1 /* 2 * linux/drivers/video/sa1100fb.c 3 * 4 * Copyright (C) 1999 Eric A. Thomas 5 * Based on acornfb.c Copyright (C) Russell King. 6 * 7 * This file is subject to the terms and conditions of the GNU General Public 8 * License. See the file COPYING in the main directory of this archive for 9 * more details. 10 * 11 * StrongARM 1100 LCD Controller Frame Buffer Driver 12 * 13 * Please direct your questions and comments on this driver to the following 14 * email address: 15 * 16 * linux-arm-kernel@lists.arm.linux.org.uk 17 * 18 * Clean patches should be sent to the ARM Linux Patch System. Please see the 19 * following web page for more information: 20 * 21 * https://www.arm.linux.org.uk/developer/patches/info.shtml 22 * 23 * Thank you. 24 * 25 * Known problems: 26 * - With the Neponset plugged into an Assabet, LCD powerdown 27 * doesn't work (LCD stays powered up). Therefore we shouldn't 28 * blank the screen. 29 * - We don't limit the CPU clock rate nor the mode selection 30 * according to the available SDRAM bandwidth. 31 * 32 * Other notes: 33 * - Linear grayscale palettes and the kernel. 34 * Such code does not belong in the kernel. The kernel frame buffer 35 * drivers do not expect a linear colourmap, but a colourmap based on 36 * the VT100 standard mapping. 37 * 38 * If your _userspace_ requires a linear colourmap, then the setup of 39 * such a colourmap belongs _in userspace_, not in the kernel. Code 40 * to set the colourmap correctly from user space has been sent to 41 * David Neuer. It's around 8 lines of C code, plus another 4 to 42 * detect if we are using grayscale. 43 * 44 * - The following must never be specified in a panel definition: 45 * LCCR0_LtlEnd, LCCR3_PixClkDiv, LCCR3_VrtSnchL, LCCR3_HorSnchL 46 * 47 * - The following should be specified: 48 * either LCCR0_Color or LCCR0_Mono 49 * either LCCR0_Sngl or LCCR0_Dual 50 * either LCCR0_Act or LCCR0_Pas 51 * either LCCR3_OutEnH or LCCD3_OutEnL 52 * either LCCR3_PixRsEdg or LCCR3_PixFlEdg 53 * either LCCR3_ACBsDiv or LCCR3_ACBsCntOff 54 * 55 * Code Status: 56 * 1999/04/01: 57 * - Driver appears to be working for Brutus 320x200x8bpp mode. Other 58 * resolutions are working, but only the 8bpp mode is supported. 59 * Changes need to be made to the palette encode and decode routines 60 * to support 4 and 16 bpp modes. 61 * Driver is not designed to be a module. The FrameBuffer is statically 62 * allocated since dynamic allocation of a 300k buffer cannot be 63 * guaranteed. 64 * 65 * 1999/06/17: 66 * - FrameBuffer memory is now allocated at run-time when the 67 * driver is initialized. 68 * 69 * 2000/04/10: Nicolas Pitre <nico@fluxnic.net> 70 * - Big cleanup for dynamic selection of machine type at run time. 71 * 72 * 2000/07/19: Jamey Hicks <jamey@crl.dec.com> 73 * - Support for Bitsy aka Compaq iPAQ H3600 added. 74 * 75 * 2000/08/07: Tak-Shing Chan <tchan.rd@idthk.com> 76 * Jeff Sutherland <jsutherland@accelent.com> 77 * - Resolved an issue caused by a change made to the Assabet's PLD 78 * earlier this year which broke the framebuffer driver for newer 79 * Phase 4 Assabets. Some other parameters were changed to optimize 80 * for the Sharp display. 81 * 82 * 2000/08/09: Kunihiko IMAI <imai@vasara.co.jp> 83 * - XP860 support added 84 * 85 * 2000/08/19: Mark Huang <mhuang@livetoy.com> 86 * - Allows standard options to be passed on the kernel command line 87 * for most common passive displays. 88 * 89 * 2000/08/29: 90 * - s/save_flags_cli/local_irq_save/ 91 * - remove unneeded extra save_flags_cli in sa1100fb_enable_lcd_controller 92 * 93 * 2000/10/10: Erik Mouw <J.A.K.Mouw@its.tudelft.nl> 94 * - Updated LART stuff. Fixed some minor bugs. 95 * 96 * 2000/10/30: Murphy Chen <murphy@mail.dialogue.com.tw> 97 * - Pangolin support added 98 * 99 * 2000/10/31: Roman Jordan <jor@hoeft-wessel.de> 100 * - Huw Webpanel support added 101 * 102 * 2000/11/23: Eric Peng <ericpeng@coventive.com> 103 * - Freebird add 104 * 105 * 2001/02/07: Jamey Hicks <jamey.hicks@compaq.com> 106 * Cliff Brake <cbrake@accelent.com> 107 * - Added PM callback 108 * 109 * 2001/05/26: <rmk@arm.linux.org.uk> 110 * - Fix 16bpp so that (a) we use the right colours rather than some 111 * totally random colour depending on what was in page 0, and (b) 112 * we don't de-reference a NULL pointer. 113 * - remove duplicated implementation of consistent_alloc() 114 * - convert dma address types to dma_addr_t 115 * - remove unused 'montype' stuff 116 * - remove redundant zero inits of init_var after the initial 117 * memset. 118 * - remove allow_modeset (acornfb idea does not belong here) 119 * 120 * 2001/05/28: <rmk@arm.linux.org.uk> 121 * - massive cleanup - move machine dependent data into structures 122 * - I've left various #warnings in - if you see one, and know 123 * the hardware concerned, please get in contact with me. 124 * 125 * 2001/05/31: <rmk@arm.linux.org.uk> 126 * - Fix LCCR1 HSW value, fix all machine type specifications to 127 * keep values in line. (Please check your machine type specs) 128 * 129 * 2001/06/10: <rmk@arm.linux.org.uk> 130 * - Fiddle with the LCD controller from task context only; mainly 131 * so that we can run with interrupts on, and sleep. 132 * - Convert #warnings into #errors. No pain, no gain. ;) 133 * 134 * 2001/06/14: <rmk@arm.linux.org.uk> 135 * - Make the palette BPS value for 12bpp come out correctly. 136 * - Take notice of "greyscale" on any colour depth. 137 * - Make truecolor visuals use the RGB channel encoding information. 138 * 139 * 2001/07/02: <rmk@arm.linux.org.uk> 140 * - Fix colourmap problems. 141 * 142 * 2001/07/13: <abraham@2d3d.co.za> 143 * - Added support for the ICP LCD-Kit01 on LART. This LCD is 144 * manufactured by Prime View, model no V16C6448AB 145 * 146 * 2001/07/23: <rmk@arm.linux.org.uk> 147 * - Hand merge version from handhelds.org CVS tree. See patch 148 * notes for 595/1 for more information. 149 * - Drop 12bpp (it's 16bpp with different colour register mappings). 150 * - This hardware can not do direct colour. Therefore we don't 151 * support it. 152 * 153 * 2001/07/27: <rmk@arm.linux.org.uk> 154 * - Halve YRES on dual scan LCDs. 155 * 156 * 2001/08/22: <rmk@arm.linux.org.uk> 157 * - Add b/w iPAQ pixclock value. 158 * 159 * 2001/10/12: <rmk@arm.linux.org.uk> 160 * - Add patch 681/1 and clean up stork definitions. 161 */ 162 163 #include <linux/module.h> 164 #include <linux/kernel.h> 165 #include <linux/sched.h> 166 #include <linux/errno.h> 167 #include <linux/string.h> 168 #include <linux/interrupt.h> 169 #include <linux/slab.h> 170 #include <linux/mm.h> 171 #include <linux/fb.h> 172 #include <linux/delay.h> 173 #include <linux/init.h> 174 #include <linux/ioport.h> 175 #include <linux/cpufreq.h> 176 #include <linux/gpio/consumer.h> 177 #include <linux/platform_device.h> 178 #include <linux/dma-mapping.h> 179 #include <linux/mutex.h> 180 #include <linux/io.h> 181 #include <linux/clk.h> 182 183 #include <video/sa1100fb.h> 184 185 #include <mach/hardware.h> 186 #include <asm/mach-types.h> 187 188 /* 189 * Complain if VAR is out of range. 190 */ 191 #define DEBUG_VAR 1 192 193 #include "sa1100fb.h" 194 195 static const struct sa1100fb_rgb rgb_4 = { 196 .red = { .offset = 0, .length = 4, }, 197 .green = { .offset = 0, .length = 4, }, 198 .blue = { .offset = 0, .length = 4, }, 199 .transp = { .offset = 0, .length = 0, }, 200 }; 201 202 static const struct sa1100fb_rgb rgb_8 = { 203 .red = { .offset = 0, .length = 8, }, 204 .green = { .offset = 0, .length = 8, }, 205 .blue = { .offset = 0, .length = 8, }, 206 .transp = { .offset = 0, .length = 0, }, 207 }; 208 209 static const struct sa1100fb_rgb def_rgb_16 = { 210 .red = { .offset = 11, .length = 5, }, 211 .green = { .offset = 5, .length = 6, }, 212 .blue = { .offset = 0, .length = 5, }, 213 .transp = { .offset = 0, .length = 0, }, 214 }; 215 216 217 218 static int sa1100fb_activate_var(struct fb_var_screeninfo *var, struct sa1100fb_info *); 219 static void set_ctrlr_state(struct sa1100fb_info *fbi, u_int state); 220 221 static inline void sa1100fb_schedule_work(struct sa1100fb_info *fbi, u_int state) 222 { 223 unsigned long flags; 224 225 local_irq_save(flags); 226 /* 227 * We need to handle two requests being made at the same time. 228 * There are two important cases: 229 * 1. When we are changing VT (C_REENABLE) while unblanking (C_ENABLE) 230 * We must perform the unblanking, which will do our REENABLE for us. 231 * 2. When we are blanking, but immediately unblank before we have 232 * blanked. We do the "REENABLE" thing here as well, just to be sure. 233 */ 234 if (fbi->task_state == C_ENABLE && state == C_REENABLE) 235 state = (u_int) -1; 236 if (fbi->task_state == C_DISABLE && state == C_ENABLE) 237 state = C_REENABLE; 238 239 if (state != (u_int)-1) { 240 fbi->task_state = state; 241 schedule_work(&fbi->task); 242 } 243 local_irq_restore(flags); 244 } 245 246 static inline u_int chan_to_field(u_int chan, struct fb_bitfield *bf) 247 { 248 chan &= 0xffff; 249 chan >>= 16 - bf->length; 250 return chan << bf->offset; 251 } 252 253 /* 254 * Convert bits-per-pixel to a hardware palette PBS value. 255 */ 256 static inline u_int palette_pbs(struct fb_var_screeninfo *var) 257 { 258 int ret = 0; 259 switch (var->bits_per_pixel) { 260 case 4: ret = 0 << 12; break; 261 case 8: ret = 1 << 12; break; 262 case 16: ret = 2 << 12; break; 263 } 264 return ret; 265 } 266 267 static int 268 sa1100fb_setpalettereg(u_int regno, u_int red, u_int green, u_int blue, 269 u_int trans, struct fb_info *info) 270 { 271 struct sa1100fb_info *fbi = 272 container_of(info, struct sa1100fb_info, fb); 273 u_int val, ret = 1; 274 275 if (regno < fbi->palette_size) { 276 val = ((red >> 4) & 0xf00); 277 val |= ((green >> 8) & 0x0f0); 278 val |= ((blue >> 12) & 0x00f); 279 280 if (regno == 0) 281 val |= palette_pbs(&fbi->fb.var); 282 283 fbi->palette_cpu[regno] = val; 284 ret = 0; 285 } 286 return ret; 287 } 288 289 static int 290 sa1100fb_setcolreg(u_int regno, u_int red, u_int green, u_int blue, 291 u_int trans, struct fb_info *info) 292 { 293 struct sa1100fb_info *fbi = 294 container_of(info, struct sa1100fb_info, fb); 295 unsigned int val; 296 int ret = 1; 297 298 /* 299 * If inverse mode was selected, invert all the colours 300 * rather than the register number. The register number 301 * is what you poke into the framebuffer to produce the 302 * colour you requested. 303 */ 304 if (fbi->inf->cmap_inverse) { 305 red = 0xffff - red; 306 green = 0xffff - green; 307 blue = 0xffff - blue; 308 } 309 310 /* 311 * If greyscale is true, then we convert the RGB value 312 * to greyscale no mater what visual we are using. 313 */ 314 if (fbi->fb.var.grayscale) 315 red = green = blue = (19595 * red + 38470 * green + 316 7471 * blue) >> 16; 317 318 switch (fbi->fb.fix.visual) { 319 case FB_VISUAL_TRUECOLOR: 320 /* 321 * 12 or 16-bit True Colour. We encode the RGB value 322 * according to the RGB bitfield information. 323 */ 324 if (regno < 16) { 325 val = chan_to_field(red, &fbi->fb.var.red); 326 val |= chan_to_field(green, &fbi->fb.var.green); 327 val |= chan_to_field(blue, &fbi->fb.var.blue); 328 329 fbi->pseudo_palette[regno] = val; 330 ret = 0; 331 } 332 break; 333 334 case FB_VISUAL_STATIC_PSEUDOCOLOR: 335 case FB_VISUAL_PSEUDOCOLOR: 336 ret = sa1100fb_setpalettereg(regno, red, green, blue, trans, info); 337 break; 338 } 339 340 return ret; 341 } 342 343 #ifdef CONFIG_CPU_FREQ 344 /* 345 * sa1100fb_display_dma_period() 346 * Calculate the minimum period (in picoseconds) between two DMA 347 * requests for the LCD controller. If we hit this, it means we're 348 * doing nothing but LCD DMA. 349 */ 350 static inline unsigned int sa1100fb_display_dma_period(struct fb_var_screeninfo *var) 351 { 352 /* 353 * Period = pixclock * bits_per_byte * bytes_per_transfer 354 * / memory_bits_per_pixel; 355 */ 356 return var->pixclock * 8 * 16 / var->bits_per_pixel; 357 } 358 #endif 359 360 /* 361 * sa1100fb_check_var(): 362 * Round up in the following order: bits_per_pixel, xres, 363 * yres, xres_virtual, yres_virtual, xoffset, yoffset, grayscale, 364 * bitfields, horizontal timing, vertical timing. 365 */ 366 static int 367 sa1100fb_check_var(struct fb_var_screeninfo *var, struct fb_info *info) 368 { 369 struct sa1100fb_info *fbi = 370 container_of(info, struct sa1100fb_info, fb); 371 int rgbidx; 372 373 if (var->xres < MIN_XRES) 374 var->xres = MIN_XRES; 375 if (var->yres < MIN_YRES) 376 var->yres = MIN_YRES; 377 if (var->xres > fbi->inf->xres) 378 var->xres = fbi->inf->xres; 379 if (var->yres > fbi->inf->yres) 380 var->yres = fbi->inf->yres; 381 var->xres_virtual = max(var->xres_virtual, var->xres); 382 var->yres_virtual = max(var->yres_virtual, var->yres); 383 384 dev_dbg(fbi->dev, "var->bits_per_pixel=%d\n", var->bits_per_pixel); 385 switch (var->bits_per_pixel) { 386 case 4: 387 rgbidx = RGB_4; 388 break; 389 case 8: 390 rgbidx = RGB_8; 391 break; 392 case 16: 393 rgbidx = RGB_16; 394 break; 395 default: 396 return -EINVAL; 397 } 398 399 /* 400 * Copy the RGB parameters for this display 401 * from the machine specific parameters. 402 */ 403 var->red = fbi->rgb[rgbidx]->red; 404 var->green = fbi->rgb[rgbidx]->green; 405 var->blue = fbi->rgb[rgbidx]->blue; 406 var->transp = fbi->rgb[rgbidx]->transp; 407 408 dev_dbg(fbi->dev, "RGBT length = %d:%d:%d:%d\n", 409 var->red.length, var->green.length, var->blue.length, 410 var->transp.length); 411 412 dev_dbg(fbi->dev, "RGBT offset = %d:%d:%d:%d\n", 413 var->red.offset, var->green.offset, var->blue.offset, 414 var->transp.offset); 415 416 #ifdef CONFIG_CPU_FREQ 417 dev_dbg(fbi->dev, "dma period = %d ps, clock = %ld kHz\n", 418 sa1100fb_display_dma_period(var), 419 clk_get_rate(fbi->clk) / 1000); 420 #endif 421 422 return 0; 423 } 424 425 static void sa1100fb_set_visual(struct sa1100fb_info *fbi, u32 visual) 426 { 427 if (fbi->inf->set_visual) 428 fbi->inf->set_visual(visual); 429 } 430 431 /* 432 * sa1100fb_set_par(): 433 * Set the user defined part of the display for the specified console 434 */ 435 static int sa1100fb_set_par(struct fb_info *info) 436 { 437 struct sa1100fb_info *fbi = 438 container_of(info, struct sa1100fb_info, fb); 439 struct fb_var_screeninfo *var = &info->var; 440 unsigned long palette_mem_size; 441 442 dev_dbg(fbi->dev, "set_par\n"); 443 444 if (var->bits_per_pixel == 16) 445 fbi->fb.fix.visual = FB_VISUAL_TRUECOLOR; 446 else if (!fbi->inf->cmap_static) 447 fbi->fb.fix.visual = FB_VISUAL_PSEUDOCOLOR; 448 else { 449 /* 450 * Some people have weird ideas about wanting static 451 * pseudocolor maps. I suspect their user space 452 * applications are broken. 453 */ 454 fbi->fb.fix.visual = FB_VISUAL_STATIC_PSEUDOCOLOR; 455 } 456 457 fbi->fb.fix.line_length = var->xres_virtual * 458 var->bits_per_pixel / 8; 459 fbi->palette_size = var->bits_per_pixel == 8 ? 256 : 16; 460 461 palette_mem_size = fbi->palette_size * sizeof(u16); 462 463 dev_dbg(fbi->dev, "palette_mem_size = 0x%08lx\n", palette_mem_size); 464 465 fbi->palette_cpu = (u16 *)(fbi->map_cpu + PAGE_SIZE - palette_mem_size); 466 fbi->palette_dma = fbi->map_dma + PAGE_SIZE - palette_mem_size; 467 468 /* 469 * Set (any) board control register to handle new color depth 470 */ 471 sa1100fb_set_visual(fbi, fbi->fb.fix.visual); 472 sa1100fb_activate_var(var, fbi); 473 474 return 0; 475 } 476 477 #if 0 478 static int 479 sa1100fb_set_cmap(struct fb_cmap *cmap, int kspc, int con, 480 struct fb_info *info) 481 { 482 struct sa1100fb_info *fbi = (struct sa1100fb_info *)info; 483 484 /* 485 * Make sure the user isn't doing something stupid. 486 */ 487 if (!kspc && (fbi->fb.var.bits_per_pixel == 16 || fbi->inf->cmap_static)) 488 return -EINVAL; 489 490 return gen_set_cmap(cmap, kspc, con, info); 491 } 492 #endif 493 494 /* 495 * Formal definition of the VESA spec: 496 * On 497 * This refers to the state of the display when it is in full operation 498 * Stand-By 499 * This defines an optional operating state of minimal power reduction with 500 * the shortest recovery time 501 * Suspend 502 * This refers to a level of power management in which substantial power 503 * reduction is achieved by the display. The display can have a longer 504 * recovery time from this state than from the Stand-by state 505 * Off 506 * This indicates that the display is consuming the lowest level of power 507 * and is non-operational. Recovery from this state may optionally require 508 * the user to manually power on the monitor 509 * 510 * Now, the fbdev driver adds an additional state, (blank), where they 511 * turn off the video (maybe by colormap tricks), but don't mess with the 512 * video itself: think of it semantically between on and Stand-By. 513 * 514 * So here's what we should do in our fbdev blank routine: 515 * 516 * VESA_NO_BLANKING (mode 0) Video on, front/back light on 517 * VESA_VSYNC_SUSPEND (mode 1) Video on, front/back light off 518 * VESA_HSYNC_SUSPEND (mode 2) Video on, front/back light off 519 * VESA_POWERDOWN (mode 3) Video off, front/back light off 520 * 521 * This will match the matrox implementation. 522 */ 523 /* 524 * sa1100fb_blank(): 525 * Blank the display by setting all palette values to zero. Note, the 526 * 12 and 16 bpp modes don't really use the palette, so this will not 527 * blank the display in all modes. 528 */ 529 static int sa1100fb_blank(int blank, struct fb_info *info) 530 { 531 struct sa1100fb_info *fbi = 532 container_of(info, struct sa1100fb_info, fb); 533 int i; 534 535 dev_dbg(fbi->dev, "sa1100fb_blank: blank=%d\n", blank); 536 537 switch (blank) { 538 case FB_BLANK_POWERDOWN: 539 case FB_BLANK_VSYNC_SUSPEND: 540 case FB_BLANK_HSYNC_SUSPEND: 541 case FB_BLANK_NORMAL: 542 if (fbi->fb.fix.visual == FB_VISUAL_PSEUDOCOLOR || 543 fbi->fb.fix.visual == FB_VISUAL_STATIC_PSEUDOCOLOR) 544 for (i = 0; i < fbi->palette_size; i++) 545 sa1100fb_setpalettereg(i, 0, 0, 0, 0, info); 546 sa1100fb_schedule_work(fbi, C_DISABLE); 547 break; 548 549 case FB_BLANK_UNBLANK: 550 if (fbi->fb.fix.visual == FB_VISUAL_PSEUDOCOLOR || 551 fbi->fb.fix.visual == FB_VISUAL_STATIC_PSEUDOCOLOR) 552 fb_set_cmap(&fbi->fb.cmap, info); 553 sa1100fb_schedule_work(fbi, C_ENABLE); 554 } 555 return 0; 556 } 557 558 static int sa1100fb_mmap(struct fb_info *info, 559 struct vm_area_struct *vma) 560 { 561 struct sa1100fb_info *fbi = 562 container_of(info, struct sa1100fb_info, fb); 563 unsigned long off = vma->vm_pgoff << PAGE_SHIFT; 564 565 if (off < info->fix.smem_len) { 566 vma->vm_pgoff += 1; /* skip over the palette */ 567 return dma_mmap_wc(fbi->dev, vma, fbi->map_cpu, fbi->map_dma, 568 fbi->map_size); 569 } 570 571 vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot); 572 573 return vm_iomap_memory(vma, info->fix.mmio_start, info->fix.mmio_len); 574 } 575 576 static const struct fb_ops sa1100fb_ops = { 577 .owner = THIS_MODULE, 578 __FB_DEFAULT_IOMEM_OPS_RDWR, 579 .fb_check_var = sa1100fb_check_var, 580 .fb_set_par = sa1100fb_set_par, 581 // .fb_set_cmap = sa1100fb_set_cmap, 582 .fb_setcolreg = sa1100fb_setcolreg, 583 .fb_blank = sa1100fb_blank, 584 __FB_DEFAULT_IOMEM_OPS_DRAW, 585 .fb_mmap = sa1100fb_mmap, 586 }; 587 588 /* 589 * Calculate the PCD value from the clock rate (in picoseconds). 590 * We take account of the PPCR clock setting. 591 */ 592 static inline unsigned int get_pcd(struct sa1100fb_info *fbi, 593 unsigned int pixclock) 594 { 595 unsigned int pcd = clk_get_rate(fbi->clk) / 100 / 1000; 596 597 pcd *= pixclock; 598 pcd /= 10000000; 599 600 return pcd + 1; /* make up for integer math truncations */ 601 } 602 603 /* 604 * sa1100fb_activate_var(): 605 * Configures LCD Controller based on entries in var parameter. Settings are 606 * only written to the controller if changes were made. 607 */ 608 static int sa1100fb_activate_var(struct fb_var_screeninfo *var, struct sa1100fb_info *fbi) 609 { 610 struct sa1100fb_lcd_reg new_regs; 611 u_int half_screen_size, yres, pcd; 612 u_long flags; 613 614 dev_dbg(fbi->dev, "Configuring SA1100 LCD\n"); 615 616 dev_dbg(fbi->dev, "var: xres=%d hslen=%d lm=%d rm=%d\n", 617 var->xres, var->hsync_len, 618 var->left_margin, var->right_margin); 619 dev_dbg(fbi->dev, "var: yres=%d vslen=%d um=%d bm=%d\n", 620 var->yres, var->vsync_len, 621 var->upper_margin, var->lower_margin); 622 623 #if DEBUG_VAR 624 if (var->xres < 16 || var->xres > 1024) 625 dev_err(fbi->dev, "%s: invalid xres %d\n", 626 fbi->fb.fix.id, var->xres); 627 if (var->hsync_len < 1 || var->hsync_len > 64) 628 dev_err(fbi->dev, "%s: invalid hsync_len %d\n", 629 fbi->fb.fix.id, var->hsync_len); 630 if (var->left_margin < 1 || var->left_margin > 255) 631 dev_err(fbi->dev, "%s: invalid left_margin %d\n", 632 fbi->fb.fix.id, var->left_margin); 633 if (var->right_margin < 1 || var->right_margin > 255) 634 dev_err(fbi->dev, "%s: invalid right_margin %d\n", 635 fbi->fb.fix.id, var->right_margin); 636 if (var->yres < 1 || var->yres > 1024) 637 dev_err(fbi->dev, "%s: invalid yres %d\n", 638 fbi->fb.fix.id, var->yres); 639 if (var->vsync_len < 1 || var->vsync_len > 64) 640 dev_err(fbi->dev, "%s: invalid vsync_len %d\n", 641 fbi->fb.fix.id, var->vsync_len); 642 if (var->upper_margin < 0 || var->upper_margin > 255) 643 dev_err(fbi->dev, "%s: invalid upper_margin %d\n", 644 fbi->fb.fix.id, var->upper_margin); 645 if (var->lower_margin < 0 || var->lower_margin > 255) 646 dev_err(fbi->dev, "%s: invalid lower_margin %d\n", 647 fbi->fb.fix.id, var->lower_margin); 648 #endif 649 650 new_regs.lccr0 = fbi->inf->lccr0 | 651 LCCR0_LEN | LCCR0_LDM | LCCR0_BAM | 652 LCCR0_ERM | LCCR0_LtlEnd | LCCR0_DMADel(0); 653 654 new_regs.lccr1 = 655 LCCR1_DisWdth(var->xres) + 656 LCCR1_HorSnchWdth(var->hsync_len) + 657 LCCR1_BegLnDel(var->left_margin) + 658 LCCR1_EndLnDel(var->right_margin); 659 660 /* 661 * If we have a dual scan LCD, then we need to halve 662 * the YRES parameter. 663 */ 664 yres = var->yres; 665 if (fbi->inf->lccr0 & LCCR0_Dual) 666 yres /= 2; 667 668 new_regs.lccr2 = 669 LCCR2_DisHght(yres) + 670 LCCR2_VrtSnchWdth(var->vsync_len) + 671 LCCR2_BegFrmDel(var->upper_margin) + 672 LCCR2_EndFrmDel(var->lower_margin); 673 674 pcd = get_pcd(fbi, var->pixclock); 675 new_regs.lccr3 = LCCR3_PixClkDiv(pcd) | fbi->inf->lccr3 | 676 (var->sync & FB_SYNC_HOR_HIGH_ACT ? LCCR3_HorSnchH : LCCR3_HorSnchL) | 677 (var->sync & FB_SYNC_VERT_HIGH_ACT ? LCCR3_VrtSnchH : LCCR3_VrtSnchL); 678 679 dev_dbg(fbi->dev, "nlccr0 = 0x%08lx\n", new_regs.lccr0); 680 dev_dbg(fbi->dev, "nlccr1 = 0x%08lx\n", new_regs.lccr1); 681 dev_dbg(fbi->dev, "nlccr2 = 0x%08lx\n", new_regs.lccr2); 682 dev_dbg(fbi->dev, "nlccr3 = 0x%08lx\n", new_regs.lccr3); 683 684 half_screen_size = var->bits_per_pixel; 685 half_screen_size = half_screen_size * var->xres * var->yres / 16; 686 687 /* Update shadow copy atomically */ 688 local_irq_save(flags); 689 fbi->dbar1 = fbi->palette_dma; 690 fbi->dbar2 = fbi->screen_dma + half_screen_size; 691 692 fbi->reg_lccr0 = new_regs.lccr0; 693 fbi->reg_lccr1 = new_regs.lccr1; 694 fbi->reg_lccr2 = new_regs.lccr2; 695 fbi->reg_lccr3 = new_regs.lccr3; 696 local_irq_restore(flags); 697 698 /* 699 * Only update the registers if the controller is enabled 700 * and something has changed. 701 */ 702 if (readl_relaxed(fbi->base + LCCR0) != fbi->reg_lccr0 || 703 readl_relaxed(fbi->base + LCCR1) != fbi->reg_lccr1 || 704 readl_relaxed(fbi->base + LCCR2) != fbi->reg_lccr2 || 705 readl_relaxed(fbi->base + LCCR3) != fbi->reg_lccr3 || 706 readl_relaxed(fbi->base + DBAR1) != fbi->dbar1 || 707 readl_relaxed(fbi->base + DBAR2) != fbi->dbar2) 708 sa1100fb_schedule_work(fbi, C_REENABLE); 709 710 return 0; 711 } 712 713 /* 714 * NOTE! The following functions are purely helpers for set_ctrlr_state. 715 * Do not call them directly; set_ctrlr_state does the correct serialisation 716 * to ensure that things happen in the right way 100% of time time. 717 * -- rmk 718 */ 719 static inline void __sa1100fb_backlight_power(struct sa1100fb_info *fbi, int on) 720 { 721 dev_dbg(fbi->dev, "backlight o%s\n", on ? "n" : "ff"); 722 723 if (fbi->inf->backlight_power) 724 fbi->inf->backlight_power(on); 725 } 726 727 static inline void __sa1100fb_lcd_power(struct sa1100fb_info *fbi, int on) 728 { 729 dev_dbg(fbi->dev, "LCD power o%s\n", on ? "n" : "ff"); 730 731 if (fbi->inf->lcd_power) 732 fbi->inf->lcd_power(on); 733 } 734 735 static void sa1100fb_setup_gpio(struct sa1100fb_info *fbi) 736 { 737 u_int mask = 0; 738 739 /* 740 * Enable GPIO<9:2> for LCD use if: 741 * 1. Active display, or 742 * 2. Color Dual Passive display 743 * 744 * see table 11.8 on page 11-27 in the SA1100 manual 745 * -- Erik. 746 * 747 * SA1110 spec update nr. 25 says we can and should 748 * clear LDD15 to 12 for 4 or 8bpp modes with active 749 * panels. 750 */ 751 if ((fbi->reg_lccr0 & LCCR0_CMS) == LCCR0_Color && 752 (fbi->reg_lccr0 & (LCCR0_Dual|LCCR0_Act)) != 0) { 753 mask = GPIO_LDD11 | GPIO_LDD10 | GPIO_LDD9 | GPIO_LDD8; 754 755 if (fbi->fb.var.bits_per_pixel > 8 || 756 (fbi->reg_lccr0 & (LCCR0_Dual|LCCR0_Act)) == LCCR0_Dual) 757 mask |= GPIO_LDD15 | GPIO_LDD14 | GPIO_LDD13 | GPIO_LDD12; 758 759 } 760 761 if (mask) { 762 unsigned long flags; 763 764 /* 765 * SA-1100 requires the GPIO direction register set 766 * appropriately for the alternate function. Hence 767 * we set it here via bitmask rather than excessive 768 * fiddling via the GPIO subsystem - and even then 769 * we'll still have to deal with GAFR. 770 */ 771 local_irq_save(flags); 772 GPDR |= mask; 773 GAFR |= mask; 774 local_irq_restore(flags); 775 } 776 } 777 778 static void sa1100fb_enable_controller(struct sa1100fb_info *fbi) 779 { 780 dev_dbg(fbi->dev, "Enabling LCD controller\n"); 781 782 /* 783 * Make sure the mode bits are present in the first palette entry 784 */ 785 fbi->palette_cpu[0] &= 0xcfff; 786 fbi->palette_cpu[0] |= palette_pbs(&fbi->fb.var); 787 788 /* enable LCD controller clock */ 789 clk_prepare_enable(fbi->clk); 790 791 /* Sequence from 11.7.10 */ 792 writel_relaxed(fbi->reg_lccr3, fbi->base + LCCR3); 793 writel_relaxed(fbi->reg_lccr2, fbi->base + LCCR2); 794 writel_relaxed(fbi->reg_lccr1, fbi->base + LCCR1); 795 writel_relaxed(fbi->reg_lccr0 & ~LCCR0_LEN, fbi->base + LCCR0); 796 writel_relaxed(fbi->dbar1, fbi->base + DBAR1); 797 writel_relaxed(fbi->dbar2, fbi->base + DBAR2); 798 writel_relaxed(fbi->reg_lccr0 | LCCR0_LEN, fbi->base + LCCR0); 799 800 if (fbi->shannon_lcden) 801 gpiod_set_value(fbi->shannon_lcden, 1); 802 803 dev_dbg(fbi->dev, "DBAR1: 0x%08x\n", readl_relaxed(fbi->base + DBAR1)); 804 dev_dbg(fbi->dev, "DBAR2: 0x%08x\n", readl_relaxed(fbi->base + DBAR2)); 805 dev_dbg(fbi->dev, "LCCR0: 0x%08x\n", readl_relaxed(fbi->base + LCCR0)); 806 dev_dbg(fbi->dev, "LCCR1: 0x%08x\n", readl_relaxed(fbi->base + LCCR1)); 807 dev_dbg(fbi->dev, "LCCR2: 0x%08x\n", readl_relaxed(fbi->base + LCCR2)); 808 dev_dbg(fbi->dev, "LCCR3: 0x%08x\n", readl_relaxed(fbi->base + LCCR3)); 809 } 810 811 static void sa1100fb_disable_controller(struct sa1100fb_info *fbi) 812 { 813 DECLARE_WAITQUEUE(wait, current); 814 u32 lccr0; 815 816 dev_dbg(fbi->dev, "Disabling LCD controller\n"); 817 818 if (fbi->shannon_lcden) 819 gpiod_set_value(fbi->shannon_lcden, 0); 820 821 set_current_state(TASK_UNINTERRUPTIBLE); 822 add_wait_queue(&fbi->ctrlr_wait, &wait); 823 824 /* Clear LCD Status Register */ 825 writel_relaxed(~0, fbi->base + LCSR); 826 827 lccr0 = readl_relaxed(fbi->base + LCCR0); 828 lccr0 &= ~LCCR0_LDM; /* Enable LCD Disable Done Interrupt */ 829 writel_relaxed(lccr0, fbi->base + LCCR0); 830 lccr0 &= ~LCCR0_LEN; /* Disable LCD Controller */ 831 writel_relaxed(lccr0, fbi->base + LCCR0); 832 833 schedule_timeout(20 * HZ / 1000); 834 remove_wait_queue(&fbi->ctrlr_wait, &wait); 835 836 /* disable LCD controller clock */ 837 clk_disable_unprepare(fbi->clk); 838 } 839 840 /* 841 * sa1100fb_handle_irq: Handle 'LCD DONE' interrupts. 842 */ 843 static irqreturn_t sa1100fb_handle_irq(int irq, void *dev_id) 844 { 845 struct sa1100fb_info *fbi = dev_id; 846 unsigned int lcsr = readl_relaxed(fbi->base + LCSR); 847 848 if (lcsr & LCSR_LDD) { 849 u32 lccr0 = readl_relaxed(fbi->base + LCCR0) | LCCR0_LDM; 850 writel_relaxed(lccr0, fbi->base + LCCR0); 851 wake_up(&fbi->ctrlr_wait); 852 } 853 854 writel_relaxed(lcsr, fbi->base + LCSR); 855 return IRQ_HANDLED; 856 } 857 858 /* 859 * This function must be called from task context only, since it will 860 * sleep when disabling the LCD controller, or if we get two contending 861 * processes trying to alter state. 862 */ 863 static void set_ctrlr_state(struct sa1100fb_info *fbi, u_int state) 864 { 865 u_int old_state; 866 867 mutex_lock(&fbi->ctrlr_lock); 868 869 old_state = fbi->state; 870 871 /* 872 * Hack around fbcon initialisation. 873 */ 874 if (old_state == C_STARTUP && state == C_REENABLE) 875 state = C_ENABLE; 876 877 switch (state) { 878 case C_DISABLE_CLKCHANGE: 879 /* 880 * Disable controller for clock change. If the 881 * controller is already disabled, then do nothing. 882 */ 883 if (old_state != C_DISABLE && old_state != C_DISABLE_PM) { 884 fbi->state = state; 885 sa1100fb_disable_controller(fbi); 886 } 887 break; 888 889 case C_DISABLE_PM: 890 case C_DISABLE: 891 /* 892 * Disable controller 893 */ 894 if (old_state != C_DISABLE) { 895 fbi->state = state; 896 897 __sa1100fb_backlight_power(fbi, 0); 898 if (old_state != C_DISABLE_CLKCHANGE) 899 sa1100fb_disable_controller(fbi); 900 __sa1100fb_lcd_power(fbi, 0); 901 } 902 break; 903 904 case C_ENABLE_CLKCHANGE: 905 /* 906 * Enable the controller after clock change. Only 907 * do this if we were disabled for the clock change. 908 */ 909 if (old_state == C_DISABLE_CLKCHANGE) { 910 fbi->state = C_ENABLE; 911 sa1100fb_enable_controller(fbi); 912 } 913 break; 914 915 case C_REENABLE: 916 /* 917 * Re-enable the controller only if it was already 918 * enabled. This is so we reprogram the control 919 * registers. 920 */ 921 if (old_state == C_ENABLE) { 922 sa1100fb_disable_controller(fbi); 923 sa1100fb_setup_gpio(fbi); 924 sa1100fb_enable_controller(fbi); 925 } 926 break; 927 928 case C_ENABLE_PM: 929 /* 930 * Re-enable the controller after PM. This is not 931 * perfect - think about the case where we were doing 932 * a clock change, and we suspended half-way through. 933 */ 934 if (old_state != C_DISABLE_PM) 935 break; 936 fallthrough; 937 938 case C_ENABLE: 939 /* 940 * Power up the LCD screen, enable controller, and 941 * turn on the backlight. 942 */ 943 if (old_state != C_ENABLE) { 944 fbi->state = C_ENABLE; 945 sa1100fb_setup_gpio(fbi); 946 __sa1100fb_lcd_power(fbi, 1); 947 sa1100fb_enable_controller(fbi); 948 __sa1100fb_backlight_power(fbi, 1); 949 } 950 break; 951 } 952 mutex_unlock(&fbi->ctrlr_lock); 953 } 954 955 /* 956 * Our LCD controller task (which is called when we blank or unblank) 957 * via keventd. 958 */ 959 static void sa1100fb_task(struct work_struct *w) 960 { 961 struct sa1100fb_info *fbi = container_of(w, struct sa1100fb_info, task); 962 u_int state = xchg(&fbi->task_state, -1); 963 964 set_ctrlr_state(fbi, state); 965 } 966 967 #ifdef CONFIG_CPU_FREQ 968 /* 969 * CPU clock speed change handler. We need to adjust the LCD timing 970 * parameters when the CPU clock is adjusted by the power management 971 * subsystem. 972 */ 973 static int 974 sa1100fb_freq_transition(struct notifier_block *nb, unsigned long val, 975 void *data) 976 { 977 struct sa1100fb_info *fbi = TO_INF(nb, freq_transition); 978 u_int pcd; 979 980 switch (val) { 981 case CPUFREQ_PRECHANGE: 982 set_ctrlr_state(fbi, C_DISABLE_CLKCHANGE); 983 break; 984 985 case CPUFREQ_POSTCHANGE: 986 pcd = get_pcd(fbi, fbi->fb.var.pixclock); 987 fbi->reg_lccr3 = (fbi->reg_lccr3 & ~0xff) | LCCR3_PixClkDiv(pcd); 988 set_ctrlr_state(fbi, C_ENABLE_CLKCHANGE); 989 break; 990 } 991 return 0; 992 } 993 #endif 994 995 #ifdef CONFIG_PM 996 /* 997 * Power management hooks. Note that we won't be called from IRQ context, 998 * unlike the blank functions above, so we may sleep. 999 */ 1000 static int sa1100fb_suspend(struct platform_device *dev, pm_message_t state) 1001 { 1002 struct sa1100fb_info *fbi = platform_get_drvdata(dev); 1003 1004 set_ctrlr_state(fbi, C_DISABLE_PM); 1005 return 0; 1006 } 1007 1008 static int sa1100fb_resume(struct platform_device *dev) 1009 { 1010 struct sa1100fb_info *fbi = platform_get_drvdata(dev); 1011 1012 set_ctrlr_state(fbi, C_ENABLE_PM); 1013 return 0; 1014 } 1015 #else 1016 #define sa1100fb_suspend NULL 1017 #define sa1100fb_resume NULL 1018 #endif 1019 1020 /* 1021 * sa1100fb_map_video_memory(): 1022 * Allocates the DRAM memory for the frame buffer. This buffer is 1023 * remapped into a non-cached, non-buffered, memory region to 1024 * allow palette and pixel writes to occur without flushing the 1025 * cache. Once this area is remapped, all virtual memory 1026 * access to the video memory should occur at the new region. 1027 */ 1028 static int sa1100fb_map_video_memory(struct sa1100fb_info *fbi) 1029 { 1030 /* 1031 * We reserve one page for the palette, plus the size 1032 * of the framebuffer. 1033 */ 1034 fbi->map_size = PAGE_ALIGN(fbi->fb.fix.smem_len + PAGE_SIZE); 1035 fbi->map_cpu = dma_alloc_wc(fbi->dev, fbi->map_size, &fbi->map_dma, 1036 GFP_KERNEL); 1037 1038 if (fbi->map_cpu) { 1039 fbi->fb.screen_base = fbi->map_cpu + PAGE_SIZE; 1040 fbi->screen_dma = fbi->map_dma + PAGE_SIZE; 1041 /* 1042 * FIXME: this is actually the wrong thing to place in 1043 * smem_start. But fbdev suffers from the problem that 1044 * it needs an API which doesn't exist (in this case, 1045 * dma_writecombine_mmap) 1046 */ 1047 fbi->fb.fix.smem_start = fbi->screen_dma; 1048 } 1049 1050 return fbi->map_cpu ? 0 : -ENOMEM; 1051 } 1052 1053 /* Fake monspecs to fill in fbinfo structure */ 1054 static const struct fb_monspecs monspecs = { 1055 .hfmin = 30000, 1056 .hfmax = 70000, 1057 .vfmin = 50, 1058 .vfmax = 65, 1059 }; 1060 1061 1062 static struct sa1100fb_info *sa1100fb_init_fbinfo(struct device *dev) 1063 { 1064 struct sa1100fb_mach_info *inf = dev_get_platdata(dev); 1065 struct sa1100fb_info *fbi; 1066 unsigned i; 1067 1068 fbi = devm_kzalloc(dev, sizeof(struct sa1100fb_info), GFP_KERNEL); 1069 if (!fbi) 1070 return NULL; 1071 1072 fbi->dev = dev; 1073 1074 strcpy(fbi->fb.fix.id, SA1100_NAME); 1075 1076 fbi->fb.fix.type = FB_TYPE_PACKED_PIXELS; 1077 fbi->fb.fix.type_aux = 0; 1078 fbi->fb.fix.xpanstep = 0; 1079 fbi->fb.fix.ypanstep = 0; 1080 fbi->fb.fix.ywrapstep = 0; 1081 fbi->fb.fix.accel = FB_ACCEL_NONE; 1082 1083 fbi->fb.var.nonstd = 0; 1084 fbi->fb.var.activate = FB_ACTIVATE_NOW; 1085 fbi->fb.var.height = -1; 1086 fbi->fb.var.width = -1; 1087 fbi->fb.var.accel_flags = 0; 1088 fbi->fb.var.vmode = FB_VMODE_NONINTERLACED; 1089 1090 fbi->fb.fbops = &sa1100fb_ops; 1091 fbi->fb.monspecs = monspecs; 1092 fbi->fb.pseudo_palette = fbi->pseudo_palette; 1093 1094 fbi->rgb[RGB_4] = &rgb_4; 1095 fbi->rgb[RGB_8] = &rgb_8; 1096 fbi->rgb[RGB_16] = &def_rgb_16; 1097 1098 /* 1099 * People just don't seem to get this. We don't support 1100 * anything but correct entries now, so panic if someone 1101 * does something stupid. 1102 */ 1103 if (inf->lccr3 & (LCCR3_VrtSnchL|LCCR3_HorSnchL|0xff) || 1104 inf->pixclock == 0) 1105 panic("sa1100fb error: invalid LCCR3 fields set or zero " 1106 "pixclock."); 1107 1108 fbi->fb.var.xres = inf->xres; 1109 fbi->fb.var.xres_virtual = inf->xres; 1110 fbi->fb.var.yres = inf->yres; 1111 fbi->fb.var.yres_virtual = inf->yres; 1112 fbi->fb.var.bits_per_pixel = inf->bpp; 1113 fbi->fb.var.pixclock = inf->pixclock; 1114 fbi->fb.var.hsync_len = inf->hsync_len; 1115 fbi->fb.var.left_margin = inf->left_margin; 1116 fbi->fb.var.right_margin = inf->right_margin; 1117 fbi->fb.var.vsync_len = inf->vsync_len; 1118 fbi->fb.var.upper_margin = inf->upper_margin; 1119 fbi->fb.var.lower_margin = inf->lower_margin; 1120 fbi->fb.var.sync = inf->sync; 1121 fbi->fb.var.grayscale = inf->cmap_greyscale; 1122 fbi->state = C_STARTUP; 1123 fbi->task_state = (u_char)-1; 1124 fbi->fb.fix.smem_len = inf->xres * inf->yres * 1125 inf->bpp / 8; 1126 fbi->inf = inf; 1127 1128 /* Copy the RGB bitfield overrides */ 1129 for (i = 0; i < NR_RGB; i++) 1130 if (inf->rgb[i]) 1131 fbi->rgb[i] = inf->rgb[i]; 1132 1133 init_waitqueue_head(&fbi->ctrlr_wait); 1134 INIT_WORK(&fbi->task, sa1100fb_task); 1135 mutex_init(&fbi->ctrlr_lock); 1136 1137 return fbi; 1138 } 1139 1140 static int sa1100fb_probe(struct platform_device *pdev) 1141 { 1142 struct sa1100fb_info *fbi; 1143 int ret, irq; 1144 1145 if (!dev_get_platdata(&pdev->dev)) { 1146 dev_err(&pdev->dev, "no platform LCD data\n"); 1147 return -EINVAL; 1148 } 1149 1150 irq = platform_get_irq(pdev, 0); 1151 if (irq < 0) 1152 return -EINVAL; 1153 1154 fbi = sa1100fb_init_fbinfo(&pdev->dev); 1155 if (!fbi) 1156 return -ENOMEM; 1157 1158 fbi->base = devm_platform_ioremap_resource(pdev, 0); 1159 if (IS_ERR(fbi->base)) 1160 return PTR_ERR(fbi->base); 1161 1162 fbi->clk = devm_clk_get(&pdev->dev, NULL); 1163 if (IS_ERR(fbi->clk)) 1164 return PTR_ERR(fbi->clk); 1165 1166 ret = devm_request_irq(&pdev->dev, irq, sa1100fb_handle_irq, 0, 1167 "LCD", fbi); 1168 if (ret) { 1169 dev_err(&pdev->dev, "request_irq failed: %d\n", ret); 1170 return ret; 1171 } 1172 1173 fbi->shannon_lcden = gpiod_get_optional(&pdev->dev, "shannon-lcden", 1174 GPIOD_OUT_LOW); 1175 if (IS_ERR(fbi->shannon_lcden)) 1176 return PTR_ERR(fbi->shannon_lcden); 1177 1178 /* Initialize video memory */ 1179 ret = sa1100fb_map_video_memory(fbi); 1180 if (ret) 1181 return ret; 1182 1183 /* 1184 * This makes sure that our colour bitfield 1185 * descriptors are correctly initialised. 1186 */ 1187 sa1100fb_check_var(&fbi->fb.var, &fbi->fb); 1188 1189 platform_set_drvdata(pdev, fbi); 1190 1191 ret = register_framebuffer(&fbi->fb); 1192 if (ret < 0) { 1193 dma_free_wc(fbi->dev, fbi->map_size, fbi->map_cpu, 1194 fbi->map_dma); 1195 return ret; 1196 } 1197 1198 #ifdef CONFIG_CPU_FREQ 1199 fbi->freq_transition.notifier_call = sa1100fb_freq_transition; 1200 cpufreq_register_notifier(&fbi->freq_transition, CPUFREQ_TRANSITION_NOTIFIER); 1201 #endif 1202 1203 /* This driver cannot be unloaded at the moment */ 1204 return 0; 1205 } 1206 1207 static struct platform_driver sa1100fb_driver = { 1208 .probe = sa1100fb_probe, 1209 .suspend = sa1100fb_suspend, 1210 .resume = sa1100fb_resume, 1211 .driver = { 1212 .name = "sa11x0-fb", 1213 }, 1214 }; 1215 1216 static int __init sa1100fb_init(void) 1217 { 1218 if (fb_get_options("sa1100fb", NULL)) 1219 return -ENODEV; 1220 1221 return platform_driver_register(&sa1100fb_driver); 1222 } 1223 1224 module_init(sa1100fb_init); 1225 MODULE_DESCRIPTION("StrongARM-1100/1110 framebuffer driver"); 1226 MODULE_LICENSE("GPL"); 1227