xref: /linux/drivers/video/fbdev/imsttfb.c (revision ebf68996de0ab250c5d520eb2291ab65643e9a1e)
1 /*
2  *  drivers/video/imsttfb.c -- frame buffer device for IMS TwinTurbo
3  *
4  *  This file is derived from the powermac console "imstt" driver:
5  *  Copyright (C) 1997 Sigurdur Asgeirsson
6  *  With additional hacking by Jeffrey Kuskin (jsk@mojave.stanford.edu)
7  *  Modified by Danilo Beuche 1998
8  *  Some register values added by Damien Doligez, INRIA Rocquencourt
9  *  Various cleanups by Paul Mundt (lethal@chaoticdreams.org)
10  *
11  *  This file was written by Ryan Nielsen (ran@krazynet.com)
12  *  Most of the frame buffer device stuff was copied from atyfb.c
13  *
14  *  This file is subject to the terms and conditions of the GNU General Public
15  *  License. See the file COPYING in the main directory of this archive for
16  *  more details.
17  */
18 
19 #include <linux/module.h>
20 #include <linux/kernel.h>
21 #include <linux/errno.h>
22 #include <linux/string.h>
23 #include <linux/mm.h>
24 #include <linux/vmalloc.h>
25 #include <linux/delay.h>
26 #include <linux/interrupt.h>
27 #include <linux/fb.h>
28 #include <linux/init.h>
29 #include <linux/pci.h>
30 #include <asm/io.h>
31 #include <linux/uaccess.h>
32 
33 #if defined(CONFIG_PPC_PMAC)
34 #include <linux/nvram.h>
35 #include "macmodes.h"
36 #endif
37 
38 #ifndef __powerpc__
39 #define eieio()		/* Enforce In-order Execution of I/O */
40 #endif
41 
42 /* TwinTurbo (Cosmo) registers */
43 enum {
44 	S1SA	=  0, /* 0x00 */
45 	S2SA	=  1, /* 0x04 */
46 	SP	=  2, /* 0x08 */
47 	DSA	=  3, /* 0x0C */
48 	CNT	=  4, /* 0x10 */
49 	DP_OCTL	=  5, /* 0x14 */
50 	CLR	=  6, /* 0x18 */
51 	BI	=  8, /* 0x20 */
52 	MBC	=  9, /* 0x24 */
53 	BLTCTL	= 10, /* 0x28 */
54 
55 	/* Scan Timing Generator Registers */
56 	HES	= 12, /* 0x30 */
57 	HEB	= 13, /* 0x34 */
58 	HSB	= 14, /* 0x38 */
59 	HT	= 15, /* 0x3C */
60 	VES	= 16, /* 0x40 */
61 	VEB	= 17, /* 0x44 */
62 	VSB	= 18, /* 0x48 */
63 	VT	= 19, /* 0x4C */
64 	HCIV	= 20, /* 0x50 */
65 	VCIV	= 21, /* 0x54 */
66 	TCDR	= 22, /* 0x58 */
67 	VIL	= 23, /* 0x5C */
68 	STGCTL	= 24, /* 0x60 */
69 
70 	/* Screen Refresh Generator Registers */
71 	SSR	= 25, /* 0x64 */
72 	HRIR	= 26, /* 0x68 */
73 	SPR	= 27, /* 0x6C */
74 	CMR	= 28, /* 0x70 */
75 	SRGCTL	= 29, /* 0x74 */
76 
77 	/* RAM Refresh Generator Registers */
78 	RRCIV	= 30, /* 0x78 */
79 	RRSC	= 31, /* 0x7C */
80 	RRCR	= 34, /* 0x88 */
81 
82 	/* System Registers */
83 	GIOE	= 32, /* 0x80 */
84 	GIO	= 33, /* 0x84 */
85 	SCR	= 35, /* 0x8C */
86 	SSTATUS	= 36, /* 0x90 */
87 	PRC	= 37, /* 0x94 */
88 
89 #if 0
90 	/* PCI Registers */
91 	DVID	= 0x00000000L,
92 	SC	= 0x00000004L,
93 	CCR	= 0x00000008L,
94 	OG	= 0x0000000CL,
95 	BARM	= 0x00000010L,
96 	BARER	= 0x00000030L,
97 #endif
98 };
99 
100 /* IBM 624 RAMDAC Direct Registers */
101 enum {
102 	PADDRW	= 0x00,
103 	PDATA	= 0x04,
104 	PPMASK	= 0x08,
105 	PADDRR	= 0x0c,
106 	PIDXLO	= 0x10,
107 	PIDXHI	= 0x14,
108 	PIDXDATA= 0x18,
109 	PIDXCTL	= 0x1c
110 };
111 
112 /* IBM 624 RAMDAC Indirect Registers */
113 enum {
114 	CLKCTL		= 0x02,	/* (0x01) Miscellaneous Clock Control */
115 	SYNCCTL		= 0x03,	/* (0x00) Sync Control */
116 	HSYNCPOS	= 0x04,	/* (0x00) Horizontal Sync Position */
117 	PWRMNGMT	= 0x05,	/* (0x00) Power Management */
118 	DACOP		= 0x06,	/* (0x02) DAC Operation */
119 	PALETCTL	= 0x07,	/* (0x00) Palette Control */
120 	SYSCLKCTL	= 0x08,	/* (0x01) System Clock Control */
121 	PIXFMT		= 0x0a,	/* () Pixel Format  [bpp >> 3 + 2] */
122 	BPP8		= 0x0b,	/* () 8 Bits/Pixel Control */
123 	BPP16		= 0x0c, /* () 16 Bits/Pixel Control  [bit 1=1 for 565] */
124 	BPP24		= 0x0d,	/* () 24 Bits/Pixel Control */
125 	BPP32		= 0x0e,	/* () 32 Bits/Pixel Control */
126 	PIXCTL1		= 0x10, /* (0x05) Pixel PLL Control 1 */
127 	PIXCTL2		= 0x11,	/* (0x00) Pixel PLL Control 2 */
128 	SYSCLKN		= 0x15,	/* () System Clock N (System PLL Reference Divider) */
129 	SYSCLKM		= 0x16,	/* () System Clock M (System PLL VCO Divider) */
130 	SYSCLKP		= 0x17,	/* () System Clock P */
131 	SYSCLKC		= 0x18,	/* () System Clock C */
132 	/*
133 	 * Dot clock rate is 20MHz * (m + 1) / ((n + 1) * (p ? 2 * p : 1)
134 	 * c is charge pump bias which depends on the VCO frequency
135 	 */
136 	PIXM0		= 0x20,	/* () Pixel M 0 */
137 	PIXN0		= 0x21,	/* () Pixel N 0 */
138 	PIXP0		= 0x22,	/* () Pixel P 0 */
139 	PIXC0		= 0x23,	/* () Pixel C 0 */
140 	CURSCTL		= 0x30,	/* (0x00) Cursor Control */
141 	CURSXLO		= 0x31,	/* () Cursor X position, low 8 bits */
142 	CURSXHI		= 0x32,	/* () Cursor X position, high 8 bits */
143 	CURSYLO		= 0x33,	/* () Cursor Y position, low 8 bits */
144 	CURSYHI		= 0x34,	/* () Cursor Y position, high 8 bits */
145 	CURSHOTX	= 0x35,	/* () Cursor Hot Spot X */
146 	CURSHOTY	= 0x36,	/* () Cursor Hot Spot Y */
147 	CURSACCTL	= 0x37,	/* () Advanced Cursor Control Enable */
148 	CURSACATTR	= 0x38,	/* () Advanced Cursor Attribute */
149 	CURS1R		= 0x40,	/* () Cursor 1 Red */
150 	CURS1G		= 0x41,	/* () Cursor 1 Green */
151 	CURS1B		= 0x42,	/* () Cursor 1 Blue */
152 	CURS2R		= 0x43,	/* () Cursor 2 Red */
153 	CURS2G		= 0x44,	/* () Cursor 2 Green */
154 	CURS2B		= 0x45,	/* () Cursor 2 Blue */
155 	CURS3R		= 0x46,	/* () Cursor 3 Red */
156 	CURS3G		= 0x47,	/* () Cursor 3 Green */
157 	CURS3B		= 0x48,	/* () Cursor 3 Blue */
158 	BORDR		= 0x60,	/* () Border Color Red */
159 	BORDG		= 0x61,	/* () Border Color Green */
160 	BORDB		= 0x62,	/* () Border Color Blue */
161 	MISCTL1		= 0x70,	/* (0x00) Miscellaneous Control 1 */
162 	MISCTL2		= 0x71,	/* (0x00) Miscellaneous Control 2 */
163 	MISCTL3		= 0x72,	/* (0x00) Miscellaneous Control 3 */
164 	KEYCTL		= 0x78	/* (0x00) Key Control/DB Operation */
165 };
166 
167 /* TI TVP 3030 RAMDAC Direct Registers */
168 enum {
169 	TVPADDRW = 0x00,	/* 0  Palette/Cursor RAM Write Address/Index */
170 	TVPPDATA = 0x04,	/* 1  Palette Data RAM Data */
171 	TVPPMASK = 0x08,	/* 2  Pixel Read-Mask */
172 	TVPPADRR = 0x0c,	/* 3  Palette/Cursor RAM Read Address */
173 	TVPCADRW = 0x10,	/* 4  Cursor/Overscan Color Write Address */
174 	TVPCDATA = 0x14,	/* 5  Cursor/Overscan Color Data */
175 				/* 6  reserved */
176 	TVPCADRR = 0x1c,	/* 7  Cursor/Overscan Color Read Address */
177 				/* 8  reserved */
178 	TVPDCCTL = 0x24,	/* 9  Direct Cursor Control */
179 	TVPIDATA = 0x28,	/* 10 Index Data */
180 	TVPCRDAT = 0x2c,	/* 11 Cursor RAM Data */
181 	TVPCXPOL = 0x30,	/* 12 Cursor-Position X LSB */
182 	TVPCXPOH = 0x34,	/* 13 Cursor-Position X MSB */
183 	TVPCYPOL = 0x38,	/* 14 Cursor-Position Y LSB */
184 	TVPCYPOH = 0x3c,	/* 15 Cursor-Position Y MSB */
185 };
186 
187 /* TI TVP 3030 RAMDAC Indirect Registers */
188 enum {
189 	TVPIRREV = 0x01,	/* Silicon Revision [RO] */
190 	TVPIRICC = 0x06,	/* Indirect Cursor Control 	(0x00) */
191 	TVPIRBRC = 0x07,	/* Byte Router Control 	(0xe4) */
192 	TVPIRLAC = 0x0f,	/* Latch Control 		(0x06) */
193 	TVPIRTCC = 0x18,	/* True Color Control  	(0x80) */
194 	TVPIRMXC = 0x19,	/* Multiplex Control		(0x98) */
195 	TVPIRCLS = 0x1a,	/* Clock Selection		(0x07) */
196 	TVPIRPPG = 0x1c,	/* Palette Page		(0x00) */
197 	TVPIRGEC = 0x1d,	/* General Control 		(0x00) */
198 	TVPIRMIC = 0x1e,	/* Miscellaneous Control	(0x00) */
199 	TVPIRPLA = 0x2c,	/* PLL Address */
200 	TVPIRPPD = 0x2d,	/* Pixel Clock PLL Data */
201 	TVPIRMPD = 0x2e,	/* Memory Clock PLL Data */
202 	TVPIRLPD = 0x2f,	/* Loop Clock PLL Data */
203 	TVPIRCKL = 0x30,	/* Color-Key Overlay Low */
204 	TVPIRCKH = 0x31,	/* Color-Key Overlay High */
205 	TVPIRCRL = 0x32,	/* Color-Key Red Low */
206 	TVPIRCRH = 0x33,	/* Color-Key Red High */
207 	TVPIRCGL = 0x34,	/* Color-Key Green Low */
208 	TVPIRCGH = 0x35,	/* Color-Key Green High */
209 	TVPIRCBL = 0x36,	/* Color-Key Blue Low */
210 	TVPIRCBH = 0x37,	/* Color-Key Blue High */
211 	TVPIRCKC = 0x38,	/* Color-Key Control 		(0x00) */
212 	TVPIRMLC = 0x39,	/* MCLK/Loop Clock Control	(0x18) */
213 	TVPIRSEN = 0x3a,	/* Sense Test			(0x00) */
214 	TVPIRTMD = 0x3b,	/* Test Mode Data */
215 	TVPIRRML = 0x3c,	/* CRC Remainder LSB [RO] */
216 	TVPIRRMM = 0x3d,	/* CRC Remainder MSB [RO] */
217 	TVPIRRMS = 0x3e,	/* CRC  Bit Select [WO] */
218 	TVPIRDID = 0x3f,	/* Device ID [RO] 		(0x30) */
219 	TVPIRRES = 0xff		/* Software Reset [WO] */
220 };
221 
222 struct initvalues {
223 	__u8 addr, value;
224 };
225 
226 static struct initvalues ibm_initregs[] = {
227 	{ CLKCTL,	0x21 },
228 	{ SYNCCTL,	0x00 },
229 	{ HSYNCPOS,	0x00 },
230 	{ PWRMNGMT,	0x00 },
231 	{ DACOP,	0x02 },
232 	{ PALETCTL,	0x00 },
233 	{ SYSCLKCTL,	0x01 },
234 
235 	/*
236 	 * Note that colors in X are correct only if all video data is
237 	 * passed through the palette in the DAC.  That is, "indirect
238 	 * color" must be configured.  This is the case for the IBM DAC
239 	 * used in the 2MB and 4MB cards, at least.
240 	 */
241 	{ BPP8,		0x00 },
242 	{ BPP16,	0x01 },
243 	{ BPP24,	0x00 },
244 	{ BPP32,	0x00 },
245 
246 	{ PIXCTL1,	0x05 },
247 	{ PIXCTL2,	0x00 },
248 	{ SYSCLKN,	0x08 },
249 	{ SYSCLKM,	0x4f },
250 	{ SYSCLKP,	0x00 },
251 	{ SYSCLKC,	0x00 },
252 	{ CURSCTL,	0x00 },
253 	{ CURSACCTL,	0x01 },
254 	{ CURSACATTR,	0xa8 },
255 	{ CURS1R,	0xff },
256 	{ CURS1G,	0xff },
257 	{ CURS1B,	0xff },
258 	{ CURS2R,	0xff },
259 	{ CURS2G,	0xff },
260 	{ CURS2B,	0xff },
261 	{ CURS3R,	0xff },
262 	{ CURS3G,	0xff },
263 	{ CURS3B,	0xff },
264 	{ BORDR,	0xff },
265 	{ BORDG,	0xff },
266 	{ BORDB,	0xff },
267 	{ MISCTL1,	0x01 },
268 	{ MISCTL2,	0x45 },
269 	{ MISCTL3,	0x00 },
270 	{ KEYCTL,	0x00 }
271 };
272 
273 static struct initvalues tvp_initregs[] = {
274 	{ TVPIRICC,	0x00 },
275 	{ TVPIRBRC,	0xe4 },
276 	{ TVPIRLAC,	0x06 },
277 	{ TVPIRTCC,	0x80 },
278 	{ TVPIRMXC,	0x4d },
279 	{ TVPIRCLS,	0x05 },
280 	{ TVPIRPPG,	0x00 },
281 	{ TVPIRGEC,	0x00 },
282 	{ TVPIRMIC,	0x08 },
283 	{ TVPIRCKL,	0xff },
284 	{ TVPIRCKH,	0xff },
285 	{ TVPIRCRL,	0xff },
286 	{ TVPIRCRH,	0xff },
287 	{ TVPIRCGL,	0xff },
288 	{ TVPIRCGH,	0xff },
289 	{ TVPIRCBL,	0xff },
290 	{ TVPIRCBH,	0xff },
291 	{ TVPIRCKC,	0x00 },
292 	{ TVPIRPLA,	0x00 },
293 	{ TVPIRPPD,	0xc0 },
294 	{ TVPIRPPD,	0xd5 },
295 	{ TVPIRPPD,	0xea },
296 	{ TVPIRPLA,	0x00 },
297 	{ TVPIRMPD,	0xb9 },
298 	{ TVPIRMPD,	0x3a },
299 	{ TVPIRMPD,	0xb1 },
300 	{ TVPIRPLA,	0x00 },
301 	{ TVPIRLPD,	0xc1 },
302 	{ TVPIRLPD,	0x3d },
303 	{ TVPIRLPD,	0xf3 },
304 };
305 
306 struct imstt_regvals {
307 	__u32 pitch;
308 	__u16 hes, heb, hsb, ht, ves, veb, vsb, vt, vil;
309 	__u8 pclk_m, pclk_n, pclk_p;
310 	/* Values of the tvp which change depending on colormode x resolution */
311 	__u8 mlc[3];	/* Memory Loop Config 0x39 */
312 	__u8 lckl_p[3];	/* P value of LCKL PLL */
313 };
314 
315 struct imstt_par {
316 	struct imstt_regvals init;
317 	__u32 __iomem *dc_regs;
318 	unsigned long cmap_regs_phys;
319 	__u8 *cmap_regs;
320 	__u32 ramdac;
321 	__u32 palette[16];
322 };
323 
324 enum {
325 	IBM = 0,
326 	TVP = 1
327 };
328 
329 #define INIT_BPP		8
330 #define INIT_XRES		640
331 #define INIT_YRES		480
332 
333 static int inverse = 0;
334 static char fontname[40] __initdata = { 0 };
335 #if defined(CONFIG_PPC_PMAC)
336 static signed char init_vmode = -1, init_cmode = -1;
337 #endif
338 
339 static struct imstt_regvals tvp_reg_init_2 = {
340 	512,
341 	0x0002, 0x0006, 0x0026, 0x0028, 0x0003, 0x0016, 0x0196, 0x0197, 0x0196,
342 	0xec, 0x2a, 0xf3,
343 	{ 0x3c, 0x3b, 0x39 }, { 0xf3, 0xf3, 0xf3 }
344 };
345 
346 static struct imstt_regvals tvp_reg_init_6 = {
347 	640,
348 	0x0004, 0x0009, 0x0031, 0x0036, 0x0003, 0x002a, 0x020a, 0x020d, 0x020a,
349 	0xef, 0x2e, 0xb2,
350 	{ 0x39, 0x39, 0x38 }, { 0xf3, 0xf3, 0xf3 }
351 };
352 
353 static struct imstt_regvals tvp_reg_init_12 = {
354 	800,
355 	0x0005, 0x000e, 0x0040, 0x0042, 0x0003, 0x018, 0x270, 0x271, 0x270,
356 	0xf6, 0x2e, 0xf2,
357 	{ 0x3a, 0x39, 0x38 }, { 0xf3, 0xf3, 0xf3 }
358 };
359 
360 static struct imstt_regvals tvp_reg_init_13 = {
361 	832,
362 	0x0004, 0x0011, 0x0045, 0x0048, 0x0003, 0x002a, 0x029a, 0x029b, 0x0000,
363 	0xfe, 0x3e, 0xf1,
364 	{ 0x39, 0x38, 0x38 }, { 0xf3, 0xf3, 0xf2 }
365 };
366 
367 static struct imstt_regvals tvp_reg_init_17 = {
368 	1024,
369 	0x0006, 0x0210, 0x0250, 0x0053, 0x1003, 0x0021, 0x0321, 0x0324, 0x0000,
370 	0xfc, 0x3a, 0xf1,
371 	{ 0x39, 0x38, 0x38 }, { 0xf3, 0xf3, 0xf2 }
372 };
373 
374 static struct imstt_regvals tvp_reg_init_18 = {
375 	1152,
376   	0x0009, 0x0011, 0x059, 0x5b, 0x0003, 0x0031, 0x0397, 0x039a, 0x0000,
377 	0xfd, 0x3a, 0xf1,
378 	{ 0x39, 0x38, 0x38 }, { 0xf3, 0xf3, 0xf2 }
379 };
380 
381 static struct imstt_regvals tvp_reg_init_19 = {
382 	1280,
383 	0x0009, 0x0016, 0x0066, 0x0069, 0x0003, 0x0027, 0x03e7, 0x03e8, 0x03e7,
384 	0xf7, 0x36, 0xf0,
385 	{ 0x38, 0x38, 0x38 }, { 0xf3, 0xf2, 0xf1 }
386 };
387 
388 static struct imstt_regvals tvp_reg_init_20 = {
389 	1280,
390 	0x0009, 0x0018, 0x0068, 0x006a, 0x0003, 0x0029, 0x0429, 0x042a, 0x0000,
391 	0xf0, 0x2d, 0xf0,
392 	{ 0x38, 0x38, 0x38 }, { 0xf3, 0xf2, 0xf1 }
393 };
394 
395 /*
396  * PCI driver prototypes
397  */
398 static int imsttfb_probe(struct pci_dev *pdev, const struct pci_device_id *ent);
399 static void imsttfb_remove(struct pci_dev *pdev);
400 
401 /*
402  * Register access
403  */
404 static inline u32 read_reg_le32(volatile u32 __iomem *base, int regindex)
405 {
406 #ifdef __powerpc__
407 	return in_le32(base + regindex);
408 #else
409 	return readl(base + regindex);
410 #endif
411 }
412 
413 static inline void write_reg_le32(volatile u32 __iomem *base, int regindex, u32 val)
414 {
415 #ifdef __powerpc__
416 	out_le32(base + regindex, val);
417 #else
418 	writel(val, base + regindex);
419 #endif
420 }
421 
422 static __u32
423 getclkMHz(struct imstt_par *par)
424 {
425 	__u32 clk_m, clk_n, clk_p;
426 
427 	clk_m = par->init.pclk_m;
428 	clk_n = par->init.pclk_n;
429 	clk_p = par->init.pclk_p;
430 
431 	return 20 * (clk_m + 1) / ((clk_n + 1) * (clk_p ? 2 * clk_p : 1));
432 }
433 
434 static void
435 setclkMHz(struct imstt_par *par, __u32 MHz)
436 {
437 	__u32 clk_m, clk_n, x, stage, spilled;
438 
439 	clk_m = clk_n = 0;
440 	stage = spilled = 0;
441 	for (;;) {
442 		switch (stage) {
443 			case 0:
444 				clk_m++;
445 				break;
446 			case 1:
447 				clk_n++;
448 				break;
449 		}
450 		x = 20 * (clk_m + 1) / (clk_n + 1);
451 		if (x == MHz)
452 			break;
453 		if (x > MHz) {
454 			spilled = 1;
455 			stage = 1;
456 		} else if (spilled && x < MHz) {
457 			stage = 0;
458 		}
459 	}
460 
461 	par->init.pclk_m = clk_m;
462 	par->init.pclk_n = clk_n;
463 	par->init.pclk_p = 0;
464 }
465 
466 static struct imstt_regvals *
467 compute_imstt_regvals_ibm(struct imstt_par *par, int xres, int yres)
468 {
469 	struct imstt_regvals *init = &par->init;
470 	__u32 MHz, hes, heb, veb, htp, vtp;
471 
472 	switch (xres) {
473 		case 640:
474 			hes = 0x0008; heb = 0x0012; veb = 0x002a; htp = 10; vtp = 2;
475 			MHz = 30 /* .25 */ ;
476 			break;
477 		case 832:
478 			hes = 0x0005; heb = 0x0020; veb = 0x0028; htp = 8; vtp = 3;
479 			MHz = 57 /* .27_ */ ;
480 			break;
481 		case 1024:
482 			hes = 0x000a; heb = 0x001c; veb = 0x0020; htp = 8; vtp = 3;
483 			MHz = 80;
484 			break;
485 		case 1152:
486 			hes = 0x0012; heb = 0x0022; veb = 0x0031; htp = 4; vtp = 3;
487 			MHz = 101 /* .6_ */ ;
488 			break;
489 		case 1280:
490 			hes = 0x0012; heb = 0x002f; veb = 0x0029; htp = 4; vtp = 1;
491 			MHz = yres == 960 ? 126 : 135;
492 			break;
493 		case 1600:
494 			hes = 0x0018; heb = 0x0040; veb = 0x002a; htp = 4; vtp = 3;
495 			MHz = 200;
496 			break;
497 		default:
498 			return NULL;
499 	}
500 
501 	setclkMHz(par, MHz);
502 
503 	init->hes = hes;
504 	init->heb = heb;
505 	init->hsb = init->heb + (xres >> 3);
506 	init->ht = init->hsb + htp;
507 	init->ves = 0x0003;
508 	init->veb = veb;
509 	init->vsb = init->veb + yres;
510 	init->vt = init->vsb + vtp;
511 	init->vil = init->vsb;
512 
513 	init->pitch = xres;
514 	return init;
515 }
516 
517 static struct imstt_regvals *
518 compute_imstt_regvals_tvp(struct imstt_par *par, int xres, int yres)
519 {
520 	struct imstt_regvals *init;
521 
522 	switch (xres) {
523 		case 512:
524 			init = &tvp_reg_init_2;
525 			break;
526 		case 640:
527 			init = &tvp_reg_init_6;
528 			break;
529 		case 800:
530 			init = &tvp_reg_init_12;
531 			break;
532 		case 832:
533 			init = &tvp_reg_init_13;
534 			break;
535 		case 1024:
536 			init = &tvp_reg_init_17;
537 			break;
538 		case 1152:
539 			init = &tvp_reg_init_18;
540 			break;
541 		case 1280:
542 			init = yres == 960 ? &tvp_reg_init_19 : &tvp_reg_init_20;
543 			break;
544 		default:
545 			return NULL;
546 	}
547 	par->init = *init;
548 	return init;
549 }
550 
551 static struct imstt_regvals *
552 compute_imstt_regvals (struct imstt_par *par, u_int xres, u_int yres)
553 {
554 	if (par->ramdac == IBM)
555 		return compute_imstt_regvals_ibm(par, xres, yres);
556 	else
557 		return compute_imstt_regvals_tvp(par, xres, yres);
558 }
559 
560 static void
561 set_imstt_regvals_ibm (struct imstt_par *par, u_int bpp)
562 {
563 	struct imstt_regvals *init = &par->init;
564 	__u8 pformat = (bpp >> 3) + 2;
565 
566 	par->cmap_regs[PIDXHI] = 0;		eieio();
567 	par->cmap_regs[PIDXLO] = PIXM0;		eieio();
568 	par->cmap_regs[PIDXDATA] = init->pclk_m;eieio();
569 	par->cmap_regs[PIDXLO] = PIXN0;		eieio();
570 	par->cmap_regs[PIDXDATA] = init->pclk_n;eieio();
571 	par->cmap_regs[PIDXLO] = PIXP0;		eieio();
572 	par->cmap_regs[PIDXDATA] = init->pclk_p;eieio();
573 	par->cmap_regs[PIDXLO] = PIXC0;		eieio();
574 	par->cmap_regs[PIDXDATA] = 0x02;	eieio();
575 
576 	par->cmap_regs[PIDXLO] = PIXFMT;	eieio();
577 	par->cmap_regs[PIDXDATA] = pformat;	eieio();
578 }
579 
580 static void
581 set_imstt_regvals_tvp (struct imstt_par *par, u_int bpp)
582 {
583 	struct imstt_regvals *init = &par->init;
584 	__u8 tcc, mxc, lckl_n, mic;
585 	__u8 mlc, lckl_p;
586 
587 	switch (bpp) {
588 		default:
589 		case 8:
590 			tcc = 0x80;
591 			mxc = 0x4d;
592 			lckl_n = 0xc1;
593 			mlc = init->mlc[0];
594 			lckl_p = init->lckl_p[0];
595 			break;
596 		case 16:
597 			tcc = 0x44;
598 			mxc = 0x55;
599 			lckl_n = 0xe1;
600 			mlc = init->mlc[1];
601 			lckl_p = init->lckl_p[1];
602 			break;
603 		case 24:
604 			tcc = 0x5e;
605 			mxc = 0x5d;
606 			lckl_n = 0xf1;
607 			mlc = init->mlc[2];
608 			lckl_p = init->lckl_p[2];
609 			break;
610 		case 32:
611 			tcc = 0x46;
612 			mxc = 0x5d;
613 			lckl_n = 0xf1;
614 			mlc = init->mlc[2];
615 			lckl_p = init->lckl_p[2];
616 			break;
617 	}
618 	mic = 0x08;
619 
620 	par->cmap_regs[TVPADDRW] = TVPIRPLA;		eieio();
621 	par->cmap_regs[TVPIDATA] = 0x00;		eieio();
622 	par->cmap_regs[TVPADDRW] = TVPIRPPD;		eieio();
623 	par->cmap_regs[TVPIDATA] = init->pclk_m;	eieio();
624 	par->cmap_regs[TVPADDRW] = TVPIRPPD;		eieio();
625 	par->cmap_regs[TVPIDATA] = init->pclk_n;	eieio();
626 	par->cmap_regs[TVPADDRW] = TVPIRPPD;		eieio();
627 	par->cmap_regs[TVPIDATA] = init->pclk_p;	eieio();
628 
629 	par->cmap_regs[TVPADDRW] = TVPIRTCC;		eieio();
630 	par->cmap_regs[TVPIDATA] = tcc;			eieio();
631 	par->cmap_regs[TVPADDRW] = TVPIRMXC;		eieio();
632 	par->cmap_regs[TVPIDATA] = mxc;			eieio();
633 	par->cmap_regs[TVPADDRW] = TVPIRMIC;		eieio();
634 	par->cmap_regs[TVPIDATA] = mic;			eieio();
635 
636 	par->cmap_regs[TVPADDRW] = TVPIRPLA;		eieio();
637 	par->cmap_regs[TVPIDATA] = 0x00;		eieio();
638 	par->cmap_regs[TVPADDRW] = TVPIRLPD;		eieio();
639 	par->cmap_regs[TVPIDATA] = lckl_n;		eieio();
640 
641 	par->cmap_regs[TVPADDRW] = TVPIRPLA;		eieio();
642 	par->cmap_regs[TVPIDATA] = 0x15;		eieio();
643 	par->cmap_regs[TVPADDRW] = TVPIRMLC;		eieio();
644 	par->cmap_regs[TVPIDATA] = mlc;			eieio();
645 
646 	par->cmap_regs[TVPADDRW] = TVPIRPLA;		eieio();
647 	par->cmap_regs[TVPIDATA] = 0x2a;		eieio();
648 	par->cmap_regs[TVPADDRW] = TVPIRLPD;		eieio();
649 	par->cmap_regs[TVPIDATA] = lckl_p;		eieio();
650 }
651 
652 static void
653 set_imstt_regvals (struct fb_info *info, u_int bpp)
654 {
655 	struct imstt_par *par = info->par;
656 	struct imstt_regvals *init = &par->init;
657 	__u32 ctl, pitch, byteswap, scr;
658 
659 	if (par->ramdac == IBM)
660 		set_imstt_regvals_ibm(par, bpp);
661 	else
662 		set_imstt_regvals_tvp(par, bpp);
663 
664   /*
665    * From what I (jsk) can gather poking around with MacsBug,
666    * bits 8 and 9 in the SCR register control endianness
667    * correction (byte swapping).  These bits must be set according
668    * to the color depth as follows:
669    *     Color depth    Bit 9   Bit 8
670    *     ==========     =====   =====
671    *        8bpp          0       0
672    *       16bpp          0       1
673    *       32bpp          1       1
674    */
675 	switch (bpp) {
676 		default:
677 		case 8:
678 			ctl = 0x17b1;
679 			pitch = init->pitch >> 2;
680 			byteswap = 0x000;
681 			break;
682 		case 16:
683 			ctl = 0x17b3;
684 			pitch = init->pitch >> 1;
685 			byteswap = 0x100;
686 			break;
687 		case 24:
688 			ctl = 0x17b9;
689 			pitch = init->pitch - (init->pitch >> 2);
690 			byteswap = 0x200;
691 			break;
692 		case 32:
693 			ctl = 0x17b5;
694 			pitch = init->pitch;
695 			byteswap = 0x300;
696 			break;
697 	}
698 	if (par->ramdac == TVP)
699 		ctl -= 0x30;
700 
701 	write_reg_le32(par->dc_regs, HES, init->hes);
702 	write_reg_le32(par->dc_regs, HEB, init->heb);
703 	write_reg_le32(par->dc_regs, HSB, init->hsb);
704 	write_reg_le32(par->dc_regs, HT, init->ht);
705 	write_reg_le32(par->dc_regs, VES, init->ves);
706 	write_reg_le32(par->dc_regs, VEB, init->veb);
707 	write_reg_le32(par->dc_regs, VSB, init->vsb);
708 	write_reg_le32(par->dc_regs, VT, init->vt);
709 	write_reg_le32(par->dc_regs, VIL, init->vil);
710 	write_reg_le32(par->dc_regs, HCIV, 1);
711 	write_reg_le32(par->dc_regs, VCIV, 1);
712 	write_reg_le32(par->dc_regs, TCDR, 4);
713 	write_reg_le32(par->dc_regs, RRCIV, 1);
714 	write_reg_le32(par->dc_regs, RRSC, 0x980);
715 	write_reg_le32(par->dc_regs, RRCR, 0x11);
716 
717 	if (par->ramdac == IBM) {
718 		write_reg_le32(par->dc_regs, HRIR, 0x0100);
719 		write_reg_le32(par->dc_regs, CMR, 0x00ff);
720 		write_reg_le32(par->dc_regs, SRGCTL, 0x0073);
721 	} else {
722 		write_reg_le32(par->dc_regs, HRIR, 0x0200);
723 		write_reg_le32(par->dc_regs, CMR, 0x01ff);
724 		write_reg_le32(par->dc_regs, SRGCTL, 0x0003);
725 	}
726 
727 	switch (info->fix.smem_len) {
728 		case 0x200000:
729 			scr = 0x059d | byteswap;
730 			break;
731 		/* case 0x400000:
732 		   case 0x800000: */
733 		default:
734 			pitch >>= 1;
735 			scr = 0x150dd | byteswap;
736 			break;
737 	}
738 
739 	write_reg_le32(par->dc_regs, SCR, scr);
740 	write_reg_le32(par->dc_regs, SPR, pitch);
741 	write_reg_le32(par->dc_regs, STGCTL, ctl);
742 }
743 
744 static inline void
745 set_offset (struct fb_var_screeninfo *var, struct fb_info *info)
746 {
747 	struct imstt_par *par = info->par;
748 	__u32 off = var->yoffset * (info->fix.line_length >> 3)
749 		    + ((var->xoffset * (info->var.bits_per_pixel >> 3)) >> 3);
750 	write_reg_le32(par->dc_regs, SSR, off);
751 }
752 
753 static inline void
754 set_555 (struct imstt_par *par)
755 {
756 	if (par->ramdac == IBM) {
757 		par->cmap_regs[PIDXHI] = 0;		eieio();
758 		par->cmap_regs[PIDXLO] = BPP16;		eieio();
759 		par->cmap_regs[PIDXDATA] = 0x01;	eieio();
760 	} else {
761 		par->cmap_regs[TVPADDRW] = TVPIRTCC;	eieio();
762 		par->cmap_regs[TVPIDATA] = 0x44;	eieio();
763 	}
764 }
765 
766 static inline void
767 set_565 (struct imstt_par *par)
768 {
769 	if (par->ramdac == IBM) {
770 		par->cmap_regs[PIDXHI] = 0;		eieio();
771 		par->cmap_regs[PIDXLO] = BPP16;		eieio();
772 		par->cmap_regs[PIDXDATA] = 0x03;	eieio();
773 	} else {
774 		par->cmap_regs[TVPADDRW] = TVPIRTCC;	eieio();
775 		par->cmap_regs[TVPIDATA] = 0x45;	eieio();
776 	}
777 }
778 
779 static int
780 imsttfb_check_var(struct fb_var_screeninfo *var, struct fb_info *info)
781 {
782 	if ((var->bits_per_pixel != 8 && var->bits_per_pixel != 16
783 	    && var->bits_per_pixel != 24 && var->bits_per_pixel != 32)
784 	    || var->xres_virtual < var->xres || var->yres_virtual < var->yres
785 	    || var->nonstd
786 	    || (var->vmode & FB_VMODE_MASK) != FB_VMODE_NONINTERLACED)
787 		return -EINVAL;
788 
789 	if ((var->xres * var->yres) * (var->bits_per_pixel >> 3) > info->fix.smem_len
790 	    || (var->xres_virtual * var->yres_virtual) * (var->bits_per_pixel >> 3) > info->fix.smem_len)
791 		return -EINVAL;
792 
793 	switch (var->bits_per_pixel) {
794 		case 8:
795 			var->red.offset = 0;
796 			var->red.length = 8;
797 			var->green.offset = 0;
798 			var->green.length = 8;
799 			var->blue.offset = 0;
800 			var->blue.length = 8;
801 			var->transp.offset = 0;
802 			var->transp.length = 0;
803 			break;
804 		case 16:	/* RGB 555 or 565 */
805 			if (var->green.length != 6)
806 				var->red.offset = 10;
807 			var->red.length = 5;
808 			var->green.offset = 5;
809 			if (var->green.length != 6)
810 				var->green.length = 5;
811 			var->blue.offset = 0;
812 			var->blue.length = 5;
813 			var->transp.offset = 0;
814 			var->transp.length = 0;
815 			break;
816 		case 24:	/* RGB 888 */
817 			var->red.offset = 16;
818 			var->red.length = 8;
819 			var->green.offset = 8;
820 			var->green.length = 8;
821 			var->blue.offset = 0;
822 			var->blue.length = 8;
823 			var->transp.offset = 0;
824 			var->transp.length = 0;
825 			break;
826 		case 32:	/* RGBA 8888 */
827 			var->red.offset = 16;
828 			var->red.length = 8;
829 			var->green.offset = 8;
830 			var->green.length = 8;
831 			var->blue.offset = 0;
832 			var->blue.length = 8;
833 			var->transp.offset = 24;
834 			var->transp.length = 8;
835 			break;
836 	}
837 
838 	if (var->yres == var->yres_virtual) {
839 		__u32 vram = (info->fix.smem_len - (PAGE_SIZE << 2));
840 		var->yres_virtual = ((vram << 3) / var->bits_per_pixel) / var->xres_virtual;
841 		if (var->yres_virtual < var->yres)
842 			var->yres_virtual = var->yres;
843 	}
844 
845 	var->red.msb_right = 0;
846 	var->green.msb_right = 0;
847 	var->blue.msb_right = 0;
848 	var->transp.msb_right = 0;
849 	var->height = -1;
850 	var->width = -1;
851 	var->vmode = FB_VMODE_NONINTERLACED;
852 	var->left_margin = var->right_margin = 16;
853 	var->upper_margin = var->lower_margin = 16;
854 	var->hsync_len = var->vsync_len = 8;
855 	return 0;
856 }
857 
858 static int
859 imsttfb_set_par(struct fb_info *info)
860 {
861 	struct imstt_par *par = info->par;
862 
863 	if (!compute_imstt_regvals(par, info->var.xres, info->var.yres))
864 		return -EINVAL;
865 
866 	if (info->var.green.length == 6)
867 		set_565(par);
868 	else
869 		set_555(par);
870 	set_imstt_regvals(info, info->var.bits_per_pixel);
871 	info->var.pixclock = 1000000 / getclkMHz(par);
872 	return 0;
873 }
874 
875 static int
876 imsttfb_setcolreg (u_int regno, u_int red, u_int green, u_int blue,
877 		   u_int transp, struct fb_info *info)
878 {
879 	struct imstt_par *par = info->par;
880 	u_int bpp = info->var.bits_per_pixel;
881 
882 	if (regno > 255)
883 		return 1;
884 
885 	red >>= 8;
886 	green >>= 8;
887 	blue >>= 8;
888 
889 	/* PADDRW/PDATA are the same as TVPPADDRW/TVPPDATA */
890 	if (0 && bpp == 16)	/* screws up X */
891 		par->cmap_regs[PADDRW] = regno << 3;
892 	else
893 		par->cmap_regs[PADDRW] = regno;
894 	eieio();
895 
896 	par->cmap_regs[PDATA] = red;	eieio();
897 	par->cmap_regs[PDATA] = green;	eieio();
898 	par->cmap_regs[PDATA] = blue;	eieio();
899 
900 	if (regno < 16)
901 		switch (bpp) {
902 			case 16:
903 				par->palette[regno] =
904 					(regno << (info->var.green.length ==
905 					5 ? 10 : 11)) | (regno << 5) | regno;
906 				break;
907 			case 24:
908 				par->palette[regno] =
909 					(regno << 16) | (regno << 8) | regno;
910 				break;
911 			case 32: {
912 				int i = (regno << 8) | regno;
913 				par->palette[regno] = (i << 16) |i;
914 				break;
915 			}
916 		}
917 	return 0;
918 }
919 
920 static int
921 imsttfb_pan_display(struct fb_var_screeninfo *var, struct fb_info *info)
922 {
923 	if (var->xoffset + info->var.xres > info->var.xres_virtual
924 	    || var->yoffset + info->var.yres > info->var.yres_virtual)
925 		return -EINVAL;
926 
927 	info->var.xoffset = var->xoffset;
928 	info->var.yoffset = var->yoffset;
929 	set_offset(var, info);
930 	return 0;
931 }
932 
933 static int
934 imsttfb_blank(int blank, struct fb_info *info)
935 {
936 	struct imstt_par *par = info->par;
937 	__u32 ctrl;
938 
939 	ctrl = read_reg_le32(par->dc_regs, STGCTL);
940 	if (blank > 0) {
941 		switch (blank) {
942 		case FB_BLANK_NORMAL:
943 		case FB_BLANK_POWERDOWN:
944 			ctrl &= ~0x00000380;
945 			if (par->ramdac == IBM) {
946 				par->cmap_regs[PIDXHI] = 0;		eieio();
947 				par->cmap_regs[PIDXLO] = MISCTL2;	eieio();
948 				par->cmap_regs[PIDXDATA] = 0x55;	eieio();
949 				par->cmap_regs[PIDXLO] = MISCTL1;	eieio();
950 				par->cmap_regs[PIDXDATA] = 0x11;	eieio();
951 				par->cmap_regs[PIDXLO] = SYNCCTL;	eieio();
952 				par->cmap_regs[PIDXDATA] = 0x0f;	eieio();
953 				par->cmap_regs[PIDXLO] = PWRMNGMT;	eieio();
954 				par->cmap_regs[PIDXDATA] = 0x1f;	eieio();
955 				par->cmap_regs[PIDXLO] = CLKCTL;	eieio();
956 				par->cmap_regs[PIDXDATA] = 0xc0;
957 			}
958 			break;
959 		case FB_BLANK_VSYNC_SUSPEND:
960 			ctrl &= ~0x00000020;
961 			break;
962 		case FB_BLANK_HSYNC_SUSPEND:
963 			ctrl &= ~0x00000010;
964 			break;
965 		}
966 	} else {
967 		if (par->ramdac == IBM) {
968 			ctrl |= 0x000017b0;
969 			par->cmap_regs[PIDXHI] = 0;		eieio();
970 			par->cmap_regs[PIDXLO] = CLKCTL;	eieio();
971 			par->cmap_regs[PIDXDATA] = 0x01;	eieio();
972 			par->cmap_regs[PIDXLO] = PWRMNGMT;	eieio();
973 			par->cmap_regs[PIDXDATA] = 0x00;	eieio();
974 			par->cmap_regs[PIDXLO] = SYNCCTL;	eieio();
975 			par->cmap_regs[PIDXDATA] = 0x00;	eieio();
976 			par->cmap_regs[PIDXLO] = MISCTL1;	eieio();
977 			par->cmap_regs[PIDXDATA] = 0x01;	eieio();
978 			par->cmap_regs[PIDXLO] = MISCTL2;	eieio();
979 			par->cmap_regs[PIDXDATA] = 0x45;	eieio();
980 		} else
981 			ctrl |= 0x00001780;
982 	}
983 	write_reg_le32(par->dc_regs, STGCTL, ctrl);
984 	return 0;
985 }
986 
987 static void
988 imsttfb_fillrect(struct fb_info *info, const struct fb_fillrect *rect)
989 {
990 	struct imstt_par *par = info->par;
991 	__u32 Bpp, line_pitch, bgc, dx, dy, width, height;
992 
993 	bgc = rect->color;
994 	bgc |= (bgc << 8);
995 	bgc |= (bgc << 16);
996 
997 	Bpp = info->var.bits_per_pixel >> 3,
998 	line_pitch = info->fix.line_length;
999 
1000 	dy = rect->dy * line_pitch;
1001 	dx = rect->dx * Bpp;
1002 	height = rect->height;
1003 	height--;
1004 	width = rect->width * Bpp;
1005 	width--;
1006 
1007 	if (rect->rop == ROP_COPY) {
1008 		while(read_reg_le32(par->dc_regs, SSTATUS) & 0x80);
1009 		write_reg_le32(par->dc_regs, DSA, dy + dx);
1010 		write_reg_le32(par->dc_regs, CNT, (height << 16) | width);
1011 		write_reg_le32(par->dc_regs, DP_OCTL, line_pitch);
1012 		write_reg_le32(par->dc_regs, BI, 0xffffffff);
1013 		write_reg_le32(par->dc_regs, MBC, 0xffffffff);
1014 		write_reg_le32(par->dc_regs, CLR, bgc);
1015 		write_reg_le32(par->dc_regs, BLTCTL, 0x840); /* 0x200000 */
1016 		while(read_reg_le32(par->dc_regs, SSTATUS) & 0x80);
1017 		while(read_reg_le32(par->dc_regs, SSTATUS) & 0x40);
1018 	} else {
1019 		while(read_reg_le32(par->dc_regs, SSTATUS) & 0x80);
1020 		write_reg_le32(par->dc_regs, DSA, dy + dx);
1021 		write_reg_le32(par->dc_regs, S1SA, dy + dx);
1022 		write_reg_le32(par->dc_regs, CNT, (height << 16) | width);
1023 		write_reg_le32(par->dc_regs, DP_OCTL, line_pitch);
1024 		write_reg_le32(par->dc_regs, SP, line_pitch);
1025 		write_reg_le32(par->dc_regs, BLTCTL, 0x40005);
1026 		while(read_reg_le32(par->dc_regs, SSTATUS) & 0x80);
1027 		while(read_reg_le32(par->dc_regs, SSTATUS) & 0x40);
1028 	}
1029 }
1030 
1031 static void
1032 imsttfb_copyarea(struct fb_info *info, const struct fb_copyarea *area)
1033 {
1034 	struct imstt_par *par = info->par;
1035 	__u32 Bpp, line_pitch, fb_offset_old, fb_offset_new, sp, dp_octl;
1036  	__u32 cnt, bltctl, sx, sy, dx, dy, height, width;
1037 
1038 	Bpp = info->var.bits_per_pixel >> 3,
1039 
1040 	sx = area->sx * Bpp;
1041 	sy = area->sy;
1042 	dx = area->dx * Bpp;
1043 	dy = area->dy;
1044 	height = area->height;
1045 	height--;
1046 	width = area->width * Bpp;
1047 	width--;
1048 
1049 	line_pitch = info->fix.line_length;
1050 	bltctl = 0x05;
1051 	sp = line_pitch << 16;
1052 	cnt = height << 16;
1053 
1054 	if (sy < dy) {
1055 		sy += height;
1056 		dy += height;
1057 		sp |= -(line_pitch) & 0xffff;
1058 		dp_octl = -(line_pitch) & 0xffff;
1059 	} else {
1060 		sp |= line_pitch;
1061 		dp_octl = line_pitch;
1062 	}
1063 	if (sx < dx) {
1064 		sx += width;
1065 		dx += width;
1066 		bltctl |= 0x80;
1067 		cnt |= -(width) & 0xffff;
1068 	} else {
1069 		cnt |= width;
1070 	}
1071 	fb_offset_old = sy * line_pitch + sx;
1072 	fb_offset_new = dy * line_pitch + dx;
1073 
1074 	while(read_reg_le32(par->dc_regs, SSTATUS) & 0x80);
1075 	write_reg_le32(par->dc_regs, S1SA, fb_offset_old);
1076 	write_reg_le32(par->dc_regs, SP, sp);
1077 	write_reg_le32(par->dc_regs, DSA, fb_offset_new);
1078 	write_reg_le32(par->dc_regs, CNT, cnt);
1079 	write_reg_le32(par->dc_regs, DP_OCTL, dp_octl);
1080 	write_reg_le32(par->dc_regs, BLTCTL, bltctl);
1081 	while(read_reg_le32(par->dc_regs, SSTATUS) & 0x80);
1082 	while(read_reg_le32(par->dc_regs, SSTATUS) & 0x40);
1083 }
1084 
1085 #if 0
1086 static int
1087 imsttfb_load_cursor_image(struct imstt_par *par, int width, int height, __u8 fgc)
1088 {
1089 	u_int x, y;
1090 
1091 	if (width > 32 || height > 32)
1092 		return -EINVAL;
1093 
1094 	if (par->ramdac == IBM) {
1095 		par->cmap_regs[PIDXHI] = 1;	eieio();
1096 		for (x = 0; x < 0x100; x++) {
1097 			par->cmap_regs[PIDXLO] = x;		eieio();
1098 			par->cmap_regs[PIDXDATA] = 0x00;	eieio();
1099 		}
1100 		par->cmap_regs[PIDXHI] = 1;	eieio();
1101 		for (y = 0; y < height; y++)
1102 			for (x = 0; x < width >> 2; x++) {
1103 				par->cmap_regs[PIDXLO] = x + y * 8;	eieio();
1104 				par->cmap_regs[PIDXDATA] = 0xff;	eieio();
1105 			}
1106 		par->cmap_regs[PIDXHI] = 0;		eieio();
1107 		par->cmap_regs[PIDXLO] = CURS1R;	eieio();
1108 		par->cmap_regs[PIDXDATA] = fgc;		eieio();
1109 		par->cmap_regs[PIDXLO] = CURS1G;	eieio();
1110 		par->cmap_regs[PIDXDATA] = fgc;		eieio();
1111 		par->cmap_regs[PIDXLO] = CURS1B;	eieio();
1112 		par->cmap_regs[PIDXDATA] = fgc;		eieio();
1113 		par->cmap_regs[PIDXLO] = CURS2R;	eieio();
1114 		par->cmap_regs[PIDXDATA] = fgc;		eieio();
1115 		par->cmap_regs[PIDXLO] = CURS2G;	eieio();
1116 		par->cmap_regs[PIDXDATA] = fgc;		eieio();
1117 		par->cmap_regs[PIDXLO] = CURS2B;	eieio();
1118 		par->cmap_regs[PIDXDATA] = fgc;		eieio();
1119 		par->cmap_regs[PIDXLO] = CURS3R;	eieio();
1120 		par->cmap_regs[PIDXDATA] = fgc;		eieio();
1121 		par->cmap_regs[PIDXLO] = CURS3G;	eieio();
1122 		par->cmap_regs[PIDXDATA] = fgc;		eieio();
1123 		par->cmap_regs[PIDXLO] = CURS3B;	eieio();
1124 		par->cmap_regs[PIDXDATA] = fgc;		eieio();
1125 	} else {
1126 		par->cmap_regs[TVPADDRW] = TVPIRICC;	eieio();
1127 		par->cmap_regs[TVPIDATA] &= 0x03;	eieio();
1128 		par->cmap_regs[TVPADDRW] = 0;		eieio();
1129 		for (x = 0; x < 0x200; x++) {
1130 			par->cmap_regs[TVPCRDAT] = 0x00;	eieio();
1131 		}
1132 		for (x = 0; x < 0x200; x++) {
1133 			par->cmap_regs[TVPCRDAT] = 0xff;	eieio();
1134 		}
1135 		par->cmap_regs[TVPADDRW] = TVPIRICC;	eieio();
1136 		par->cmap_regs[TVPIDATA] &= 0x03;	eieio();
1137 		for (y = 0; y < height; y++)
1138 			for (x = 0; x < width >> 3; x++) {
1139 				par->cmap_regs[TVPADDRW] = x + y * 8;	eieio();
1140 				par->cmap_regs[TVPCRDAT] = 0xff;		eieio();
1141 			}
1142 		par->cmap_regs[TVPADDRW] = TVPIRICC;	eieio();
1143 		par->cmap_regs[TVPIDATA] |= 0x08;	eieio();
1144 		for (y = 0; y < height; y++)
1145 			for (x = 0; x < width >> 3; x++) {
1146 				par->cmap_regs[TVPADDRW] = x + y * 8;	eieio();
1147 				par->cmap_regs[TVPCRDAT] = 0xff;		eieio();
1148 			}
1149 		par->cmap_regs[TVPCADRW] = 0x00;	eieio();
1150 		for (x = 0; x < 12; x++) {
1151 			par->cmap_regs[TVPCDATA] = fgc;
1152 			eieio();
1153 		}
1154 	}
1155 	return 1;
1156 }
1157 
1158 static void
1159 imstt_set_cursor(struct imstt_par *par, struct fb_image *d, int on)
1160 {
1161 	if (par->ramdac == IBM) {
1162 		par->cmap_regs[PIDXHI] = 0;	eieio();
1163 		if (!on) {
1164 			par->cmap_regs[PIDXLO] = CURSCTL;	eieio();
1165 			par->cmap_regs[PIDXDATA] = 0x00;	eieio();
1166 		} else {
1167 			par->cmap_regs[PIDXLO] = CURSXHI;	eieio();
1168 			par->cmap_regs[PIDXDATA] = d->dx >> 8;	eieio();
1169 			par->cmap_regs[PIDXLO] = CURSXLO;	eieio();
1170 			par->cmap_regs[PIDXDATA] = d->dx & 0xff;eieio();
1171 			par->cmap_regs[PIDXLO] = CURSYHI;	eieio();
1172 			par->cmap_regs[PIDXDATA] = d->dy >> 8;	eieio();
1173 			par->cmap_regs[PIDXLO] = CURSYLO;	eieio();
1174 			par->cmap_regs[PIDXDATA] = d->dy & 0xff;eieio();
1175 			par->cmap_regs[PIDXLO] = CURSCTL;	eieio();
1176 			par->cmap_regs[PIDXDATA] = 0x02;	eieio();
1177 		}
1178 	} else {
1179 		if (!on) {
1180 			par->cmap_regs[TVPADDRW] = TVPIRICC;	eieio();
1181 			par->cmap_regs[TVPIDATA] = 0x00;	eieio();
1182 		} else {
1183 			__u16 x = d->dx + 0x40, y = d->dy + 0x40;
1184 
1185 			par->cmap_regs[TVPCXPOH] = x >> 8;	eieio();
1186 			par->cmap_regs[TVPCXPOL] = x & 0xff;	eieio();
1187 			par->cmap_regs[TVPCYPOH] = y >> 8;	eieio();
1188 			par->cmap_regs[TVPCYPOL] = y & 0xff;	eieio();
1189 			par->cmap_regs[TVPADDRW] = TVPIRICC;	eieio();
1190 			par->cmap_regs[TVPIDATA] = 0x02;	eieio();
1191 		}
1192 	}
1193 }
1194 
1195 static int
1196 imsttfb_cursor(struct fb_info *info, struct fb_cursor *cursor)
1197 {
1198 	struct imstt_par *par = info->par;
1199         u32 flags = cursor->set, fg, bg, xx, yy;
1200 
1201 	if (cursor->dest == NULL && cursor->rop == ROP_XOR)
1202 		return 1;
1203 
1204 	imstt_set_cursor(info, cursor, 0);
1205 
1206 	if (flags & FB_CUR_SETPOS) {
1207 		xx = cursor->image.dx - info->var.xoffset;
1208 		yy = cursor->image.dy - info->var.yoffset;
1209 	}
1210 
1211 	if (flags & FB_CUR_SETSIZE) {
1212         }
1213 
1214         if (flags & (FB_CUR_SETSHAPE | FB_CUR_SETCMAP)) {
1215                 int fg_idx = cursor->image.fg_color;
1216                 int width = (cursor->image.width+7)/8;
1217                 u8 *dat = (u8 *) cursor->image.data;
1218                 u8 *dst = (u8 *) cursor->dest;
1219                 u8 *msk = (u8 *) cursor->mask;
1220 
1221                 switch (cursor->rop) {
1222                 case ROP_XOR:
1223                         for (i = 0; i < cursor->image.height; i++) {
1224                                 for (j = 0; j < width; j++) {
1225                                         d_idx = i * MAX_CURS/8  + j;
1226                                         data[d_idx] =  byte_rev[dat[s_idx] ^
1227                                                                 dst[s_idx]];
1228                                         mask[d_idx] = byte_rev[msk[s_idx]];
1229                                         s_idx++;
1230                                 }
1231                         }
1232                         break;
1233                 case ROP_COPY:
1234                 default:
1235                         for (i = 0; i < cursor->image.height; i++) {
1236                                 for (j = 0; j < width; j++) {
1237                                         d_idx = i * MAX_CURS/8 + j;
1238                                         data[d_idx] = byte_rev[dat[s_idx]];
1239                                         mask[d_idx] = byte_rev[msk[s_idx]];
1240                                         s_idx++;
1241                                 }
1242 			}
1243 			break;
1244 		}
1245 
1246 		fg = ((info->cmap.red[fg_idx] & 0xf8) << 7) |
1247                      ((info->cmap.green[fg_idx] & 0xf8) << 2) |
1248                      ((info->cmap.blue[fg_idx] & 0xf8) >> 3) | 1 << 15;
1249 
1250 		imsttfb_load_cursor_image(par, xx, yy, fgc);
1251 	}
1252 	if (cursor->enable)
1253 		imstt_set_cursor(info, cursor, 1);
1254 	return 0;
1255 }
1256 #endif
1257 
1258 #define FBIMSTT_SETREG		0x545401
1259 #define FBIMSTT_GETREG		0x545402
1260 #define FBIMSTT_SETCMAPREG	0x545403
1261 #define FBIMSTT_GETCMAPREG	0x545404
1262 #define FBIMSTT_SETIDXREG	0x545405
1263 #define FBIMSTT_GETIDXREG	0x545406
1264 
1265 static int
1266 imsttfb_ioctl(struct fb_info *info, u_int cmd, u_long arg)
1267 {
1268 	struct imstt_par *par = info->par;
1269 	void __user *argp = (void __user *)arg;
1270 	__u32 reg[2];
1271 	__u8 idx[2];
1272 
1273 	switch (cmd) {
1274 		case FBIMSTT_SETREG:
1275 			if (copy_from_user(reg, argp, 8) || reg[0] > (0x1000 - sizeof(reg[0])) / sizeof(reg[0]))
1276 				return -EFAULT;
1277 			write_reg_le32(par->dc_regs, reg[0], reg[1]);
1278 			return 0;
1279 		case FBIMSTT_GETREG:
1280 			if (copy_from_user(reg, argp, 4) || reg[0] > (0x1000 - sizeof(reg[0])) / sizeof(reg[0]))
1281 				return -EFAULT;
1282 			reg[1] = read_reg_le32(par->dc_regs, reg[0]);
1283 			if (copy_to_user((void __user *)(arg + 4), &reg[1], 4))
1284 				return -EFAULT;
1285 			return 0;
1286 		case FBIMSTT_SETCMAPREG:
1287 			if (copy_from_user(reg, argp, 8) || reg[0] > (0x1000 - sizeof(reg[0])) / sizeof(reg[0]))
1288 				return -EFAULT;
1289 			write_reg_le32(((u_int __iomem *)par->cmap_regs), reg[0], reg[1]);
1290 			return 0;
1291 		case FBIMSTT_GETCMAPREG:
1292 			if (copy_from_user(reg, argp, 4) || reg[0] > (0x1000 - sizeof(reg[0])) / sizeof(reg[0]))
1293 				return -EFAULT;
1294 			reg[1] = read_reg_le32(((u_int __iomem *)par->cmap_regs), reg[0]);
1295 			if (copy_to_user((void __user *)(arg + 4), &reg[1], 4))
1296 				return -EFAULT;
1297 			return 0;
1298 		case FBIMSTT_SETIDXREG:
1299 			if (copy_from_user(idx, argp, 2))
1300 				return -EFAULT;
1301 			par->cmap_regs[PIDXHI] = 0;		eieio();
1302 			par->cmap_regs[PIDXLO] = idx[0];	eieio();
1303 			par->cmap_regs[PIDXDATA] = idx[1];	eieio();
1304 			return 0;
1305 		case FBIMSTT_GETIDXREG:
1306 			if (copy_from_user(idx, argp, 1))
1307 				return -EFAULT;
1308 			par->cmap_regs[PIDXHI] = 0;		eieio();
1309 			par->cmap_regs[PIDXLO] = idx[0];	eieio();
1310 			idx[1] = par->cmap_regs[PIDXDATA];
1311 			if (copy_to_user((void __user *)(arg + 1), &idx[1], 1))
1312 				return -EFAULT;
1313 			return 0;
1314 		default:
1315 			return -ENOIOCTLCMD;
1316 	}
1317 }
1318 
1319 static const struct pci_device_id imsttfb_pci_tbl[] = {
1320 	{ PCI_VENDOR_ID_IMS, PCI_DEVICE_ID_IMS_TT128,
1321 	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, IBM },
1322 	{ PCI_VENDOR_ID_IMS, PCI_DEVICE_ID_IMS_TT3D,
1323 	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, TVP },
1324 	{ 0, }
1325 };
1326 
1327 MODULE_DEVICE_TABLE(pci, imsttfb_pci_tbl);
1328 
1329 static struct pci_driver imsttfb_pci_driver = {
1330 	.name =		"imsttfb",
1331 	.id_table =	imsttfb_pci_tbl,
1332 	.probe =	imsttfb_probe,
1333 	.remove =	imsttfb_remove,
1334 };
1335 
1336 static struct fb_ops imsttfb_ops = {
1337 	.owner 		= THIS_MODULE,
1338 	.fb_check_var	= imsttfb_check_var,
1339 	.fb_set_par 	= imsttfb_set_par,
1340 	.fb_setcolreg 	= imsttfb_setcolreg,
1341 	.fb_pan_display = imsttfb_pan_display,
1342 	.fb_blank 	= imsttfb_blank,
1343 	.fb_fillrect	= imsttfb_fillrect,
1344 	.fb_copyarea	= imsttfb_copyarea,
1345 	.fb_imageblit	= cfb_imageblit,
1346 	.fb_ioctl 	= imsttfb_ioctl,
1347 };
1348 
1349 static void init_imstt(struct fb_info *info)
1350 {
1351 	struct imstt_par *par = info->par;
1352 	__u32 i, tmp, *ip, *end;
1353 
1354 	tmp = read_reg_le32(par->dc_regs, PRC);
1355 	if (par->ramdac == IBM)
1356 		info->fix.smem_len = (tmp & 0x0004) ? 0x400000 : 0x200000;
1357 	else
1358 		info->fix.smem_len = 0x800000;
1359 
1360 	ip = (__u32 *)info->screen_base;
1361 	end = (__u32 *)(info->screen_base + info->fix.smem_len);
1362 	while (ip < end)
1363 		*ip++ = 0;
1364 
1365 	/* initialize the card */
1366 	tmp = read_reg_le32(par->dc_regs, STGCTL);
1367 	write_reg_le32(par->dc_regs, STGCTL, tmp & ~0x1);
1368 	write_reg_le32(par->dc_regs, SSR, 0);
1369 
1370 	/* set default values for DAC registers */
1371 	if (par->ramdac == IBM) {
1372 		par->cmap_regs[PPMASK] = 0xff;
1373 		eieio();
1374 		par->cmap_regs[PIDXHI] = 0;
1375 		eieio();
1376 		for (i = 0; i < ARRAY_SIZE(ibm_initregs); i++) {
1377 			par->cmap_regs[PIDXLO] = ibm_initregs[i].addr;
1378 			eieio();
1379 			par->cmap_regs[PIDXDATA] = ibm_initregs[i].value;
1380 			eieio();
1381 		}
1382 	} else {
1383 		for (i = 0; i < ARRAY_SIZE(tvp_initregs); i++) {
1384 			par->cmap_regs[TVPADDRW] = tvp_initregs[i].addr;
1385 			eieio();
1386 			par->cmap_regs[TVPIDATA] = tvp_initregs[i].value;
1387 			eieio();
1388 		}
1389 	}
1390 
1391 #if defined(CONFIG_PPC_PMAC) && defined(CONFIG_PPC32)
1392 	if (IS_REACHABLE(CONFIG_NVRAM) && machine_is(powermac)) {
1393 		int vmode = init_vmode, cmode = init_cmode;
1394 
1395 		if (vmode == -1) {
1396 			vmode = nvram_read_byte(NV_VMODE);
1397 			if (vmode <= 0 || vmode > VMODE_MAX)
1398 				vmode = VMODE_640_480_67;
1399 		}
1400 		if (cmode == -1) {
1401 			cmode = nvram_read_byte(NV_CMODE);
1402 			if (cmode < CMODE_8 || cmode > CMODE_32)
1403 				cmode = CMODE_8;
1404 		}
1405 		if (mac_vmode_to_var(vmode, cmode, &info->var)) {
1406 			info->var.xres = info->var.xres_virtual = INIT_XRES;
1407 			info->var.yres = info->var.yres_virtual = INIT_YRES;
1408 			info->var.bits_per_pixel = INIT_BPP;
1409 		}
1410 	} else
1411 #endif
1412 	{
1413 		info->var.xres = info->var.xres_virtual = INIT_XRES;
1414 		info->var.yres = info->var.yres_virtual = INIT_YRES;
1415 		info->var.bits_per_pixel = INIT_BPP;
1416 	}
1417 
1418 	if ((info->var.xres * info->var.yres) * (info->var.bits_per_pixel >> 3) > info->fix.smem_len
1419 	    || !(compute_imstt_regvals(par, info->var.xres, info->var.yres))) {
1420 		printk("imsttfb: %ux%ux%u not supported\n", info->var.xres, info->var.yres, info->var.bits_per_pixel);
1421 		framebuffer_release(info);
1422 		return;
1423 	}
1424 
1425 	sprintf(info->fix.id, "IMS TT (%s)", par->ramdac == IBM ? "IBM" : "TVP");
1426 	info->fix.mmio_len = 0x1000;
1427 	info->fix.accel = FB_ACCEL_IMS_TWINTURBO;
1428 	info->fix.type = FB_TYPE_PACKED_PIXELS;
1429 	info->fix.visual = info->var.bits_per_pixel == 8 ? FB_VISUAL_PSEUDOCOLOR
1430 							: FB_VISUAL_DIRECTCOLOR;
1431 	info->fix.line_length = info->var.xres * (info->var.bits_per_pixel >> 3);
1432 	info->fix.xpanstep = 8;
1433 	info->fix.ypanstep = 1;
1434 	info->fix.ywrapstep = 0;
1435 
1436 	info->var.accel_flags = FB_ACCELF_TEXT;
1437 
1438 //	if (par->ramdac == IBM)
1439 //		imstt_cursor_init(info);
1440 	if (info->var.green.length == 6)
1441 		set_565(par);
1442 	else
1443 		set_555(par);
1444 	set_imstt_regvals(info, info->var.bits_per_pixel);
1445 
1446 	info->var.pixclock = 1000000 / getclkMHz(par);
1447 
1448 	info->fbops = &imsttfb_ops;
1449 	info->flags = FBINFO_DEFAULT |
1450                       FBINFO_HWACCEL_COPYAREA |
1451 	              FBINFO_HWACCEL_FILLRECT |
1452 	              FBINFO_HWACCEL_YPAN;
1453 
1454 	fb_alloc_cmap(&info->cmap, 0, 0);
1455 
1456 	if (register_framebuffer(info) < 0) {
1457 		framebuffer_release(info);
1458 		return;
1459 	}
1460 
1461 	tmp = (read_reg_le32(par->dc_regs, SSTATUS) & 0x0f00) >> 8;
1462 	fb_info(info, "%s frame buffer; %uMB vram; chip version %u\n",
1463 		info->fix.id, info->fix.smem_len >> 20, tmp);
1464 }
1465 
1466 static int imsttfb_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
1467 {
1468 	unsigned long addr, size;
1469 	struct imstt_par *par;
1470 	struct fb_info *info;
1471 	struct device_node *dp;
1472 
1473 	dp = pci_device_to_OF_node(pdev);
1474 	if(dp)
1475 		printk(KERN_INFO "%s: OF name %pOFn\n",__func__, dp);
1476 	else if (IS_ENABLED(CONFIG_OF))
1477 		printk(KERN_ERR "imsttfb: no OF node for pci device\n");
1478 
1479 	info = framebuffer_alloc(sizeof(struct imstt_par), &pdev->dev);
1480 
1481 	if (!info) {
1482 		printk(KERN_ERR "imsttfb: Can't allocate memory\n");
1483 		return -ENOMEM;
1484 	}
1485 
1486 	par = info->par;
1487 
1488 	addr = pci_resource_start (pdev, 0);
1489 	size = pci_resource_len (pdev, 0);
1490 
1491 	if (!request_mem_region(addr, size, "imsttfb")) {
1492 		printk(KERN_ERR "imsttfb: Can't reserve memory region\n");
1493 		framebuffer_release(info);
1494 		return -ENODEV;
1495 	}
1496 
1497 	switch (pdev->device) {
1498 		case PCI_DEVICE_ID_IMS_TT128: /* IMS,tt128mbA */
1499 			par->ramdac = IBM;
1500 			if (of_node_name_eq(dp, "IMS,tt128mb8") ||
1501 			    of_node_name_eq(dp, "IMS,tt128mb8A"))
1502 				par->ramdac = TVP;
1503 			break;
1504 		case PCI_DEVICE_ID_IMS_TT3D:  /* IMS,tt3d */
1505 			par->ramdac = TVP;
1506 			break;
1507 		default:
1508 			printk(KERN_INFO "imsttfb: Device 0x%x unknown, "
1509 					 "contact maintainer.\n", pdev->device);
1510 			release_mem_region(addr, size);
1511 			framebuffer_release(info);
1512 			return -ENODEV;
1513 	}
1514 
1515 	info->fix.smem_start = addr;
1516 	info->screen_base = (__u8 *)ioremap(addr, par->ramdac == IBM ?
1517 					    0x400000 : 0x800000);
1518 	if (!info->screen_base) {
1519 		release_mem_region(addr, size);
1520 		framebuffer_release(info);
1521 		return -ENOMEM;
1522 	}
1523 	info->fix.mmio_start = addr + 0x800000;
1524 	par->dc_regs = ioremap(addr + 0x800000, 0x1000);
1525 	par->cmap_regs_phys = addr + 0x840000;
1526 	par->cmap_regs = (__u8 *)ioremap(addr + 0x840000, 0x1000);
1527 	info->pseudo_palette = par->palette;
1528 	init_imstt(info);
1529 
1530 	pci_set_drvdata(pdev, info);
1531 	return 0;
1532 }
1533 
1534 static void imsttfb_remove(struct pci_dev *pdev)
1535 {
1536 	struct fb_info *info = pci_get_drvdata(pdev);
1537 	struct imstt_par *par = info->par;
1538 	int size = pci_resource_len(pdev, 0);
1539 
1540 	unregister_framebuffer(info);
1541 	iounmap(par->cmap_regs);
1542 	iounmap(par->dc_regs);
1543 	iounmap(info->screen_base);
1544 	release_mem_region(info->fix.smem_start, size);
1545 	framebuffer_release(info);
1546 }
1547 
1548 #ifndef MODULE
1549 static int __init
1550 imsttfb_setup(char *options)
1551 {
1552 	char *this_opt;
1553 
1554 	if (!options || !*options)
1555 		return 0;
1556 
1557 	while ((this_opt = strsep(&options, ",")) != NULL) {
1558 		if (!strncmp(this_opt, "font:", 5)) {
1559 			char *p;
1560 			int i;
1561 
1562 			p = this_opt + 5;
1563 			for (i = 0; i < sizeof(fontname) - 1; i++)
1564 				if (!*p || *p == ' ' || *p == ',')
1565 					break;
1566 			memcpy(fontname, this_opt + 5, i);
1567 			fontname[i] = 0;
1568 		} else if (!strncmp(this_opt, "inverse", 7)) {
1569 			inverse = 1;
1570 			fb_invert_cmaps();
1571 		}
1572 #if defined(CONFIG_PPC_PMAC)
1573 		else if (!strncmp(this_opt, "vmode:", 6)) {
1574 			int vmode = simple_strtoul(this_opt+6, NULL, 0);
1575 			if (vmode > 0 && vmode <= VMODE_MAX)
1576 				init_vmode = vmode;
1577 		} else if (!strncmp(this_opt, "cmode:", 6)) {
1578 			int cmode = simple_strtoul(this_opt+6, NULL, 0);
1579 			switch (cmode) {
1580 				case CMODE_8:
1581 				case 8:
1582 					init_cmode = CMODE_8;
1583 					break;
1584 				case CMODE_16:
1585 				case 15:
1586 				case 16:
1587 					init_cmode = CMODE_16;
1588 					break;
1589 				case CMODE_32:
1590 				case 24:
1591 				case 32:
1592 					init_cmode = CMODE_32;
1593 					break;
1594 			}
1595 		}
1596 #endif
1597 	}
1598 	return 0;
1599 }
1600 
1601 #endif /* MODULE */
1602 
1603 static int __init imsttfb_init(void)
1604 {
1605 #ifndef MODULE
1606 	char *option = NULL;
1607 
1608 	if (fb_get_options("imsttfb", &option))
1609 		return -ENODEV;
1610 
1611 	imsttfb_setup(option);
1612 #endif
1613 	return pci_register_driver(&imsttfb_pci_driver);
1614 }
1615 
1616 static void __exit imsttfb_exit(void)
1617 {
1618 	pci_unregister_driver(&imsttfb_pci_driver);
1619 }
1620 
1621 MODULE_LICENSE("GPL");
1622 
1623 module_init(imsttfb_init);
1624 module_exit(imsttfb_exit);
1625 
1626