_to_phys(sg_list), num_pages);
293 
294 exit:
295 	if (pages) {
296 		for (i = 0; i < num_pages; i++)
297 			if (pages[i])
298 				put_page(pages[i]);
299 	}
300 
301 	kfree(sg_list_unaligned);
302 	kfree(pages);
303 
304 	if (!ret)
305 		if (copy_to_user(&p->ret, &param.ret, sizeof(__u32)))
306 			return -EFAULT;
307 
308 	return ret;
309 }
310 
311 /*
312  * Ioctl interface for FSL_HV_IOCTL_DOORBELL
313  *
314  * Ring a doorbell
315  */
316 static long ioctl_doorbell(struct fsl_hv_ioctl_doorbell __user *p)
317 {
318 	struct fsl_hv_ioctl_doorbell param;
319 
320 	/* Get the parameters from the user. */
321 	if (copy_from_user(&param, p, sizeof(struct fsl_hv_ioctl_doorbell)))
322 		return -EFAULT;
323 
324 	param.ret = ev_doorbell_send(param.doorbell);
325 
326 	if (copy_to_user(&p->ret, &param.ret, sizeof(__u32)))
327 		return -EFAULT;
328 
329 	return 0;
330 }
331 
332 static long ioctl_dtprop(struct fsl_hv_ioctl_prop __user *p, int set)
333 {
334 	struct fsl_hv_ioctl_prop param;
335 	char __user *upath, *upropname;
336 	void __user *upropval;
337 	char *path, *propname;
338 	void *propval;
339 	int ret = 0;
340 
341 	/* Get the parameters from the user. */
342 	if (copy_from_user(&param, p, sizeof(struct fsl_hv_ioctl_prop)))
343 		return -EFAULT;
344 
345 	upath = (char __user *)(uintptr_t)param.path;
346 	upropname = (char __user *)(uintptr_t)param.propname;
347 	upropval = (void __user *)(uintptr_t)param.propval;
348 
349 	path = strndup_user(upath, FH_DTPROP_MAX_PATHLEN);
350 	if (IS_ERR(path))
351 		return PTR_ERR(path);
352 
353 	propname = strndup_user(upropname, FH_DTPROP_MAX_PATHLEN);
354 	if (IS_ERR(propname)) {
355 		ret = PTR_ERR(propname);
356 		goto err_free_path;
357 	}
358 
359 	if (param.proplen > FH_DTPROP_MAX_PROPLEN) {
360 		ret = -EINVAL;
361 		goto err_free_propname;
362 	}
363 
364 	propval = kmalloc(param.proplen, GFP_KERNEL);
365 	if (!propval) {
366 		ret = -ENOMEM;
367 		goto err_free_propname;
368 	}
369 
370 	if (set) {
371 		if (copy_from_user(propval, upropval, param.proplen)) {
372 			ret = -EFAULT;
373 			goto err_free_propval;
374 		}
375 
376 		param.ret = fh_partition_set_dtprop(param.handle,
377 						    virt_to_phys(path),
378 						    virt_to_phys(propname),
379 						    virt_to_phys(propval),
380 						    param.proplen);
381 	} else {
382 		param.ret = fh_partition_get_dtprop(param.handle,
383 						    virt_to_phys(path),
384 						    virt_to_phys(propname),
385 						    virt_to_phys(propval),
386 						    &param.proplen);
387 
388 		if (param.ret == 0) {
389 			if (copy_to_user(upropval, propval, param.proplen) ||
390 			    put_user(param.proplen, &p->proplen)) {
391 				ret = -EFAULT;
392 				goto err_free_propval;
393 			}
394 		}
395 	}
396 
397 	if (put_user(param.ret, &p->ret))
398 		ret = -EFAULT;
399 
400 err_free_propval:
401 	kfree(propval);
402 err_free_propname:
403 	kfree(propname);
404 err_free_path:
405 	kfree(path);
406 
407 	return ret;
408 }
409 
410 /*
411  * Ioctl main entry point
412  */
413 static long fsl_hv_ioctl(struct file *file, unsigned int cmd,
414 			 unsigned long argaddr)
415 {
416 	void __user *arg = (void __user *)argaddr;
417 	long ret;
418 
419 	switch (cmd) {
420 	case FSL_HV_IOCTL_PARTITION_RESTART:
421 		ret = ioctl_restart(arg);
422 		break;
423 	case FSL_HV_IOCTL_PARTITION_GET_STATUS:
424 		ret = ioctl_status(arg);
425 		break;
426 	case FSL_HV_IOCTL_PARTITION_START:
427 		ret = ioctl_start(arg);
428 		break;
429 	case FSL_HV_IOCTL_PARTITION_STOP:
430 		ret = ioctl_stop(arg);
431 		break;
432 	case FSL_HV_IOCTL_MEMCPY:
433 		ret = ioctl_memcpy(arg);
434 		break;
435 	case FSL_HV_IOCTL_DOORBELL:
436 		ret = ioctl_doorbell(arg);
437 		break;
438 	case FSL_HV_IOCTL_GETPROP:
439 		ret = ioctl_dtprop(arg, 0);
440 		break;
441 	case FSL_HV_IOCTL_SETPROP:
442 		ret = ioctl_dtprop(arg, 1);
443 		break;
444 	default:
445 		pr_debug("fsl-hv: bad ioctl dir=%u type=%u cmd=%u size=%u\n",
446 			 _IOC_DIR(cmd), _IOC_TYPE(cmd), _IOC_NR(cmd),
447 			 _IOC_SIZE(cmd));
448 		return -ENOTTY;
449 	}
450 
451 	return ret;
452 }
453 
454 /* Linked list of processes that have us open */
455 static struct list_head db_list;
456 
457 /* spinlock for db_list */
458 static DEFINE_SPINLOCK(db_list_lock);
459 
460 /* The size of the doorbell event queue.  This must be a power of two. */
461 #define QSIZE	16
462 
463 /* Returns the next head/tail pointer, wrapping around the queue if necessary */
464 #define nextp(x) (((x) + 1) & (QSIZE - 1))
465 
466 /* Per-open data structure */
467 struct doorbell_queue {
468 	struct list_head list;
469 	spinlock_t lock;
470 	wait_queue_head_t wait;
471 	unsigned int head;
472 	unsigned int tail;
473 	uint32_t q[QSIZE];
474 };
475 
476 /* Linked list of ISRs that we registered */
477 struct list_head isr_list;
478 
479 /* Per-ISR data structure */
480 struct doorbell_isr {
481 	struct list_head list;
482 	unsigned int irq;
483 	uint32_t doorbell;	/* The doorbell handle */
484 	uint32_t partition;	/* The partition handle, if used */
485 };
486 
487 /*
488  * Add a doorbell to all of the doorbell queues
489  */
490 static void fsl_hv_queue_doorbell(uint32_t doorbell)
491 {
492 	struct doorbell_queue *dbq;
493 	unsigned long flags;
494 
495 	/* Prevent another core from modifying db_list */
496 	spin_lock_irqsave(&db_list_lock, flags);
497 
498 	list_for_each_entry(dbq, &db_list, list) {
499 		if (dbq->head != nextp(dbq->tail)) {
500 			dbq->q[dbq->tail] = doorbell;
501 			/*
502 			 * This memory barrier eliminates the need to grab
503 			 * the spinlock for dbq.
504 			 */
505 			smp_wmb();
506 			dbq->tail = nextp(dbq->tail);
507 			wake_up_interruptible(&dbq->wait);
508 		}
509 	}
510 
511 	spin_unlock_irqrestore(&db_list_lock, flags);
512 }
513 
514 /*
515  * Interrupt handler for all doorbells
516  *
517  * We use the same interrupt handler for all doorbells.  Whenever a doorbell
518  * is rung, and we receive an interrupt, we just put the handle for that
519  * doorbell (passed to us as *data) into all of the queues.
520  */
521 static irqreturn_t fsl_hv_isr(int irq, void *data)
522 {
523 	fsl_hv_queue_doorbell((uintptr_t) data);
524 
525 	return IRQ_HANDLED;
526 }
527 
528 /*
529  * State change thread function
530  *
531  * The state change notification arrives in an interrupt, but we can't call
532  * blocking_notifier_call_chain() in an interrupt handler.  We could call
533  * atomic_notifier_call_chain(), but that would require the clients' call-back
534  * function to run in interrupt context.  Since we don't want to impose that
535  * restriction on the clients, we use a threaded IRQ to process the
536  * notification in kernel context.
537  */
538 static irqreturn_t fsl_hv_state_change_thread(int irq, void *data)
539 {
540 	struct doorbell_isr *dbisr = data;
541 
542 	blocking_notifier_call_chain(&failover_subscribers, dbisr->partition,
543 				     NULL);
544 
545 	return IRQ_HANDLED;
546 }
547 
548 /*
549  * Interrupt handler for state-change doorbells
550  */
551 static irqreturn_t fsl_hv_state_change_isr(int irq, void *data)
552 {
553 	unsigned int status;
554 	struct doorbell_isr *dbisr = data;
555 	int ret;
556 
557 	/* It's still a doorbell, so add it to all the queues. */
558 	fsl_hv_queue_doorbell(dbisr->doorbell);
559 
560 	/* Determine the new state, and if it's stopped, notify the clients. */
561 	ret = fh_partition_get_status(dbisr->partition, &status);
562 	if (!ret && (status == FH_PARTITION_STOPPED))
563 		return IRQ_WAKE_THREAD;
564 
565 	return IRQ_HANDLED;
566 }
567 
568 /*
569  * Returns a bitmask indicating whether a read will block
570  */
571 static __poll_t fsl_hv_poll(struct file *filp, struct poll_table_struct *p)
572 {
573 	struct doorbell_queue *dbq = filp->private_data;
574 	unsigned long flags;
575 	__poll_t mask;
576 
577 	spin_lock_irqsave(&dbq->lock, flags);
578 
579 	poll_wait(filp, &dbq->wait, p);
580 	mask = (dbq->head == dbq->tail) ? 0 : (EPOLLIN | EPOLLRDNORM);
581 
582 	spin_unlock_irqrestore(&dbq->lock, flags);
583 
584 	return mask;
585 }
586 
587 /*
588  * Return the handles for any incoming doorbells
589  *
590  * If there are doorbell handles in the queue for this open instance, then
591  * return them to the caller as an array of 32-bit integers.  Otherwise,
592  * block until there is at least one handle to return.
593  */
594 static ssize_t fsl_hv_read(struct file *filp, char __user *buf, size_t len,
595 			   loff_t *off)
596 {
597 	struct doorbell_queue *dbq = filp->private_data;
598 	uint32_t __user *p = (uint32_t __user *) buf; /* for put_user() */
599 	unsigned long flags;
600 	ssize_t count = 0;
601 
602 	/* Make sure we stop when the user buffer is full. */
603 	while (len >= sizeof(uint32_t)) {
604 		uint32_t dbell;	/* Local copy of doorbell queue data */
605 
606 		spin_lock_irqsave(&dbq->lock, flags);
607 
608 		/*
609 		 * If the queue is empty, then either we're done or we need
610 		 * to block.  If the application specified O_NONBLOCK, then
611 		 * we return the appropriate error code.
612 		 */
613 		if (dbq->head == dbq->tail) {
614 			spin_unlock_irqrestore(&dbq->lock, flags);
615 			if (count)
616 				break;
617 			if (filp->f_flags & O_NONBLOCK)
618 				return -EAGAIN;
619 			if (wait_event_interruptible(dbq->wait,
620 						     dbq->head != dbq->tail))
621 				return -ERESTARTSYS;
622 			continue;
623 		}
624 
625 		/*
626 		 * Even though we have an smp_wmb() in the ISR, the core
627 		 * might speculatively execute the "dbell = ..." below while
628 		 * it's evaluating the if-statement above.  In that case, the
629 		 * value put into dbell could be stale if the core accepts the
630 		 * speculation. To prevent that, we need a read memory barrier
631 		 * here as well.
632 		 */
633 		smp_rmb();
634 
635 		/* Copy the data to a temporary local buffer, because
636 		 * we can't call copy_to_user() from inside a spinlock
637 		 */
638 		dbell = dbq->q[dbq->head];
639 		dbq->head = nextp(dbq->head);
640 
641 		spin_unlock_irqrestore(&dbq->lock, flags);
642 
643 		if (put_user(dbell, p))
644 			return -EFAULT;
645 		p++;
646 		count += sizeof(uint32_t);
647 		len -= sizeof(uint32_t);
648 	}
649 
650 	return count;
651 }
652 
653 /*
654  * Open the driver and prepare for reading doorbells.
655  *
656  * Every time an application opens the driver, we create a doorbell queue
657  * for that file handle.  This queue is used for any incoming doorbells.
658  */
659 static int fsl_hv_open(struct inode *inode, struct file *filp)
660 {
661 	struct doorbell_queue *dbq;
662 	unsigned long flags;
663 	int ret = 0;
664 
665 	dbq = kzalloc(sizeof(struct doorbell_queue), GFP_KERNEL);
666 	if (!dbq) {
667 		pr_err("fsl-hv: out of memory\n");
668 		return -ENOMEM;
669 	}
670 
671 	spin_lock_init(&dbq->lock);
672 	init_waitqueue_head(&dbq->wait);
673 
674 	spin_lock_irqsave(&db_list_lock, flags);
675 	list_add(&dbq->list, &db_list);
676 	spin_unlock_irqrestore(&db_list_lock, flags);
677 
678 	filp->private_data = dbq;
679 
680 	return ret;
681 }
682 
683 /*
684  * Close the driver
685  */
686 static int fsl_hv_close(struct inode *inode, struct file *filp)
687 {
688 	struct doorbell_queue *dbq = filp->private_data;
689 	unsigned long flags;
690 
691 	int ret = 0;
692 
693 	spin_lock_irqsave(&db_list_lock, flags);
694 	list_del(&dbq->list);
695 	spin_unlock_irqrestore(&db_list_lock, flags);
696 
697 	kfree(dbq);
698 
699 	return ret;
700 }
701 
702 static const struct file_operations fsl_hv_fops = {
703 	.owner = THIS_MODULE,
704 	.open = fsl_hv_open,
705 	.release = fsl_hv_close,
706 	.poll = fsl_hv_poll,
707 	.read = fsl_hv_read,
708 	.unlocked_ioctl = fsl_hv_ioctl,
709 	.compat_ioctl = compat_ptr_ioctl,
710 };
711 
712 static struct miscdevice fsl_hv_misc_dev = {
713 	MISC_DYNAMIC_MINOR,
714 	"fsl-hv",
715 	&fsl_hv_fops
716 };
717 
718 static irqreturn_t fsl_hv_shutdown_isr(int irq, void *data)
719 {
720 	orderly_poweroff(false);
721 
722 	return IRQ_HANDLED;
723 }
724 
725 /*
726  * Returns the handle of the parent of the given node
727  *
728  * The handle is the value of the 'hv-handle' property
729  */
730 static int get_parent_handle(struct device_node *np)
731 {
732 	struct device_node *parent;
733 	const uint32_t *prop;
734 	uint32_t handle;
735 	int len;
736 
737 	parent = of_get_parent(np);
738 	if (!parent)
739 		/* It's not really possible for this to fail */
740 		return -ENODEV;
741 
742 	/*
743 	 * The proper name for the handle property is "hv-handle", but some
744 	 * older versions of the hypervisor used "reg".
745 	 */
746 	prop = of_get_property(parent, "hv-handle", &len);
747 	if (!prop)
748 		prop = of_get_property(parent, "reg", &len);
749 
750 	if (!prop || (len != sizeof(uint32_t))) {
751 		/* This can happen only if the node is malformed */
752 		of_node_put(parent);
753 		return -ENODEV;
754 	}
755 
756 	handle = be32_to_cpup(prop);
757 	of_node_put(parent);
758 
759 	return handle;
760 }
761 
762 /*
763  * Register a callback for failover events
764  *
765  * This function is called by device drivers to register their callback
766  * functions for fail-over events.
767  */
768 int fsl_hv_failover_register(struct notifier_block *nb)
769 {
770 	return blocking_notifier_chain_register(&failover_subscribers, nb);
771 }
772 EXPORT_SYMBOL(fsl_hv_failover_register);
773 
774 /*
775  * Unregister a callback for failover events
776  */
777 int fsl_hv_failover_unregister(struct notifier_block *nb)
778 {
779 	return blocking_notifier_chain_unregister(&failover_subscribers, nb);
780 }
781 EXPORT_SYMBOL(fsl_hv_failover_unregister);
782 
783 /*
784  * Return TRUE if we're running under FSL hypervisor
785  *
786  * This function checks to see if we're running under the Freescale
787  * hypervisor, and returns zero if we're not, or non-zero if we are.
788  *
789  * First, it checks if MSR[GS]==1, which means we're running under some
790  * hypervisor.  Then it checks if there is a hypervisor node in the device
791  * tree.  Currently, that means there needs to be a node in the root called
792  * "hypervisor" and which has a property named "fsl,hv-version".
793  */
794 static int has_fsl_hypervisor(void)
795 {
796 	struct device_node *node;
797 	int ret;
798 
799 	node = of_find_node_by_path("/hypervisor");
800 	if (!node)
801 		return 0;
802 
803 	ret = of_find_property(node, "fsl,hv-version", NULL) != NULL;
804 
805 	of_node_put(node);
806 
807 	return ret;
808 }
809 
810 /*
811  * Freescale hypervisor management driver init
812  *
813  * This function is called when this module is loaded.
814  *
815  * Register ourselves as a miscellaneous driver.  This will register the
816  * fops structure and create the right sysfs entries for udev.
817  */
818 static int __init fsl_hypervisor_init(void)
819 {
820 	struct device_node *np;
821 	struct doorbell_isr *dbisr, *n;
822 	int ret;
823 
824 	pr_info("Freescale hypervisor management driver\n");
825 
826 	if (!has_fsl_hypervisor()) {
827 		pr_info("fsl-hv: no hypervisor found\n");
828 		return -ENODEV;
829 	}
830 
831 	ret = misc_register(&fsl_hv_misc_dev);
832 	if (ret) {
833 		pr_err("fsl-hv: cannot register device\n");
834 		return ret;
835 	}
836 
837 	INIT_LIST_HEAD(&db_list);
838 	INIT_LIST_HEAD(&isr_list);
839 
840 	for_each_compatible_node(np, NULL, "epapr,hv-receive-doorbell") {
841 		unsigned int irq;
842 		const uint32_t *handle;
843 
844 		handle = of_get_property(np, "interrupts", NULL);
845 		irq = irq_of_parse_and_map(np, 0);
846 		if (!handle || (irq == NO_IRQ)) {
847 			pr_err("fsl-hv: no 'interrupts' property in %pOF node\n",
848 				np);
849 			continue;
850 		}
851 
852 		dbisr = kzalloc(sizeof(*dbisr), GFP_KERNEL);
853 		if (!dbisr)
854 			goto out_of_memory;
855 
856 		dbisr->irq = irq;
857 		dbisr->doorbell = be32_to_cpup(handle);
858 
859 		if (of_device_is_compatible(np, "fsl,hv-shutdown-doorbell")) {
860 			/* The shutdown doorbell gets its own ISR */
861 			ret = request_irq(irq, fsl_hv_shutdown_isr, 0,
862 					  np->name, NULL);
863 		} else if (of_device_is_compatible(np,
864 			"fsl,hv-state-change-doorbell")) {
865 			/*
866 			 * The state change doorbell triggers a notification if
867 			 * the state of the managed partition changes to
868 			 * "stopped". We need a separate interrupt handler for
869 			 * that, and we also need to know the handle of the
870 			 * target partition, not just the handle of the
871 			 * doorbell.
872 			 */
873 			dbisr->partition = ret = get_parent_handle(np);
874 			if (ret < 0) {
875 				pr_err("fsl-hv: node %pOF has missing or "
876 				       "malformed parent\n", np);
877 				kfree(dbisr);
878 				continue;
879 			}
880 			ret = request_threaded_irq(irq, fsl_hv_state_change_isr,
881 						   fsl_hv_state_change_thread,
882 						   0, np->name, dbisr);
883 		} else
884 			ret = request_irq(irq, fsl_hv_isr, 0, np->name, dbisr);
885 
886 		if (ret < 0) {
887 			pr_err("fsl-hv: could not request irq %u for node %pOF\n",
888 			       irq, np);
889 			kfree(dbisr);
890 			continue;
891 		}
892 
893 		list_add(&dbisr->list, &isr_list);
894 
895 		pr_info("fsl-hv: registered handler for doorbell %u\n",
896 			dbisr->doorbell);
897 	}
898 
899 	return 0;
900 
901 out_of_memory:
902 	list_for_each_entry_safe(dbisr, n, &isr_list, list) {
903 		free_irq(dbisr->irq, dbisr);
904 		list_del(&dbisr->list);
905 		kfree(dbisr);
906 	}
907 
908 	misc_deregister(&fsl_hv_misc_dev);
909 
910 	return -ENOMEM;
911 }
912 
913 /*
914  * Freescale hypervisor management driver termination
915  *
916  * This function is called when this driver is unloaded.
917  */
918 static void __exit fsl_hypervisor_exit(void)
919 {
920 	struct doorbell_isr *dbisr, *n;
921 
922 	list_for_each_entry_safe(dbisr, n, &isr_list, list) {
923 		free_irq(dbisr->irq, dbisr);
924 		list_del(&dbisr->list);
925 		kfree(dbisr);
926 	}
927 
928 	misc_deregister(&fsl_hv_misc_dev);
929 }
930 
931 module_init(fsl_hypervisor_init);
932 module_exit(fsl_hypervisor_exit);
933 
934 MODULE_AUTHOR("Timur Tabi <timur@freescale.com>");
935 MODULE_DESCRIPTION("Freescale hypervisor management driver");
936 MODULE_LICENSE("GPL v2");
937