xref: /linux/drivers/video/fbdev/sa1100fb.c (revision c532de5a67a70f8533d495f8f2aaa9a0491c3ad0)
1 /*
2  *  linux/drivers/video/sa1100fb.c
3  *
4  *  Copyright (C) 1999 Eric A. Thomas
5  *   Based on acornfb.c Copyright (C) Russell King.
6  *
7  * This file is subject to the terms and conditions of the GNU General Public
8  * License.  See the file COPYING in the main directory of this archive for
9  * more details.
10  *
11  *	        StrongARM 1100 LCD Controller Frame Buffer Driver
12  *
13  * Please direct your questions and comments on this driver to the following
14  * email address:
15  *
16  *	linux-arm-kernel@lists.arm.linux.org.uk
17  *
18  * Clean patches should be sent to the ARM Linux Patch System.  Please see the
19  * following web page for more information:
20  *
21  *	https://www.arm.linux.org.uk/developer/patches/info.shtml
22  *
23  * Thank you.
24  *
25  * Known problems:
26  *	- With the Neponset plugged into an Assabet, LCD powerdown
27  *	  doesn't work (LCD stays powered up).  Therefore we shouldn't
28  *	  blank the screen.
29  *	- We don't limit the CPU clock rate nor the mode selection
30  *	  according to the available SDRAM bandwidth.
31  *
32  * Other notes:
33  *	- Linear grayscale palettes and the kernel.
34  *	  Such code does not belong in the kernel.  The kernel frame buffer
35  *	  drivers do not expect a linear colourmap, but a colourmap based on
36  *	  the VT100 standard mapping.
37  *
38  *	  If your _userspace_ requires a linear colourmap, then the setup of
39  *	  such a colourmap belongs _in userspace_, not in the kernel.  Code
40  *	  to set the colourmap correctly from user space has been sent to
41  *	  David Neuer.  It's around 8 lines of C code, plus another 4 to
42  *	  detect if we are using grayscale.
43  *
44  *	- The following must never be specified in a panel definition:
45  *	     LCCR0_LtlEnd, LCCR3_PixClkDiv, LCCR3_VrtSnchL, LCCR3_HorSnchL
46  *
47  *	- The following should be specified:
48  *	     either LCCR0_Color or LCCR0_Mono
49  *	     either LCCR0_Sngl or LCCR0_Dual
50  *	     either LCCR0_Act or LCCR0_Pas
51  *	     either LCCR3_OutEnH or LCCD3_OutEnL
52  *	     either LCCR3_PixRsEdg or LCCR3_PixFlEdg
53  *	     either LCCR3_ACBsDiv or LCCR3_ACBsCntOff
54  *
55  * Code Status:
56  * 1999/04/01:
57  *	- Driver appears to be working for Brutus 320x200x8bpp mode.  Other
58  *	  resolutions are working, but only the 8bpp mode is supported.
59  *	  Changes need to be made to the palette encode and decode routines
60  *	  to support 4 and 16 bpp modes.
61  *	  Driver is not designed to be a module.  The FrameBuffer is statically
62  *	  allocated since dynamic allocation of a 300k buffer cannot be
63  *	  guaranteed.
64  *
65  * 1999/06/17:
66  *	- FrameBuffer memory is now allocated at run-time when the
67  *	  driver is initialized.
68  *
69  * 2000/04/10: Nicolas Pitre <nico@fluxnic.net>
70  *	- Big cleanup for dynamic selection of machine type at run time.
71  *
72  * 2000/07/19: Jamey Hicks <jamey@crl.dec.com>
73  *	- Support for Bitsy aka Compaq iPAQ H3600 added.
74  *
75  * 2000/08/07: Tak-Shing Chan <tchan.rd@idthk.com>
76  *	       Jeff Sutherland <jsutherland@accelent.com>
77  *	- Resolved an issue caused by a change made to the Assabet's PLD
78  *	  earlier this year which broke the framebuffer driver for newer
79  *	  Phase 4 Assabets.  Some other parameters were changed to optimize
80  *	  for the Sharp display.
81  *
82  * 2000/08/09: Kunihiko IMAI <imai@vasara.co.jp>
83  *	- XP860 support added
84  *
85  * 2000/08/19: Mark Huang <mhuang@livetoy.com>
86  *	- Allows standard options to be passed on the kernel command line
87  *	  for most common passive displays.
88  *
89  * 2000/08/29:
90  *	- s/save_flags_cli/local_irq_save/
91  *	- remove unneeded extra save_flags_cli in sa1100fb_enable_lcd_controller
92  *
93  * 2000/10/10: Erik Mouw <J.A.K.Mouw@its.tudelft.nl>
94  *	- Updated LART stuff. Fixed some minor bugs.
95  *
96  * 2000/10/30: Murphy Chen <murphy@mail.dialogue.com.tw>
97  *	- Pangolin support added
98  *
99  * 2000/10/31: Roman Jordan <jor@hoeft-wessel.de>
100  *	- Huw Webpanel support added
101  *
102  * 2000/11/23: Eric Peng <ericpeng@coventive.com>
103  *	- Freebird add
104  *
105  * 2001/02/07: Jamey Hicks <jamey.hicks@compaq.com>
106  *	       Cliff Brake <cbrake@accelent.com>
107  *	- Added PM callback
108  *
109  * 2001/05/26: <rmk@arm.linux.org.uk>
110  *	- Fix 16bpp so that (a) we use the right colours rather than some
111  *	  totally random colour depending on what was in page 0, and (b)
112  *	  we don't de-reference a NULL pointer.
113  *	- remove duplicated implementation of consistent_alloc()
114  *	- convert dma address types to dma_addr_t
115  *	- remove unused 'montype' stuff
116  *	- remove redundant zero inits of init_var after the initial
117  *	  memset.
118  *	- remove allow_modeset (acornfb idea does not belong here)
119  *
120  * 2001/05/28: <rmk@arm.linux.org.uk>
121  *	- massive cleanup - move machine dependent data into structures
122  *	- I've left various #warnings in - if you see one, and know
123  *	  the hardware concerned, please get in contact with me.
124  *
125  * 2001/05/31: <rmk@arm.linux.org.uk>
126  *	- Fix LCCR1 HSW value, fix all machine type specifications to
127  *	  keep values in line.  (Please check your machine type specs)
128  *
129  * 2001/06/10: <rmk@arm.linux.org.uk>
130  *	- Fiddle with the LCD controller from task context only; mainly
131  *	  so that we can run with interrupts on, and sleep.
132  *	- Convert #warnings into #errors.  No pain, no gain. ;)
133  *
134  * 2001/06/14: <rmk@arm.linux.org.uk>
135  *	- Make the palette BPS value for 12bpp come out correctly.
136  *	- Take notice of "greyscale" on any colour depth.
137  *	- Make truecolor visuals use the RGB channel encoding information.
138  *
139  * 2001/07/02: <rmk@arm.linux.org.uk>
140  *	- Fix colourmap problems.
141  *
142  * 2001/07/13: <abraham@2d3d.co.za>
143  *	- Added support for the ICP LCD-Kit01 on LART. This LCD is
144  *	  manufactured by Prime View, model no V16C6448AB
145  *
146  * 2001/07/23: <rmk@arm.linux.org.uk>
147  *	- Hand merge version from handhelds.org CVS tree.  See patch
148  *	  notes for 595/1 for more information.
149  *	- Drop 12bpp (it's 16bpp with different colour register mappings).
150  *	- This hardware can not do direct colour.  Therefore we don't
151  *	  support it.
152  *
153  * 2001/07/27: <rmk@arm.linux.org.uk>
154  *	- Halve YRES on dual scan LCDs.
155  *
156  * 2001/08/22: <rmk@arm.linux.org.uk>
157  *	- Add b/w iPAQ pixclock value.
158  *
159  * 2001/10/12: <rmk@arm.linux.org.uk>
160  *	- Add patch 681/1 and clean up stork definitions.
161  */
162 
163 #include <linux/module.h>
164 #include <linux/kernel.h>
165 #include <linux/sched.h>
166 #include <linux/errno.h>
167 #include <linux/string.h>
168 #include <linux/interrupt.h>
169 #include <linux/slab.h>
170 #include <linux/mm.h>
171 #include <linux/fb.h>
172 #include <linux/delay.h>
173 #include <linux/init.h>
174 #include <linux/ioport.h>
175 #include <linux/cpufreq.h>
176 #include <linux/gpio/consumer.h>
177 #include <linux/platform_device.h>
178 #include <linux/dma-mapping.h>
179 #include <linux/mutex.h>
180 #include <linux/io.h>
181 #include <linux/clk.h>
182 
183 #include <video/sa1100fb.h>
184 
185 #include <mach/hardware.h>
186 #include <asm/mach-types.h>
187 
188 /*
189  * Complain if VAR is out of range.
190  */
191 #define DEBUG_VAR 1
192 
193 #include "sa1100fb.h"
194 
195 static const struct sa1100fb_rgb rgb_4 = {
196 	.red	= { .offset = 0,  .length = 4, },
197 	.green	= { .offset = 0,  .length = 4, },
198 	.blue	= { .offset = 0,  .length = 4, },
199 	.transp	= { .offset = 0,  .length = 0, },
200 };
201 
202 static const struct sa1100fb_rgb rgb_8 = {
203 	.red	= { .offset = 0,  .length = 8, },
204 	.green	= { .offset = 0,  .length = 8, },
205 	.blue	= { .offset = 0,  .length = 8, },
206 	.transp	= { .offset = 0,  .length = 0, },
207 };
208 
209 static const struct sa1100fb_rgb def_rgb_16 = {
210 	.red	= { .offset = 11, .length = 5, },
211 	.green	= { .offset = 5,  .length = 6, },
212 	.blue	= { .offset = 0,  .length = 5, },
213 	.transp	= { .offset = 0,  .length = 0, },
214 };
215 
216 
217 
218 static int sa1100fb_activate_var(struct fb_var_screeninfo *var, struct sa1100fb_info *);
219 static void set_ctrlr_state(struct sa1100fb_info *fbi, u_int state);
220 
221 static inline void sa1100fb_schedule_work(struct sa1100fb_info *fbi, u_int state)
222 {
223 	unsigned long flags;
224 
225 	local_irq_save(flags);
226 	/*
227 	 * We need to handle two requests being made at the same time.
228 	 * There are two important cases:
229 	 *  1. When we are changing VT (C_REENABLE) while unblanking (C_ENABLE)
230 	 *     We must perform the unblanking, which will do our REENABLE for us.
231 	 *  2. When we are blanking, but immediately unblank before we have
232 	 *     blanked.  We do the "REENABLE" thing here as well, just to be sure.
233 	 */
234 	if (fbi->task_state == C_ENABLE && state == C_REENABLE)
235 		state = (u_int) -1;
236 	if (fbi->task_state == C_DISABLE && state == C_ENABLE)
237 		state = C_REENABLE;
238 
239 	if (state != (u_int)-1) {
240 		fbi->task_state = state;
241 		schedule_work(&fbi->task);
242 	}
243 	local_irq_restore(flags);
244 }
245 
246 static inline u_int chan_to_field(u_int chan, struct fb_bitfield *bf)
247 {
248 	chan &= 0xffff;
249 	chan >>= 16 - bf->length;
250 	return chan << bf->offset;
251 }
252 
253 /*
254  * Convert bits-per-pixel to a hardware palette PBS value.
255  */
256 static inline u_int palette_pbs(struct fb_var_screeninfo *var)
257 {
258 	int ret = 0;
259 	switch (var->bits_per_pixel) {
260 	case 4:  ret = 0 << 12;	break;
261 	case 8:  ret = 1 << 12; break;
262 	case 16: ret = 2 << 12; break;
263 	}
264 	return ret;
265 }
266 
267 static int
268 sa1100fb_setpalettereg(u_int regno, u_int red, u_int green, u_int blue,
269 		       u_int trans, struct fb_info *info)
270 {
271 	struct sa1100fb_info *fbi =
272 		container_of(info, struct sa1100fb_info, fb);
273 	u_int val, ret = 1;
274 
275 	if (regno < fbi->palette_size) {
276 		val = ((red >> 4) & 0xf00);
277 		val |= ((green >> 8) & 0x0f0);
278 		val |= ((blue >> 12) & 0x00f);
279 
280 		if (regno == 0)
281 			val |= palette_pbs(&fbi->fb.var);
282 
283 		fbi->palette_cpu[regno] = val;
284 		ret = 0;
285 	}
286 	return ret;
287 }
288 
289 static int
290 sa1100fb_setcolreg(u_int regno, u_int red, u_int green, u_int blue,
291 		   u_int trans, struct fb_info *info)
292 {
293 	struct sa1100fb_info *fbi =
294 		container_of(info, struct sa1100fb_info, fb);
295 	unsigned int val;
296 	int ret = 1;
297 
298 	/*
299 	 * If inverse mode was selected, invert all the colours
300 	 * rather than the register number.  The register number
301 	 * is what you poke into the framebuffer to produce the
302 	 * colour you requested.
303 	 */
304 	if (fbi->inf->cmap_inverse) {
305 		red   = 0xffff - red;
306 		green = 0xffff - green;
307 		blue  = 0xffff - blue;
308 	}
309 
310 	/*
311 	 * If greyscale is true, then we convert the RGB value
312 	 * to greyscale no mater what visual we are using.
313 	 */
314 	if (fbi->fb.var.grayscale)
315 		red = green = blue = (19595 * red + 38470 * green +
316 					7471 * blue) >> 16;
317 
318 	switch (fbi->fb.fix.visual) {
319 	case FB_VISUAL_TRUECOLOR:
320 		/*
321 		 * 12 or 16-bit True Colour.  We encode the RGB value
322 		 * according to the RGB bitfield information.
323 		 */
324 		if (regno < 16) {
325 			val  = chan_to_field(red, &fbi->fb.var.red);
326 			val |= chan_to_field(green, &fbi->fb.var.green);
327 			val |= chan_to_field(blue, &fbi->fb.var.blue);
328 
329 			fbi->pseudo_palette[regno] = val;
330 			ret = 0;
331 		}
332 		break;
333 
334 	case FB_VISUAL_STATIC_PSEUDOCOLOR:
335 	case FB_VISUAL_PSEUDOCOLOR:
336 		ret = sa1100fb_setpalettereg(regno, red, green, blue, trans, info);
337 		break;
338 	}
339 
340 	return ret;
341 }
342 
343 #ifdef CONFIG_CPU_FREQ
344 /*
345  *  sa1100fb_display_dma_period()
346  *    Calculate the minimum period (in picoseconds) between two DMA
347  *    requests for the LCD controller.  If we hit this, it means we're
348  *    doing nothing but LCD DMA.
349  */
350 static inline unsigned int sa1100fb_display_dma_period(struct fb_var_screeninfo *var)
351 {
352 	/*
353 	 * Period = pixclock * bits_per_byte * bytes_per_transfer
354 	 *		/ memory_bits_per_pixel;
355 	 */
356 	return var->pixclock * 8 * 16 / var->bits_per_pixel;
357 }
358 #endif
359 
360 /*
361  *  sa1100fb_check_var():
362  *    Round up in the following order: bits_per_pixel, xres,
363  *    yres, xres_virtual, yres_virtual, xoffset, yoffset, grayscale,
364  *    bitfields, horizontal timing, vertical timing.
365  */
366 static int
367 sa1100fb_check_var(struct fb_var_screeninfo *var, struct fb_info *info)
368 {
369 	struct sa1100fb_info *fbi =
370 		container_of(info, struct sa1100fb_info, fb);
371 	int rgbidx;
372 
373 	if (var->xres < MIN_XRES)
374 		var->xres = MIN_XRES;
375 	if (var->yres < MIN_YRES)
376 		var->yres = MIN_YRES;
377 	if (var->xres > fbi->inf->xres)
378 		var->xres = fbi->inf->xres;
379 	if (var->yres > fbi->inf->yres)
380 		var->yres = fbi->inf->yres;
381 	var->xres_virtual = max(var->xres_virtual, var->xres);
382 	var->yres_virtual = max(var->yres_virtual, var->yres);
383 
384 	dev_dbg(fbi->dev, "var->bits_per_pixel=%d\n", var->bits_per_pixel);
385 	switch (var->bits_per_pixel) {
386 	case 4:
387 		rgbidx = RGB_4;
388 		break;
389 	case 8:
390 		rgbidx = RGB_8;
391 		break;
392 	case 16:
393 		rgbidx = RGB_16;
394 		break;
395 	default:
396 		return -EINVAL;
397 	}
398 
399 	/*
400 	 * Copy the RGB parameters for this display
401 	 * from the machine specific parameters.
402 	 */
403 	var->red    = fbi->rgb[rgbidx]->red;
404 	var->green  = fbi->rgb[rgbidx]->green;
405 	var->blue   = fbi->rgb[rgbidx]->blue;
406 	var->transp = fbi->rgb[rgbidx]->transp;
407 
408 	dev_dbg(fbi->dev, "RGBT length = %d:%d:%d:%d\n",
409 		var->red.length, var->green.length, var->blue.length,
410 		var->transp.length);
411 
412 	dev_dbg(fbi->dev, "RGBT offset = %d:%d:%d:%d\n",
413 		var->red.offset, var->green.offset, var->blue.offset,
414 		var->transp.offset);
415 
416 #ifdef CONFIG_CPU_FREQ
417 	dev_dbg(fbi->dev, "dma period = %d ps, clock = %ld kHz\n",
418 		sa1100fb_display_dma_period(var),
419 		clk_get_rate(fbi->clk) / 1000);
420 #endif
421 
422 	return 0;
423 }
424 
425 static void sa1100fb_set_visual(struct sa1100fb_info *fbi, u32 visual)
426 {
427 	if (fbi->inf->set_visual)
428 		fbi->inf->set_visual(visual);
429 }
430 
431 /*
432  * sa1100fb_set_par():
433  *	Set the user defined part of the display for the specified console
434  */
435 static int sa1100fb_set_par(struct fb_info *info)
436 {
437 	struct sa1100fb_info *fbi =
438 		container_of(info, struct sa1100fb_info, fb);
439 	struct fb_var_screeninfo *var = &info->var;
440 	unsigned long palette_mem_size;
441 
442 	dev_dbg(fbi->dev, "set_par\n");
443 
444 	if (var->bits_per_pixel == 16)
445 		fbi->fb.fix.visual = FB_VISUAL_TRUECOLOR;
446 	else if (!fbi->inf->cmap_static)
447 		fbi->fb.fix.visual = FB_VISUAL_PSEUDOCOLOR;
448 	else {
449 		/*
450 		 * Some people have weird ideas about wanting static
451 		 * pseudocolor maps.  I suspect their user space
452 		 * applications are broken.
453 		 */
454 		fbi->fb.fix.visual = FB_VISUAL_STATIC_PSEUDOCOLOR;
455 	}
456 
457 	fbi->fb.fix.line_length = var->xres_virtual *
458 				  var->bits_per_pixel / 8;
459 	fbi->palette_size = var->bits_per_pixel == 8 ? 256 : 16;
460 
461 	palette_mem_size = fbi->palette_size * sizeof(u16);
462 
463 	dev_dbg(fbi->dev, "palette_mem_size = 0x%08lx\n", palette_mem_size);
464 
465 	fbi->palette_cpu = (u16 *)(fbi->map_cpu + PAGE_SIZE - palette_mem_size);
466 	fbi->palette_dma = fbi->map_dma + PAGE_SIZE - palette_mem_size;
467 
468 	/*
469 	 * Set (any) board control register to handle new color depth
470 	 */
471 	sa1100fb_set_visual(fbi, fbi->fb.fix.visual);
472 	sa1100fb_activate_var(var, fbi);
473 
474 	return 0;
475 }
476 
477 #if 0
478 static int
479 sa1100fb_set_cmap(struct fb_cmap *cmap, int kspc, int con,
480 		  struct fb_info *info)
481 {
482 	struct sa1100fb_info *fbi = (struct sa1100fb_info *)info;
483 
484 	/*
485 	 * Make sure the user isn't doing something stupid.
486 	 */
487 	if (!kspc && (fbi->fb.var.bits_per_pixel == 16 || fbi->inf->cmap_static))
488 		return -EINVAL;
489 
490 	return gen_set_cmap(cmap, kspc, con, info);
491 }
492 #endif
493 
494 /*
495  * Formal definition of the VESA spec:
496  *  On
497  *  	This refers to the state of the display when it is in full operation
498  *  Stand-By
499  *  	This defines an optional operating state of minimal power reduction with
500  *  	the shortest recovery time
501  *  Suspend
502  *  	This refers to a level of power management in which substantial power
503  *  	reduction is achieved by the display.  The display can have a longer
504  *  	recovery time from this state than from the Stand-by state
505  *  Off
506  *  	This indicates that the display is consuming the lowest level of power
507  *  	and is non-operational. Recovery from this state may optionally require
508  *  	the user to manually power on the monitor
509  *
510  *  Now, the fbdev driver adds an additional state, (blank), where they
511  *  turn off the video (maybe by colormap tricks), but don't mess with the
512  *  video itself: think of it semantically between on and Stand-By.
513  *
514  *  So here's what we should do in our fbdev blank routine:
515  *
516  *  	VESA_NO_BLANKING (mode 0)	Video on,  front/back light on
517  *  	VESA_VSYNC_SUSPEND (mode 1)  	Video on,  front/back light off
518  *  	VESA_HSYNC_SUSPEND (mode 2)  	Video on,  front/back light off
519  *  	VESA_POWERDOWN (mode 3)		Video off, front/back light off
520  *
521  *  This will match the matrox implementation.
522  */
523 /*
524  * sa1100fb_blank():
525  *	Blank the display by setting all palette values to zero.  Note, the
526  * 	12 and 16 bpp modes don't really use the palette, so this will not
527  *      blank the display in all modes.
528  */
529 static int sa1100fb_blank(int blank, struct fb_info *info)
530 {
531 	struct sa1100fb_info *fbi =
532 		container_of(info, struct sa1100fb_info, fb);
533 	int i;
534 
535 	dev_dbg(fbi->dev, "sa1100fb_blank: blank=%d\n", blank);
536 
537 	switch (blank) {
538 	case FB_BLANK_POWERDOWN:
539 	case FB_BLANK_VSYNC_SUSPEND:
540 	case FB_BLANK_HSYNC_SUSPEND:
541 	case FB_BLANK_NORMAL:
542 		if (fbi->fb.fix.visual == FB_VISUAL_PSEUDOCOLOR ||
543 		    fbi->fb.fix.visual == FB_VISUAL_STATIC_PSEUDOCOLOR)
544 			for (i = 0; i < fbi->palette_size; i++)
545 				sa1100fb_setpalettereg(i, 0, 0, 0, 0, info);
546 		sa1100fb_schedule_work(fbi, C_DISABLE);
547 		break;
548 
549 	case FB_BLANK_UNBLANK:
550 		if (fbi->fb.fix.visual == FB_VISUAL_PSEUDOCOLOR ||
551 		    fbi->fb.fix.visual == FB_VISUAL_STATIC_PSEUDOCOLOR)
552 			fb_set_cmap(&fbi->fb.cmap, info);
553 		sa1100fb_schedule_work(fbi, C_ENABLE);
554 	}
555 	return 0;
556 }
557 
558 static int sa1100fb_mmap(struct fb_info *info,
559 			 struct vm_area_struct *vma)
560 {
561 	struct sa1100fb_info *fbi =
562 		container_of(info, struct sa1100fb_info, fb);
563 	unsigned long off = vma->vm_pgoff << PAGE_SHIFT;
564 
565 	vma->vm_page_prot = pgprot_decrypted(vma->vm_page_prot);
566 
567 	if (off < info->fix.smem_len) {
568 		vma->vm_pgoff += 1; /* skip over the palette */
569 		return dma_mmap_wc(fbi->dev, vma, fbi->map_cpu, fbi->map_dma,
570 				   fbi->map_size);
571 	}
572 
573 	vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot);
574 
575 	return vm_iomap_memory(vma, info->fix.mmio_start, info->fix.mmio_len);
576 }
577 
578 static const struct fb_ops sa1100fb_ops = {
579 	.owner		= THIS_MODULE,
580 	__FB_DEFAULT_IOMEM_OPS_RDWR,
581 	.fb_check_var	= sa1100fb_check_var,
582 	.fb_set_par	= sa1100fb_set_par,
583 //	.fb_set_cmap	= sa1100fb_set_cmap,
584 	.fb_setcolreg	= sa1100fb_setcolreg,
585 	.fb_blank	= sa1100fb_blank,
586 	__FB_DEFAULT_IOMEM_OPS_DRAW,
587 	.fb_mmap	= sa1100fb_mmap,
588 };
589 
590 /*
591  * Calculate the PCD value from the clock rate (in picoseconds).
592  * We take account of the PPCR clock setting.
593  */
594 static inline unsigned int get_pcd(struct sa1100fb_info *fbi,
595 		unsigned int pixclock)
596 {
597 	unsigned int pcd = clk_get_rate(fbi->clk) / 100 / 1000;
598 
599 	pcd *= pixclock;
600 	pcd /= 10000000;
601 
602 	return pcd + 1;	/* make up for integer math truncations */
603 }
604 
605 /*
606  * sa1100fb_activate_var():
607  *	Configures LCD Controller based on entries in var parameter.  Settings are
608  *	only written to the controller if changes were made.
609  */
610 static int sa1100fb_activate_var(struct fb_var_screeninfo *var, struct sa1100fb_info *fbi)
611 {
612 	struct sa1100fb_lcd_reg new_regs;
613 	u_int half_screen_size, yres, pcd;
614 	u_long flags;
615 
616 	dev_dbg(fbi->dev, "Configuring SA1100 LCD\n");
617 
618 	dev_dbg(fbi->dev, "var: xres=%d hslen=%d lm=%d rm=%d\n",
619 		var->xres, var->hsync_len,
620 		var->left_margin, var->right_margin);
621 	dev_dbg(fbi->dev, "var: yres=%d vslen=%d um=%d bm=%d\n",
622 		var->yres, var->vsync_len,
623 		var->upper_margin, var->lower_margin);
624 
625 #if DEBUG_VAR
626 	if (var->xres < 16        || var->xres > 1024)
627 		dev_err(fbi->dev, "%s: invalid xres %d\n",
628 			fbi->fb.fix.id, var->xres);
629 	if (var->hsync_len < 1    || var->hsync_len > 64)
630 		dev_err(fbi->dev, "%s: invalid hsync_len %d\n",
631 			fbi->fb.fix.id, var->hsync_len);
632 	if (var->left_margin < 1  || var->left_margin > 255)
633 		dev_err(fbi->dev, "%s: invalid left_margin %d\n",
634 			fbi->fb.fix.id, var->left_margin);
635 	if (var->right_margin < 1 || var->right_margin > 255)
636 		dev_err(fbi->dev, "%s: invalid right_margin %d\n",
637 			fbi->fb.fix.id, var->right_margin);
638 	if (var->yres < 1         || var->yres > 1024)
639 		dev_err(fbi->dev, "%s: invalid yres %d\n",
640 			fbi->fb.fix.id, var->yres);
641 	if (var->vsync_len < 1    || var->vsync_len > 64)
642 		dev_err(fbi->dev, "%s: invalid vsync_len %d\n",
643 			fbi->fb.fix.id, var->vsync_len);
644 	if (var->upper_margin < 0 || var->upper_margin > 255)
645 		dev_err(fbi->dev, "%s: invalid upper_margin %d\n",
646 			fbi->fb.fix.id, var->upper_margin);
647 	if (var->lower_margin < 0 || var->lower_margin > 255)
648 		dev_err(fbi->dev, "%s: invalid lower_margin %d\n",
649 			fbi->fb.fix.id, var->lower_margin);
650 #endif
651 
652 	new_regs.lccr0 = fbi->inf->lccr0 |
653 		LCCR0_LEN | LCCR0_LDM | LCCR0_BAM |
654 		LCCR0_ERM | LCCR0_LtlEnd | LCCR0_DMADel(0);
655 
656 	new_regs.lccr1 =
657 		LCCR1_DisWdth(var->xres) +
658 		LCCR1_HorSnchWdth(var->hsync_len) +
659 		LCCR1_BegLnDel(var->left_margin) +
660 		LCCR1_EndLnDel(var->right_margin);
661 
662 	/*
663 	 * If we have a dual scan LCD, then we need to halve
664 	 * the YRES parameter.
665 	 */
666 	yres = var->yres;
667 	if (fbi->inf->lccr0 & LCCR0_Dual)
668 		yres /= 2;
669 
670 	new_regs.lccr2 =
671 		LCCR2_DisHght(yres) +
672 		LCCR2_VrtSnchWdth(var->vsync_len) +
673 		LCCR2_BegFrmDel(var->upper_margin) +
674 		LCCR2_EndFrmDel(var->lower_margin);
675 
676 	pcd = get_pcd(fbi, var->pixclock);
677 	new_regs.lccr3 = LCCR3_PixClkDiv(pcd) | fbi->inf->lccr3 |
678 		(var->sync & FB_SYNC_HOR_HIGH_ACT ? LCCR3_HorSnchH : LCCR3_HorSnchL) |
679 		(var->sync & FB_SYNC_VERT_HIGH_ACT ? LCCR3_VrtSnchH : LCCR3_VrtSnchL);
680 
681 	dev_dbg(fbi->dev, "nlccr0 = 0x%08lx\n", new_regs.lccr0);
682 	dev_dbg(fbi->dev, "nlccr1 = 0x%08lx\n", new_regs.lccr1);
683 	dev_dbg(fbi->dev, "nlccr2 = 0x%08lx\n", new_regs.lccr2);
684 	dev_dbg(fbi->dev, "nlccr3 = 0x%08lx\n", new_regs.lccr3);
685 
686 	half_screen_size = var->bits_per_pixel;
687 	half_screen_size = half_screen_size * var->xres * var->yres / 16;
688 
689 	/* Update shadow copy atomically */
690 	local_irq_save(flags);
691 	fbi->dbar1 = fbi->palette_dma;
692 	fbi->dbar2 = fbi->screen_dma + half_screen_size;
693 
694 	fbi->reg_lccr0 = new_regs.lccr0;
695 	fbi->reg_lccr1 = new_regs.lccr1;
696 	fbi->reg_lccr2 = new_regs.lccr2;
697 	fbi->reg_lccr3 = new_regs.lccr3;
698 	local_irq_restore(flags);
699 
700 	/*
701 	 * Only update the registers if the controller is enabled
702 	 * and something has changed.
703 	 */
704 	if (readl_relaxed(fbi->base + LCCR0) != fbi->reg_lccr0 ||
705 	    readl_relaxed(fbi->base + LCCR1) != fbi->reg_lccr1 ||
706 	    readl_relaxed(fbi->base + LCCR2) != fbi->reg_lccr2 ||
707 	    readl_relaxed(fbi->base + LCCR3) != fbi->reg_lccr3 ||
708 	    readl_relaxed(fbi->base + DBAR1) != fbi->dbar1 ||
709 	    readl_relaxed(fbi->base + DBAR2) != fbi->dbar2)
710 		sa1100fb_schedule_work(fbi, C_REENABLE);
711 
712 	return 0;
713 }
714 
715 /*
716  * NOTE!  The following functions are purely helpers for set_ctrlr_state.
717  * Do not call them directly; set_ctrlr_state does the correct serialisation
718  * to ensure that things happen in the right way 100% of time time.
719  *	-- rmk
720  */
721 static inline void __sa1100fb_backlight_power(struct sa1100fb_info *fbi, int on)
722 {
723 	dev_dbg(fbi->dev, "backlight o%s\n", on ? "n" : "ff");
724 
725 	if (fbi->inf->backlight_power)
726 		fbi->inf->backlight_power(on);
727 }
728 
729 static inline void __sa1100fb_lcd_power(struct sa1100fb_info *fbi, int on)
730 {
731 	dev_dbg(fbi->dev, "LCD power o%s\n", on ? "n" : "ff");
732 
733 	if (fbi->inf->lcd_power)
734 		fbi->inf->lcd_power(on);
735 }
736 
737 static void sa1100fb_setup_gpio(struct sa1100fb_info *fbi)
738 {
739 	u_int mask = 0;
740 
741 	/*
742 	 * Enable GPIO<9:2> for LCD use if:
743 	 *  1. Active display, or
744 	 *  2. Color Dual Passive display
745 	 *
746 	 * see table 11.8 on page 11-27 in the SA1100 manual
747 	 *   -- Erik.
748 	 *
749 	 * SA1110 spec update nr. 25 says we can and should
750 	 * clear LDD15 to 12 for 4 or 8bpp modes with active
751 	 * panels.
752 	 */
753 	if ((fbi->reg_lccr0 & LCCR0_CMS) == LCCR0_Color &&
754 	    (fbi->reg_lccr0 & (LCCR0_Dual|LCCR0_Act)) != 0) {
755 		mask = GPIO_LDD11 | GPIO_LDD10 | GPIO_LDD9  | GPIO_LDD8;
756 
757 		if (fbi->fb.var.bits_per_pixel > 8 ||
758 		    (fbi->reg_lccr0 & (LCCR0_Dual|LCCR0_Act)) == LCCR0_Dual)
759 			mask |= GPIO_LDD15 | GPIO_LDD14 | GPIO_LDD13 | GPIO_LDD12;
760 
761 	}
762 
763 	if (mask) {
764 		unsigned long flags;
765 
766 		/*
767 		 * SA-1100 requires the GPIO direction register set
768 		 * appropriately for the alternate function.  Hence
769 		 * we set it here via bitmask rather than excessive
770 		 * fiddling via the GPIO subsystem - and even then
771 		 * we'll still have to deal with GAFR.
772 		 */
773 		local_irq_save(flags);
774 		GPDR |= mask;
775 		GAFR |= mask;
776 		local_irq_restore(flags);
777 	}
778 }
779 
780 static void sa1100fb_enable_controller(struct sa1100fb_info *fbi)
781 {
782 	dev_dbg(fbi->dev, "Enabling LCD controller\n");
783 
784 	/*
785 	 * Make sure the mode bits are present in the first palette entry
786 	 */
787 	fbi->palette_cpu[0] &= 0xcfff;
788 	fbi->palette_cpu[0] |= palette_pbs(&fbi->fb.var);
789 
790 	/* enable LCD controller clock */
791 	clk_prepare_enable(fbi->clk);
792 
793 	/* Sequence from 11.7.10 */
794 	writel_relaxed(fbi->reg_lccr3, fbi->base + LCCR3);
795 	writel_relaxed(fbi->reg_lccr2, fbi->base + LCCR2);
796 	writel_relaxed(fbi->reg_lccr1, fbi->base + LCCR1);
797 	writel_relaxed(fbi->reg_lccr0 & ~LCCR0_LEN, fbi->base + LCCR0);
798 	writel_relaxed(fbi->dbar1, fbi->base + DBAR1);
799 	writel_relaxed(fbi->dbar2, fbi->base + DBAR2);
800 	writel_relaxed(fbi->reg_lccr0 | LCCR0_LEN, fbi->base + LCCR0);
801 
802 	if (fbi->shannon_lcden)
803 		gpiod_set_value(fbi->shannon_lcden, 1);
804 
805 	dev_dbg(fbi->dev, "DBAR1: 0x%08x\n", readl_relaxed(fbi->base + DBAR1));
806 	dev_dbg(fbi->dev, "DBAR2: 0x%08x\n", readl_relaxed(fbi->base + DBAR2));
807 	dev_dbg(fbi->dev, "LCCR0: 0x%08x\n", readl_relaxed(fbi->base + LCCR0));
808 	dev_dbg(fbi->dev, "LCCR1: 0x%08x\n", readl_relaxed(fbi->base + LCCR1));
809 	dev_dbg(fbi->dev, "LCCR2: 0x%08x\n", readl_relaxed(fbi->base + LCCR2));
810 	dev_dbg(fbi->dev, "LCCR3: 0x%08x\n", readl_relaxed(fbi->base + LCCR3));
811 }
812 
813 static void sa1100fb_disable_controller(struct sa1100fb_info *fbi)
814 {
815 	DECLARE_WAITQUEUE(wait, current);
816 	u32 lccr0;
817 
818 	dev_dbg(fbi->dev, "Disabling LCD controller\n");
819 
820 	if (fbi->shannon_lcden)
821 		gpiod_set_value(fbi->shannon_lcden, 0);
822 
823 	set_current_state(TASK_UNINTERRUPTIBLE);
824 	add_wait_queue(&fbi->ctrlr_wait, &wait);
825 
826 	/* Clear LCD Status Register */
827 	writel_relaxed(~0, fbi->base + LCSR);
828 
829 	lccr0 = readl_relaxed(fbi->base + LCCR0);
830 	lccr0 &= ~LCCR0_LDM;	/* Enable LCD Disable Done Interrupt */
831 	writel_relaxed(lccr0, fbi->base + LCCR0);
832 	lccr0 &= ~LCCR0_LEN;	/* Disable LCD Controller */
833 	writel_relaxed(lccr0, fbi->base + LCCR0);
834 
835 	schedule_timeout(20 * HZ / 1000);
836 	remove_wait_queue(&fbi->ctrlr_wait, &wait);
837 
838 	/* disable LCD controller clock */
839 	clk_disable_unprepare(fbi->clk);
840 }
841 
842 /*
843  *  sa1100fb_handle_irq: Handle 'LCD DONE' interrupts.
844  */
845 static irqreturn_t sa1100fb_handle_irq(int irq, void *dev_id)
846 {
847 	struct sa1100fb_info *fbi = dev_id;
848 	unsigned int lcsr = readl_relaxed(fbi->base + LCSR);
849 
850 	if (lcsr & LCSR_LDD) {
851 		u32 lccr0 = readl_relaxed(fbi->base + LCCR0) | LCCR0_LDM;
852 		writel_relaxed(lccr0, fbi->base + LCCR0);
853 		wake_up(&fbi->ctrlr_wait);
854 	}
855 
856 	writel_relaxed(lcsr, fbi->base + LCSR);
857 	return IRQ_HANDLED;
858 }
859 
860 /*
861  * This function must be called from task context only, since it will
862  * sleep when disabling the LCD controller, or if we get two contending
863  * processes trying to alter state.
864  */
865 static void set_ctrlr_state(struct sa1100fb_info *fbi, u_int state)
866 {
867 	u_int old_state;
868 
869 	mutex_lock(&fbi->ctrlr_lock);
870 
871 	old_state = fbi->state;
872 
873 	/*
874 	 * Hack around fbcon initialisation.
875 	 */
876 	if (old_state == C_STARTUP && state == C_REENABLE)
877 		state = C_ENABLE;
878 
879 	switch (state) {
880 	case C_DISABLE_CLKCHANGE:
881 		/*
882 		 * Disable controller for clock change.  If the
883 		 * controller is already disabled, then do nothing.
884 		 */
885 		if (old_state != C_DISABLE && old_state != C_DISABLE_PM) {
886 			fbi->state = state;
887 			sa1100fb_disable_controller(fbi);
888 		}
889 		break;
890 
891 	case C_DISABLE_PM:
892 	case C_DISABLE:
893 		/*
894 		 * Disable controller
895 		 */
896 		if (old_state != C_DISABLE) {
897 			fbi->state = state;
898 
899 			__sa1100fb_backlight_power(fbi, 0);
900 			if (old_state != C_DISABLE_CLKCHANGE)
901 				sa1100fb_disable_controller(fbi);
902 			__sa1100fb_lcd_power(fbi, 0);
903 		}
904 		break;
905 
906 	case C_ENABLE_CLKCHANGE:
907 		/*
908 		 * Enable the controller after clock change.  Only
909 		 * do this if we were disabled for the clock change.
910 		 */
911 		if (old_state == C_DISABLE_CLKCHANGE) {
912 			fbi->state = C_ENABLE;
913 			sa1100fb_enable_controller(fbi);
914 		}
915 		break;
916 
917 	case C_REENABLE:
918 		/*
919 		 * Re-enable the controller only if it was already
920 		 * enabled.  This is so we reprogram the control
921 		 * registers.
922 		 */
923 		if (old_state == C_ENABLE) {
924 			sa1100fb_disable_controller(fbi);
925 			sa1100fb_setup_gpio(fbi);
926 			sa1100fb_enable_controller(fbi);
927 		}
928 		break;
929 
930 	case C_ENABLE_PM:
931 		/*
932 		 * Re-enable the controller after PM.  This is not
933 		 * perfect - think about the case where we were doing
934 		 * a clock change, and we suspended half-way through.
935 		 */
936 		if (old_state != C_DISABLE_PM)
937 			break;
938 		fallthrough;
939 
940 	case C_ENABLE:
941 		/*
942 		 * Power up the LCD screen, enable controller, and
943 		 * turn on the backlight.
944 		 */
945 		if (old_state != C_ENABLE) {
946 			fbi->state = C_ENABLE;
947 			sa1100fb_setup_gpio(fbi);
948 			__sa1100fb_lcd_power(fbi, 1);
949 			sa1100fb_enable_controller(fbi);
950 			__sa1100fb_backlight_power(fbi, 1);
951 		}
952 		break;
953 	}
954 	mutex_unlock(&fbi->ctrlr_lock);
955 }
956 
957 /*
958  * Our LCD controller task (which is called when we blank or unblank)
959  * via keventd.
960  */
961 static void sa1100fb_task(struct work_struct *w)
962 {
963 	struct sa1100fb_info *fbi = container_of(w, struct sa1100fb_info, task);
964 	u_int state = xchg(&fbi->task_state, -1);
965 
966 	set_ctrlr_state(fbi, state);
967 }
968 
969 #ifdef CONFIG_CPU_FREQ
970 /*
971  * CPU clock speed change handler.  We need to adjust the LCD timing
972  * parameters when the CPU clock is adjusted by the power management
973  * subsystem.
974  */
975 static int
976 sa1100fb_freq_transition(struct notifier_block *nb, unsigned long val,
977 			 void *data)
978 {
979 	struct sa1100fb_info *fbi = TO_INF(nb, freq_transition);
980 	u_int pcd;
981 
982 	switch (val) {
983 	case CPUFREQ_PRECHANGE:
984 		set_ctrlr_state(fbi, C_DISABLE_CLKCHANGE);
985 		break;
986 
987 	case CPUFREQ_POSTCHANGE:
988 		pcd = get_pcd(fbi, fbi->fb.var.pixclock);
989 		fbi->reg_lccr3 = (fbi->reg_lccr3 & ~0xff) | LCCR3_PixClkDiv(pcd);
990 		set_ctrlr_state(fbi, C_ENABLE_CLKCHANGE);
991 		break;
992 	}
993 	return 0;
994 }
995 #endif
996 
997 #ifdef CONFIG_PM
998 /*
999  * Power management hooks.  Note that we won't be called from IRQ context,
1000  * unlike the blank functions above, so we may sleep.
1001  */
1002 static int sa1100fb_suspend(struct platform_device *dev, pm_message_t state)
1003 {
1004 	struct sa1100fb_info *fbi = platform_get_drvdata(dev);
1005 
1006 	set_ctrlr_state(fbi, C_DISABLE_PM);
1007 	return 0;
1008 }
1009 
1010 static int sa1100fb_resume(struct platform_device *dev)
1011 {
1012 	struct sa1100fb_info *fbi = platform_get_drvdata(dev);
1013 
1014 	set_ctrlr_state(fbi, C_ENABLE_PM);
1015 	return 0;
1016 }
1017 #else
1018 #define sa1100fb_suspend	NULL
1019 #define sa1100fb_resume		NULL
1020 #endif
1021 
1022 /*
1023  * sa1100fb_map_video_memory():
1024  *      Allocates the DRAM memory for the frame buffer.  This buffer is
1025  *	remapped into a non-cached, non-buffered, memory region to
1026  *      allow palette and pixel writes to occur without flushing the
1027  *      cache.  Once this area is remapped, all virtual memory
1028  *      access to the video memory should occur at the new region.
1029  */
1030 static int sa1100fb_map_video_memory(struct sa1100fb_info *fbi)
1031 {
1032 	/*
1033 	 * We reserve one page for the palette, plus the size
1034 	 * of the framebuffer.
1035 	 */
1036 	fbi->map_size = PAGE_ALIGN(fbi->fb.fix.smem_len + PAGE_SIZE);
1037 	fbi->map_cpu = dma_alloc_wc(fbi->dev, fbi->map_size, &fbi->map_dma,
1038 				    GFP_KERNEL);
1039 
1040 	if (fbi->map_cpu) {
1041 		fbi->fb.screen_base = fbi->map_cpu + PAGE_SIZE;
1042 		fbi->screen_dma = fbi->map_dma + PAGE_SIZE;
1043 		/*
1044 		 * FIXME: this is actually the wrong thing to place in
1045 		 * smem_start.  But fbdev suffers from the problem that
1046 		 * it needs an API which doesn't exist (in this case,
1047 		 * dma_writecombine_mmap)
1048 		 */
1049 		fbi->fb.fix.smem_start = fbi->screen_dma;
1050 	}
1051 
1052 	return fbi->map_cpu ? 0 : -ENOMEM;
1053 }
1054 
1055 /* Fake monspecs to fill in fbinfo structure */
1056 static const struct fb_monspecs monspecs = {
1057 	.hfmin	= 30000,
1058 	.hfmax	= 70000,
1059 	.vfmin	= 50,
1060 	.vfmax	= 65,
1061 };
1062 
1063 
1064 static struct sa1100fb_info *sa1100fb_init_fbinfo(struct device *dev)
1065 {
1066 	struct sa1100fb_mach_info *inf = dev_get_platdata(dev);
1067 	struct sa1100fb_info *fbi;
1068 	unsigned i;
1069 
1070 	fbi = devm_kzalloc(dev, sizeof(struct sa1100fb_info), GFP_KERNEL);
1071 	if (!fbi)
1072 		return NULL;
1073 
1074 	fbi->dev = dev;
1075 
1076 	strcpy(fbi->fb.fix.id, SA1100_NAME);
1077 
1078 	fbi->fb.fix.type	= FB_TYPE_PACKED_PIXELS;
1079 	fbi->fb.fix.type_aux	= 0;
1080 	fbi->fb.fix.xpanstep	= 0;
1081 	fbi->fb.fix.ypanstep	= 0;
1082 	fbi->fb.fix.ywrapstep	= 0;
1083 	fbi->fb.fix.accel	= FB_ACCEL_NONE;
1084 
1085 	fbi->fb.var.nonstd	= 0;
1086 	fbi->fb.var.activate	= FB_ACTIVATE_NOW;
1087 	fbi->fb.var.height	= -1;
1088 	fbi->fb.var.width	= -1;
1089 	fbi->fb.var.accel_flags	= 0;
1090 	fbi->fb.var.vmode	= FB_VMODE_NONINTERLACED;
1091 
1092 	fbi->fb.fbops		= &sa1100fb_ops;
1093 	fbi->fb.monspecs	= monspecs;
1094 	fbi->fb.pseudo_palette	= fbi->pseudo_palette;
1095 
1096 	fbi->rgb[RGB_4]		= &rgb_4;
1097 	fbi->rgb[RGB_8]		= &rgb_8;
1098 	fbi->rgb[RGB_16]	= &def_rgb_16;
1099 
1100 	/*
1101 	 * People just don't seem to get this.  We don't support
1102 	 * anything but correct entries now, so panic if someone
1103 	 * does something stupid.
1104 	 */
1105 	if (inf->lccr3 & (LCCR3_VrtSnchL|LCCR3_HorSnchL|0xff) ||
1106 	    inf->pixclock == 0)
1107 		panic("sa1100fb error: invalid LCCR3 fields set or zero "
1108 			"pixclock.");
1109 
1110 	fbi->fb.var.xres		= inf->xres;
1111 	fbi->fb.var.xres_virtual	= inf->xres;
1112 	fbi->fb.var.yres		= inf->yres;
1113 	fbi->fb.var.yres_virtual	= inf->yres;
1114 	fbi->fb.var.bits_per_pixel	= inf->bpp;
1115 	fbi->fb.var.pixclock		= inf->pixclock;
1116 	fbi->fb.var.hsync_len		= inf->hsync_len;
1117 	fbi->fb.var.left_margin		= inf->left_margin;
1118 	fbi->fb.var.right_margin	= inf->right_margin;
1119 	fbi->fb.var.vsync_len		= inf->vsync_len;
1120 	fbi->fb.var.upper_margin	= inf->upper_margin;
1121 	fbi->fb.var.lower_margin	= inf->lower_margin;
1122 	fbi->fb.var.sync		= inf->sync;
1123 	fbi->fb.var.grayscale		= inf->cmap_greyscale;
1124 	fbi->state			= C_STARTUP;
1125 	fbi->task_state			= (u_char)-1;
1126 	fbi->fb.fix.smem_len		= inf->xres * inf->yres *
1127 					  inf->bpp / 8;
1128 	fbi->inf			= inf;
1129 
1130 	/* Copy the RGB bitfield overrides */
1131 	for (i = 0; i < NR_RGB; i++)
1132 		if (inf->rgb[i])
1133 			fbi->rgb[i] = inf->rgb[i];
1134 
1135 	init_waitqueue_head(&fbi->ctrlr_wait);
1136 	INIT_WORK(&fbi->task, sa1100fb_task);
1137 	mutex_init(&fbi->ctrlr_lock);
1138 
1139 	return fbi;
1140 }
1141 
1142 static int sa1100fb_probe(struct platform_device *pdev)
1143 {
1144 	struct sa1100fb_info *fbi;
1145 	int ret, irq;
1146 
1147 	if (!dev_get_platdata(&pdev->dev)) {
1148 		dev_err(&pdev->dev, "no platform LCD data\n");
1149 		return -EINVAL;
1150 	}
1151 
1152 	irq = platform_get_irq(pdev, 0);
1153 	if (irq < 0)
1154 		return -EINVAL;
1155 
1156 	fbi = sa1100fb_init_fbinfo(&pdev->dev);
1157 	if (!fbi)
1158 		return -ENOMEM;
1159 
1160 	fbi->base = devm_platform_ioremap_resource(pdev, 0);
1161 	if (IS_ERR(fbi->base))
1162 		return PTR_ERR(fbi->base);
1163 
1164 	fbi->clk = devm_clk_get(&pdev->dev, NULL);
1165 	if (IS_ERR(fbi->clk))
1166 		return PTR_ERR(fbi->clk);
1167 
1168 	ret = devm_request_irq(&pdev->dev, irq, sa1100fb_handle_irq, 0,
1169 			       "LCD", fbi);
1170 	if (ret) {
1171 		dev_err(&pdev->dev, "request_irq failed: %d\n", ret);
1172 		return ret;
1173 	}
1174 
1175 	fbi->shannon_lcden = gpiod_get_optional(&pdev->dev, "shannon-lcden",
1176 						GPIOD_OUT_LOW);
1177 	if (IS_ERR(fbi->shannon_lcden))
1178 		return PTR_ERR(fbi->shannon_lcden);
1179 
1180 	/* Initialize video memory */
1181 	ret = sa1100fb_map_video_memory(fbi);
1182 	if (ret)
1183 		return ret;
1184 
1185 	/*
1186 	 * This makes sure that our colour bitfield
1187 	 * descriptors are correctly initialised.
1188 	 */
1189 	sa1100fb_check_var(&fbi->fb.var, &fbi->fb);
1190 
1191 	platform_set_drvdata(pdev, fbi);
1192 
1193 	ret = register_framebuffer(&fbi->fb);
1194 	if (ret < 0) {
1195 		dma_free_wc(fbi->dev, fbi->map_size, fbi->map_cpu,
1196 			    fbi->map_dma);
1197 		return ret;
1198 	}
1199 
1200 #ifdef CONFIG_CPU_FREQ
1201 	fbi->freq_transition.notifier_call = sa1100fb_freq_transition;
1202 	cpufreq_register_notifier(&fbi->freq_transition, CPUFREQ_TRANSITION_NOTIFIER);
1203 #endif
1204 
1205 	/* This driver cannot be unloaded at the moment */
1206 	return 0;
1207 }
1208 
1209 static struct platform_driver sa1100fb_driver = {
1210 	.probe		= sa1100fb_probe,
1211 	.suspend	= sa1100fb_suspend,
1212 	.resume		= sa1100fb_resume,
1213 	.driver		= {
1214 		.name	= "sa11x0-fb",
1215 	},
1216 };
1217 
1218 static int __init sa1100fb_init(void)
1219 {
1220 	if (fb_get_options("sa1100fb", NULL))
1221 		return -ENODEV;
1222 
1223 	return platform_driver_register(&sa1100fb_driver);
1224 }
1225 
1226 module_init(sa1100fb_init);
1227 MODULE_DESCRIPTION("StrongARM-1100/1110 framebuffer driver");
1228 MODULE_LICENSE("GPL");
1229