xref: /linux/drivers/video/fbdev/imsttfb.c (revision b85d45947951d23cb22d90caecf4c1eb81342c96)
1 /*
2  *  drivers/video/imsttfb.c -- frame buffer device for IMS TwinTurbo
3  *
4  *  This file is derived from the powermac console "imstt" driver:
5  *  Copyright (C) 1997 Sigurdur Asgeirsson
6  *  With additional hacking by Jeffrey Kuskin (jsk@mojave.stanford.edu)
7  *  Modified by Danilo Beuche 1998
8  *  Some register values added by Damien Doligez, INRIA Rocquencourt
9  *  Various cleanups by Paul Mundt (lethal@chaoticdreams.org)
10  *
11  *  This file was written by Ryan Nielsen (ran@krazynet.com)
12  *  Most of the frame buffer device stuff was copied from atyfb.c
13  *
14  *  This file is subject to the terms and conditions of the GNU General Public
15  *  License. See the file COPYING in the main directory of this archive for
16  *  more details.
17  */
18 
19 #include <linux/module.h>
20 #include <linux/kernel.h>
21 #include <linux/errno.h>
22 #include <linux/string.h>
23 #include <linux/mm.h>
24 #include <linux/vmalloc.h>
25 #include <linux/delay.h>
26 #include <linux/interrupt.h>
27 #include <linux/fb.h>
28 #include <linux/init.h>
29 #include <linux/pci.h>
30 #include <asm/io.h>
31 #include <linux/uaccess.h>
32 
33 #if defined(CONFIG_PPC)
34 #include <linux/nvram.h>
35 #include <asm/prom.h>
36 #include <asm/pci-bridge.h>
37 #include "macmodes.h"
38 #endif
39 
40 #ifndef __powerpc__
41 #define eieio()		/* Enforce In-order Execution of I/O */
42 #endif
43 
44 /* TwinTurbo (Cosmo) registers */
45 enum {
46 	S1SA	=  0, /* 0x00 */
47 	S2SA	=  1, /* 0x04 */
48 	SP	=  2, /* 0x08 */
49 	DSA	=  3, /* 0x0C */
50 	CNT	=  4, /* 0x10 */
51 	DP_OCTL	=  5, /* 0x14 */
52 	CLR	=  6, /* 0x18 */
53 	BI	=  8, /* 0x20 */
54 	MBC	=  9, /* 0x24 */
55 	BLTCTL	= 10, /* 0x28 */
56 
57 	/* Scan Timing Generator Registers */
58 	HES	= 12, /* 0x30 */
59 	HEB	= 13, /* 0x34 */
60 	HSB	= 14, /* 0x38 */
61 	HT	= 15, /* 0x3C */
62 	VES	= 16, /* 0x40 */
63 	VEB	= 17, /* 0x44 */
64 	VSB	= 18, /* 0x48 */
65 	VT	= 19, /* 0x4C */
66 	HCIV	= 20, /* 0x50 */
67 	VCIV	= 21, /* 0x54 */
68 	TCDR	= 22, /* 0x58 */
69 	VIL	= 23, /* 0x5C */
70 	STGCTL	= 24, /* 0x60 */
71 
72 	/* Screen Refresh Generator Registers */
73 	SSR	= 25, /* 0x64 */
74 	HRIR	= 26, /* 0x68 */
75 	SPR	= 27, /* 0x6C */
76 	CMR	= 28, /* 0x70 */
77 	SRGCTL	= 29, /* 0x74 */
78 
79 	/* RAM Refresh Generator Registers */
80 	RRCIV	= 30, /* 0x78 */
81 	RRSC	= 31, /* 0x7C */
82 	RRCR	= 34, /* 0x88 */
83 
84 	/* System Registers */
85 	GIOE	= 32, /* 0x80 */
86 	GIO	= 33, /* 0x84 */
87 	SCR	= 35, /* 0x8C */
88 	SSTATUS	= 36, /* 0x90 */
89 	PRC	= 37, /* 0x94 */
90 
91 #if 0
92 	/* PCI Registers */
93 	DVID	= 0x00000000L,
94 	SC	= 0x00000004L,
95 	CCR	= 0x00000008L,
96 	OG	= 0x0000000CL,
97 	BARM	= 0x00000010L,
98 	BARER	= 0x00000030L,
99 #endif
100 };
101 
102 /* IBM 624 RAMDAC Direct Registers */
103 enum {
104 	PADDRW	= 0x00,
105 	PDATA	= 0x04,
106 	PPMASK	= 0x08,
107 	PADDRR	= 0x0c,
108 	PIDXLO	= 0x10,
109 	PIDXHI	= 0x14,
110 	PIDXDATA= 0x18,
111 	PIDXCTL	= 0x1c
112 };
113 
114 /* IBM 624 RAMDAC Indirect Registers */
115 enum {
116 	CLKCTL		= 0x02,	/* (0x01) Miscellaneous Clock Control */
117 	SYNCCTL		= 0x03,	/* (0x00) Sync Control */
118 	HSYNCPOS	= 0x04,	/* (0x00) Horizontal Sync Position */
119 	PWRMNGMT	= 0x05,	/* (0x00) Power Management */
120 	DACOP		= 0x06,	/* (0x02) DAC Operation */
121 	PALETCTL	= 0x07,	/* (0x00) Palette Control */
122 	SYSCLKCTL	= 0x08,	/* (0x01) System Clock Control */
123 	PIXFMT		= 0x0a,	/* () Pixel Format  [bpp >> 3 + 2] */
124 	BPP8		= 0x0b,	/* () 8 Bits/Pixel Control */
125 	BPP16		= 0x0c, /* () 16 Bits/Pixel Control  [bit 1=1 for 565] */
126 	BPP24		= 0x0d,	/* () 24 Bits/Pixel Control */
127 	BPP32		= 0x0e,	/* () 32 Bits/Pixel Control */
128 	PIXCTL1		= 0x10, /* (0x05) Pixel PLL Control 1 */
129 	PIXCTL2		= 0x11,	/* (0x00) Pixel PLL Control 2 */
130 	SYSCLKN		= 0x15,	/* () System Clock N (System PLL Reference Divider) */
131 	SYSCLKM		= 0x16,	/* () System Clock M (System PLL VCO Divider) */
132 	SYSCLKP		= 0x17,	/* () System Clock P */
133 	SYSCLKC		= 0x18,	/* () System Clock C */
134 	/*
135 	 * Dot clock rate is 20MHz * (m + 1) / ((n + 1) * (p ? 2 * p : 1)
136 	 * c is charge pump bias which depends on the VCO frequency
137 	 */
138 	PIXM0		= 0x20,	/* () Pixel M 0 */
139 	PIXN0		= 0x21,	/* () Pixel N 0 */
140 	PIXP0		= 0x22,	/* () Pixel P 0 */
141 	PIXC0		= 0x23,	/* () Pixel C 0 */
142 	CURSCTL		= 0x30,	/* (0x00) Cursor Control */
143 	CURSXLO		= 0x31,	/* () Cursor X position, low 8 bits */
144 	CURSXHI		= 0x32,	/* () Cursor X position, high 8 bits */
145 	CURSYLO		= 0x33,	/* () Cursor Y position, low 8 bits */
146 	CURSYHI		= 0x34,	/* () Cursor Y position, high 8 bits */
147 	CURSHOTX	= 0x35,	/* () Cursor Hot Spot X */
148 	CURSHOTY	= 0x36,	/* () Cursor Hot Spot Y */
149 	CURSACCTL	= 0x37,	/* () Advanced Cursor Control Enable */
150 	CURSACATTR	= 0x38,	/* () Advanced Cursor Attribute */
151 	CURS1R		= 0x40,	/* () Cursor 1 Red */
152 	CURS1G		= 0x41,	/* () Cursor 1 Green */
153 	CURS1B		= 0x42,	/* () Cursor 1 Blue */
154 	CURS2R		= 0x43,	/* () Cursor 2 Red */
155 	CURS2G		= 0x44,	/* () Cursor 2 Green */
156 	CURS2B		= 0x45,	/* () Cursor 2 Blue */
157 	CURS3R		= 0x46,	/* () Cursor 3 Red */
158 	CURS3G		= 0x47,	/* () Cursor 3 Green */
159 	CURS3B		= 0x48,	/* () Cursor 3 Blue */
160 	BORDR		= 0x60,	/* () Border Color Red */
161 	BORDG		= 0x61,	/* () Border Color Green */
162 	BORDB		= 0x62,	/* () Border Color Blue */
163 	MISCTL1		= 0x70,	/* (0x00) Miscellaneous Control 1 */
164 	MISCTL2		= 0x71,	/* (0x00) Miscellaneous Control 2 */
165 	MISCTL3		= 0x72,	/* (0x00) Miscellaneous Control 3 */
166 	KEYCTL		= 0x78	/* (0x00) Key Control/DB Operation */
167 };
168 
169 /* TI TVP 3030 RAMDAC Direct Registers */
170 enum {
171 	TVPADDRW = 0x00,	/* 0  Palette/Cursor RAM Write Address/Index */
172 	TVPPDATA = 0x04,	/* 1  Palette Data RAM Data */
173 	TVPPMASK = 0x08,	/* 2  Pixel Read-Mask */
174 	TVPPADRR = 0x0c,	/* 3  Palette/Cursor RAM Read Address */
175 	TVPCADRW = 0x10,	/* 4  Cursor/Overscan Color Write Address */
176 	TVPCDATA = 0x14,	/* 5  Cursor/Overscan Color Data */
177 				/* 6  reserved */
178 	TVPCADRR = 0x1c,	/* 7  Cursor/Overscan Color Read Address */
179 				/* 8  reserved */
180 	TVPDCCTL = 0x24,	/* 9  Direct Cursor Control */
181 	TVPIDATA = 0x28,	/* 10 Index Data */
182 	TVPCRDAT = 0x2c,	/* 11 Cursor RAM Data */
183 	TVPCXPOL = 0x30,	/* 12 Cursor-Position X LSB */
184 	TVPCXPOH = 0x34,	/* 13 Cursor-Position X MSB */
185 	TVPCYPOL = 0x38,	/* 14 Cursor-Position Y LSB */
186 	TVPCYPOH = 0x3c,	/* 15 Cursor-Position Y MSB */
187 };
188 
189 /* TI TVP 3030 RAMDAC Indirect Registers */
190 enum {
191 	TVPIRREV = 0x01,	/* Silicon Revision [RO] */
192 	TVPIRICC = 0x06,	/* Indirect Cursor Control 	(0x00) */
193 	TVPIRBRC = 0x07,	/* Byte Router Control 	(0xe4) */
194 	TVPIRLAC = 0x0f,	/* Latch Control 		(0x06) */
195 	TVPIRTCC = 0x18,	/* True Color Control  	(0x80) */
196 	TVPIRMXC = 0x19,	/* Multiplex Control		(0x98) */
197 	TVPIRCLS = 0x1a,	/* Clock Selection		(0x07) */
198 	TVPIRPPG = 0x1c,	/* Palette Page		(0x00) */
199 	TVPIRGEC = 0x1d,	/* General Control 		(0x00) */
200 	TVPIRMIC = 0x1e,	/* Miscellaneous Control	(0x00) */
201 	TVPIRPLA = 0x2c,	/* PLL Address */
202 	TVPIRPPD = 0x2d,	/* Pixel Clock PLL Data */
203 	TVPIRMPD = 0x2e,	/* Memory Clock PLL Data */
204 	TVPIRLPD = 0x2f,	/* Loop Clock PLL Data */
205 	TVPIRCKL = 0x30,	/* Color-Key Overlay Low */
206 	TVPIRCKH = 0x31,	/* Color-Key Overlay High */
207 	TVPIRCRL = 0x32,	/* Color-Key Red Low */
208 	TVPIRCRH = 0x33,	/* Color-Key Red High */
209 	TVPIRCGL = 0x34,	/* Color-Key Green Low */
210 	TVPIRCGH = 0x35,	/* Color-Key Green High */
211 	TVPIRCBL = 0x36,	/* Color-Key Blue Low */
212 	TVPIRCBH = 0x37,	/* Color-Key Blue High */
213 	TVPIRCKC = 0x38,	/* Color-Key Control 		(0x00) */
214 	TVPIRMLC = 0x39,	/* MCLK/Loop Clock Control	(0x18) */
215 	TVPIRSEN = 0x3a,	/* Sense Test			(0x00) */
216 	TVPIRTMD = 0x3b,	/* Test Mode Data */
217 	TVPIRRML = 0x3c,	/* CRC Remainder LSB [RO] */
218 	TVPIRRMM = 0x3d,	/* CRC Remainder MSB [RO] */
219 	TVPIRRMS = 0x3e,	/* CRC  Bit Select [WO] */
220 	TVPIRDID = 0x3f,	/* Device ID [RO] 		(0x30) */
221 	TVPIRRES = 0xff		/* Software Reset [WO] */
222 };
223 
224 struct initvalues {
225 	__u8 addr, value;
226 };
227 
228 static struct initvalues ibm_initregs[] = {
229 	{ CLKCTL,	0x21 },
230 	{ SYNCCTL,	0x00 },
231 	{ HSYNCPOS,	0x00 },
232 	{ PWRMNGMT,	0x00 },
233 	{ DACOP,	0x02 },
234 	{ PALETCTL,	0x00 },
235 	{ SYSCLKCTL,	0x01 },
236 
237 	/*
238 	 * Note that colors in X are correct only if all video data is
239 	 * passed through the palette in the DAC.  That is, "indirect
240 	 * color" must be configured.  This is the case for the IBM DAC
241 	 * used in the 2MB and 4MB cards, at least.
242 	 */
243 	{ BPP8,		0x00 },
244 	{ BPP16,	0x01 },
245 	{ BPP24,	0x00 },
246 	{ BPP32,	0x00 },
247 
248 	{ PIXCTL1,	0x05 },
249 	{ PIXCTL2,	0x00 },
250 	{ SYSCLKN,	0x08 },
251 	{ SYSCLKM,	0x4f },
252 	{ SYSCLKP,	0x00 },
253 	{ SYSCLKC,	0x00 },
254 	{ CURSCTL,	0x00 },
255 	{ CURSACCTL,	0x01 },
256 	{ CURSACATTR,	0xa8 },
257 	{ CURS1R,	0xff },
258 	{ CURS1G,	0xff },
259 	{ CURS1B,	0xff },
260 	{ CURS2R,	0xff },
261 	{ CURS2G,	0xff },
262 	{ CURS2B,	0xff },
263 	{ CURS3R,	0xff },
264 	{ CURS3G,	0xff },
265 	{ CURS3B,	0xff },
266 	{ BORDR,	0xff },
267 	{ BORDG,	0xff },
268 	{ BORDB,	0xff },
269 	{ MISCTL1,	0x01 },
270 	{ MISCTL2,	0x45 },
271 	{ MISCTL3,	0x00 },
272 	{ KEYCTL,	0x00 }
273 };
274 
275 static struct initvalues tvp_initregs[] = {
276 	{ TVPIRICC,	0x00 },
277 	{ TVPIRBRC,	0xe4 },
278 	{ TVPIRLAC,	0x06 },
279 	{ TVPIRTCC,	0x80 },
280 	{ TVPIRMXC,	0x4d },
281 	{ TVPIRCLS,	0x05 },
282 	{ TVPIRPPG,	0x00 },
283 	{ TVPIRGEC,	0x00 },
284 	{ TVPIRMIC,	0x08 },
285 	{ TVPIRCKL,	0xff },
286 	{ TVPIRCKH,	0xff },
287 	{ TVPIRCRL,	0xff },
288 	{ TVPIRCRH,	0xff },
289 	{ TVPIRCGL,	0xff },
290 	{ TVPIRCGH,	0xff },
291 	{ TVPIRCBL,	0xff },
292 	{ TVPIRCBH,	0xff },
293 	{ TVPIRCKC,	0x00 },
294 	{ TVPIRPLA,	0x00 },
295 	{ TVPIRPPD,	0xc0 },
296 	{ TVPIRPPD,	0xd5 },
297 	{ TVPIRPPD,	0xea },
298 	{ TVPIRPLA,	0x00 },
299 	{ TVPIRMPD,	0xb9 },
300 	{ TVPIRMPD,	0x3a },
301 	{ TVPIRMPD,	0xb1 },
302 	{ TVPIRPLA,	0x00 },
303 	{ TVPIRLPD,	0xc1 },
304 	{ TVPIRLPD,	0x3d },
305 	{ TVPIRLPD,	0xf3 },
306 };
307 
308 struct imstt_regvals {
309 	__u32 pitch;
310 	__u16 hes, heb, hsb, ht, ves, veb, vsb, vt, vil;
311 	__u8 pclk_m, pclk_n, pclk_p;
312 	/* Values of the tvp which change depending on colormode x resolution */
313 	__u8 mlc[3];	/* Memory Loop Config 0x39 */
314 	__u8 lckl_p[3];	/* P value of LCKL PLL */
315 };
316 
317 struct imstt_par {
318 	struct imstt_regvals init;
319 	__u32 __iomem *dc_regs;
320 	unsigned long cmap_regs_phys;
321 	__u8 *cmap_regs;
322 	__u32 ramdac;
323 	__u32 palette[16];
324 };
325 
326 enum {
327 	IBM = 0,
328 	TVP = 1
329 };
330 
331 #define USE_NV_MODES		1
332 #define INIT_BPP		8
333 #define INIT_XRES		640
334 #define INIT_YRES		480
335 
336 static int inverse = 0;
337 static char fontname[40] __initdata = { 0 };
338 #if defined(CONFIG_PPC)
339 static signed char init_vmode = -1, init_cmode = -1;
340 #endif
341 
342 static struct imstt_regvals tvp_reg_init_2 = {
343 	512,
344 	0x0002, 0x0006, 0x0026, 0x0028, 0x0003, 0x0016, 0x0196, 0x0197, 0x0196,
345 	0xec, 0x2a, 0xf3,
346 	{ 0x3c, 0x3b, 0x39 }, { 0xf3, 0xf3, 0xf3 }
347 };
348 
349 static struct imstt_regvals tvp_reg_init_6 = {
350 	640,
351 	0x0004, 0x0009, 0x0031, 0x0036, 0x0003, 0x002a, 0x020a, 0x020d, 0x020a,
352 	0xef, 0x2e, 0xb2,
353 	{ 0x39, 0x39, 0x38 }, { 0xf3, 0xf3, 0xf3 }
354 };
355 
356 static struct imstt_regvals tvp_reg_init_12 = {
357 	800,
358 	0x0005, 0x000e, 0x0040, 0x0042, 0x0003, 0x018, 0x270, 0x271, 0x270,
359 	0xf6, 0x2e, 0xf2,
360 	{ 0x3a, 0x39, 0x38 }, { 0xf3, 0xf3, 0xf3 }
361 };
362 
363 static struct imstt_regvals tvp_reg_init_13 = {
364 	832,
365 	0x0004, 0x0011, 0x0045, 0x0048, 0x0003, 0x002a, 0x029a, 0x029b, 0x0000,
366 	0xfe, 0x3e, 0xf1,
367 	{ 0x39, 0x38, 0x38 }, { 0xf3, 0xf3, 0xf2 }
368 };
369 
370 static struct imstt_regvals tvp_reg_init_17 = {
371 	1024,
372 	0x0006, 0x0210, 0x0250, 0x0053, 0x1003, 0x0021, 0x0321, 0x0324, 0x0000,
373 	0xfc, 0x3a, 0xf1,
374 	{ 0x39, 0x38, 0x38 }, { 0xf3, 0xf3, 0xf2 }
375 };
376 
377 static struct imstt_regvals tvp_reg_init_18 = {
378 	1152,
379   	0x0009, 0x0011, 0x059, 0x5b, 0x0003, 0x0031, 0x0397, 0x039a, 0x0000,
380 	0xfd, 0x3a, 0xf1,
381 	{ 0x39, 0x38, 0x38 }, { 0xf3, 0xf3, 0xf2 }
382 };
383 
384 static struct imstt_regvals tvp_reg_init_19 = {
385 	1280,
386 	0x0009, 0x0016, 0x0066, 0x0069, 0x0003, 0x0027, 0x03e7, 0x03e8, 0x03e7,
387 	0xf7, 0x36, 0xf0,
388 	{ 0x38, 0x38, 0x38 }, { 0xf3, 0xf2, 0xf1 }
389 };
390 
391 static struct imstt_regvals tvp_reg_init_20 = {
392 	1280,
393 	0x0009, 0x0018, 0x0068, 0x006a, 0x0003, 0x0029, 0x0429, 0x042a, 0x0000,
394 	0xf0, 0x2d, 0xf0,
395 	{ 0x38, 0x38, 0x38 }, { 0xf3, 0xf2, 0xf1 }
396 };
397 
398 /*
399  * PCI driver prototypes
400  */
401 static int imsttfb_probe(struct pci_dev *pdev, const struct pci_device_id *ent);
402 static void imsttfb_remove(struct pci_dev *pdev);
403 
404 /*
405  * Register access
406  */
407 static inline u32 read_reg_le32(volatile u32 __iomem *base, int regindex)
408 {
409 #ifdef __powerpc__
410 	return in_le32(base + regindex);
411 #else
412 	return readl(base + regindex);
413 #endif
414 }
415 
416 static inline void write_reg_le32(volatile u32 __iomem *base, int regindex, u32 val)
417 {
418 #ifdef __powerpc__
419 	out_le32(base + regindex, val);
420 #else
421 	writel(val, base + regindex);
422 #endif
423 }
424 
425 static __u32
426 getclkMHz(struct imstt_par *par)
427 {
428 	__u32 clk_m, clk_n, clk_p;
429 
430 	clk_m = par->init.pclk_m;
431 	clk_n = par->init.pclk_n;
432 	clk_p = par->init.pclk_p;
433 
434 	return 20 * (clk_m + 1) / ((clk_n + 1) * (clk_p ? 2 * clk_p : 1));
435 }
436 
437 static void
438 setclkMHz(struct imstt_par *par, __u32 MHz)
439 {
440 	__u32 clk_m, clk_n, x, stage, spilled;
441 
442 	clk_m = clk_n = 0;
443 	stage = spilled = 0;
444 	for (;;) {
445 		switch (stage) {
446 			case 0:
447 				clk_m++;
448 				break;
449 			case 1:
450 				clk_n++;
451 				break;
452 		}
453 		x = 20 * (clk_m + 1) / (clk_n + 1);
454 		if (x == MHz)
455 			break;
456 		if (x > MHz) {
457 			spilled = 1;
458 			stage = 1;
459 		} else if (spilled && x < MHz) {
460 			stage = 0;
461 		}
462 	}
463 
464 	par->init.pclk_m = clk_m;
465 	par->init.pclk_n = clk_n;
466 	par->init.pclk_p = 0;
467 }
468 
469 static struct imstt_regvals *
470 compute_imstt_regvals_ibm(struct imstt_par *par, int xres, int yres)
471 {
472 	struct imstt_regvals *init = &par->init;
473 	__u32 MHz, hes, heb, veb, htp, vtp;
474 
475 	switch (xres) {
476 		case 640:
477 			hes = 0x0008; heb = 0x0012; veb = 0x002a; htp = 10; vtp = 2;
478 			MHz = 30 /* .25 */ ;
479 			break;
480 		case 832:
481 			hes = 0x0005; heb = 0x0020; veb = 0x0028; htp = 8; vtp = 3;
482 			MHz = 57 /* .27_ */ ;
483 			break;
484 		case 1024:
485 			hes = 0x000a; heb = 0x001c; veb = 0x0020; htp = 8; vtp = 3;
486 			MHz = 80;
487 			break;
488 		case 1152:
489 			hes = 0x0012; heb = 0x0022; veb = 0x0031; htp = 4; vtp = 3;
490 			MHz = 101 /* .6_ */ ;
491 			break;
492 		case 1280:
493 			hes = 0x0012; heb = 0x002f; veb = 0x0029; htp = 4; vtp = 1;
494 			MHz = yres == 960 ? 126 : 135;
495 			break;
496 		case 1600:
497 			hes = 0x0018; heb = 0x0040; veb = 0x002a; htp = 4; vtp = 3;
498 			MHz = 200;
499 			break;
500 		default:
501 			return NULL;
502 	}
503 
504 	setclkMHz(par, MHz);
505 
506 	init->hes = hes;
507 	init->heb = heb;
508 	init->hsb = init->heb + (xres >> 3);
509 	init->ht = init->hsb + htp;
510 	init->ves = 0x0003;
511 	init->veb = veb;
512 	init->vsb = init->veb + yres;
513 	init->vt = init->vsb + vtp;
514 	init->vil = init->vsb;
515 
516 	init->pitch = xres;
517 	return init;
518 }
519 
520 static struct imstt_regvals *
521 compute_imstt_regvals_tvp(struct imstt_par *par, int xres, int yres)
522 {
523 	struct imstt_regvals *init;
524 
525 	switch (xres) {
526 		case 512:
527 			init = &tvp_reg_init_2;
528 			break;
529 		case 640:
530 			init = &tvp_reg_init_6;
531 			break;
532 		case 800:
533 			init = &tvp_reg_init_12;
534 			break;
535 		case 832:
536 			init = &tvp_reg_init_13;
537 			break;
538 		case 1024:
539 			init = &tvp_reg_init_17;
540 			break;
541 		case 1152:
542 			init = &tvp_reg_init_18;
543 			break;
544 		case 1280:
545 			init = yres == 960 ? &tvp_reg_init_19 : &tvp_reg_init_20;
546 			break;
547 		default:
548 			return NULL;
549 	}
550 	par->init = *init;
551 	return init;
552 }
553 
554 static struct imstt_regvals *
555 compute_imstt_regvals (struct imstt_par *par, u_int xres, u_int yres)
556 {
557 	if (par->ramdac == IBM)
558 		return compute_imstt_regvals_ibm(par, xres, yres);
559 	else
560 		return compute_imstt_regvals_tvp(par, xres, yres);
561 }
562 
563 static void
564 set_imstt_regvals_ibm (struct imstt_par *par, u_int bpp)
565 {
566 	struct imstt_regvals *init = &par->init;
567 	__u8 pformat = (bpp >> 3) + 2;
568 
569 	par->cmap_regs[PIDXHI] = 0;		eieio();
570 	par->cmap_regs[PIDXLO] = PIXM0;		eieio();
571 	par->cmap_regs[PIDXDATA] = init->pclk_m;eieio();
572 	par->cmap_regs[PIDXLO] = PIXN0;		eieio();
573 	par->cmap_regs[PIDXDATA] = init->pclk_n;eieio();
574 	par->cmap_regs[PIDXLO] = PIXP0;		eieio();
575 	par->cmap_regs[PIDXDATA] = init->pclk_p;eieio();
576 	par->cmap_regs[PIDXLO] = PIXC0;		eieio();
577 	par->cmap_regs[PIDXDATA] = 0x02;	eieio();
578 
579 	par->cmap_regs[PIDXLO] = PIXFMT;	eieio();
580 	par->cmap_regs[PIDXDATA] = pformat;	eieio();
581 }
582 
583 static void
584 set_imstt_regvals_tvp (struct imstt_par *par, u_int bpp)
585 {
586 	struct imstt_regvals *init = &par->init;
587 	__u8 tcc, mxc, lckl_n, mic;
588 	__u8 mlc, lckl_p;
589 
590 	switch (bpp) {
591 		default:
592 		case 8:
593 			tcc = 0x80;
594 			mxc = 0x4d;
595 			lckl_n = 0xc1;
596 			mlc = init->mlc[0];
597 			lckl_p = init->lckl_p[0];
598 			break;
599 		case 16:
600 			tcc = 0x44;
601 			mxc = 0x55;
602 			lckl_n = 0xe1;
603 			mlc = init->mlc[1];
604 			lckl_p = init->lckl_p[1];
605 			break;
606 		case 24:
607 			tcc = 0x5e;
608 			mxc = 0x5d;
609 			lckl_n = 0xf1;
610 			mlc = init->mlc[2];
611 			lckl_p = init->lckl_p[2];
612 			break;
613 		case 32:
614 			tcc = 0x46;
615 			mxc = 0x5d;
616 			lckl_n = 0xf1;
617 			mlc = init->mlc[2];
618 			lckl_p = init->lckl_p[2];
619 			break;
620 	}
621 	mic = 0x08;
622 
623 	par->cmap_regs[TVPADDRW] = TVPIRPLA;		eieio();
624 	par->cmap_regs[TVPIDATA] = 0x00;		eieio();
625 	par->cmap_regs[TVPADDRW] = TVPIRPPD;		eieio();
626 	par->cmap_regs[TVPIDATA] = init->pclk_m;	eieio();
627 	par->cmap_regs[TVPADDRW] = TVPIRPPD;		eieio();
628 	par->cmap_regs[TVPIDATA] = init->pclk_n;	eieio();
629 	par->cmap_regs[TVPADDRW] = TVPIRPPD;		eieio();
630 	par->cmap_regs[TVPIDATA] = init->pclk_p;	eieio();
631 
632 	par->cmap_regs[TVPADDRW] = TVPIRTCC;		eieio();
633 	par->cmap_regs[TVPIDATA] = tcc;			eieio();
634 	par->cmap_regs[TVPADDRW] = TVPIRMXC;		eieio();
635 	par->cmap_regs[TVPIDATA] = mxc;			eieio();
636 	par->cmap_regs[TVPADDRW] = TVPIRMIC;		eieio();
637 	par->cmap_regs[TVPIDATA] = mic;			eieio();
638 
639 	par->cmap_regs[TVPADDRW] = TVPIRPLA;		eieio();
640 	par->cmap_regs[TVPIDATA] = 0x00;		eieio();
641 	par->cmap_regs[TVPADDRW] = TVPIRLPD;		eieio();
642 	par->cmap_regs[TVPIDATA] = lckl_n;		eieio();
643 
644 	par->cmap_regs[TVPADDRW] = TVPIRPLA;		eieio();
645 	par->cmap_regs[TVPIDATA] = 0x15;		eieio();
646 	par->cmap_regs[TVPADDRW] = TVPIRMLC;		eieio();
647 	par->cmap_regs[TVPIDATA] = mlc;			eieio();
648 
649 	par->cmap_regs[TVPADDRW] = TVPIRPLA;		eieio();
650 	par->cmap_regs[TVPIDATA] = 0x2a;		eieio();
651 	par->cmap_regs[TVPADDRW] = TVPIRLPD;		eieio();
652 	par->cmap_regs[TVPIDATA] = lckl_p;		eieio();
653 }
654 
655 static void
656 set_imstt_regvals (struct fb_info *info, u_int bpp)
657 {
658 	struct imstt_par *par = info->par;
659 	struct imstt_regvals *init = &par->init;
660 	__u32 ctl, pitch, byteswap, scr;
661 
662 	if (par->ramdac == IBM)
663 		set_imstt_regvals_ibm(par, bpp);
664 	else
665 		set_imstt_regvals_tvp(par, bpp);
666 
667   /*
668    * From what I (jsk) can gather poking around with MacsBug,
669    * bits 8 and 9 in the SCR register control endianness
670    * correction (byte swapping).  These bits must be set according
671    * to the color depth as follows:
672    *     Color depth    Bit 9   Bit 8
673    *     ==========     =====   =====
674    *        8bpp          0       0
675    *       16bpp          0       1
676    *       32bpp          1       1
677    */
678 	switch (bpp) {
679 		default:
680 		case 8:
681 			ctl = 0x17b1;
682 			pitch = init->pitch >> 2;
683 			byteswap = 0x000;
684 			break;
685 		case 16:
686 			ctl = 0x17b3;
687 			pitch = init->pitch >> 1;
688 			byteswap = 0x100;
689 			break;
690 		case 24:
691 			ctl = 0x17b9;
692 			pitch = init->pitch - (init->pitch >> 2);
693 			byteswap = 0x200;
694 			break;
695 		case 32:
696 			ctl = 0x17b5;
697 			pitch = init->pitch;
698 			byteswap = 0x300;
699 			break;
700 	}
701 	if (par->ramdac == TVP)
702 		ctl -= 0x30;
703 
704 	write_reg_le32(par->dc_regs, HES, init->hes);
705 	write_reg_le32(par->dc_regs, HEB, init->heb);
706 	write_reg_le32(par->dc_regs, HSB, init->hsb);
707 	write_reg_le32(par->dc_regs, HT, init->ht);
708 	write_reg_le32(par->dc_regs, VES, init->ves);
709 	write_reg_le32(par->dc_regs, VEB, init->veb);
710 	write_reg_le32(par->dc_regs, VSB, init->vsb);
711 	write_reg_le32(par->dc_regs, VT, init->vt);
712 	write_reg_le32(par->dc_regs, VIL, init->vil);
713 	write_reg_le32(par->dc_regs, HCIV, 1);
714 	write_reg_le32(par->dc_regs, VCIV, 1);
715 	write_reg_le32(par->dc_regs, TCDR, 4);
716 	write_reg_le32(par->dc_regs, RRCIV, 1);
717 	write_reg_le32(par->dc_regs, RRSC, 0x980);
718 	write_reg_le32(par->dc_regs, RRCR, 0x11);
719 
720 	if (par->ramdac == IBM) {
721 		write_reg_le32(par->dc_regs, HRIR, 0x0100);
722 		write_reg_le32(par->dc_regs, CMR, 0x00ff);
723 		write_reg_le32(par->dc_regs, SRGCTL, 0x0073);
724 	} else {
725 		write_reg_le32(par->dc_regs, HRIR, 0x0200);
726 		write_reg_le32(par->dc_regs, CMR, 0x01ff);
727 		write_reg_le32(par->dc_regs, SRGCTL, 0x0003);
728 	}
729 
730 	switch (info->fix.smem_len) {
731 		case 0x200000:
732 			scr = 0x059d | byteswap;
733 			break;
734 		/* case 0x400000:
735 		   case 0x800000: */
736 		default:
737 			pitch >>= 1;
738 			scr = 0x150dd | byteswap;
739 			break;
740 	}
741 
742 	write_reg_le32(par->dc_regs, SCR, scr);
743 	write_reg_le32(par->dc_regs, SPR, pitch);
744 	write_reg_le32(par->dc_regs, STGCTL, ctl);
745 }
746 
747 static inline void
748 set_offset (struct fb_var_screeninfo *var, struct fb_info *info)
749 {
750 	struct imstt_par *par = info->par;
751 	__u32 off = var->yoffset * (info->fix.line_length >> 3)
752 		    + ((var->xoffset * (info->var.bits_per_pixel >> 3)) >> 3);
753 	write_reg_le32(par->dc_regs, SSR, off);
754 }
755 
756 static inline void
757 set_555 (struct imstt_par *par)
758 {
759 	if (par->ramdac == IBM) {
760 		par->cmap_regs[PIDXHI] = 0;		eieio();
761 		par->cmap_regs[PIDXLO] = BPP16;		eieio();
762 		par->cmap_regs[PIDXDATA] = 0x01;	eieio();
763 	} else {
764 		par->cmap_regs[TVPADDRW] = TVPIRTCC;	eieio();
765 		par->cmap_regs[TVPIDATA] = 0x44;	eieio();
766 	}
767 }
768 
769 static inline void
770 set_565 (struct imstt_par *par)
771 {
772 	if (par->ramdac == IBM) {
773 		par->cmap_regs[PIDXHI] = 0;		eieio();
774 		par->cmap_regs[PIDXLO] = BPP16;		eieio();
775 		par->cmap_regs[PIDXDATA] = 0x03;	eieio();
776 	} else {
777 		par->cmap_regs[TVPADDRW] = TVPIRTCC;	eieio();
778 		par->cmap_regs[TVPIDATA] = 0x45;	eieio();
779 	}
780 }
781 
782 static int
783 imsttfb_check_var(struct fb_var_screeninfo *var, struct fb_info *info)
784 {
785 	if ((var->bits_per_pixel != 8 && var->bits_per_pixel != 16
786 	    && var->bits_per_pixel != 24 && var->bits_per_pixel != 32)
787 	    || var->xres_virtual < var->xres || var->yres_virtual < var->yres
788 	    || var->nonstd
789 	    || (var->vmode & FB_VMODE_MASK) != FB_VMODE_NONINTERLACED)
790 		return -EINVAL;
791 
792 	if ((var->xres * var->yres) * (var->bits_per_pixel >> 3) > info->fix.smem_len
793 	    || (var->xres_virtual * var->yres_virtual) * (var->bits_per_pixel >> 3) > info->fix.smem_len)
794 		return -EINVAL;
795 
796 	switch (var->bits_per_pixel) {
797 		case 8:
798 			var->red.offset = 0;
799 			var->red.length = 8;
800 			var->green.offset = 0;
801 			var->green.length = 8;
802 			var->blue.offset = 0;
803 			var->blue.length = 8;
804 			var->transp.offset = 0;
805 			var->transp.length = 0;
806 			break;
807 		case 16:	/* RGB 555 or 565 */
808 			if (var->green.length != 6)
809 				var->red.offset = 10;
810 			var->red.length = 5;
811 			var->green.offset = 5;
812 			if (var->green.length != 6)
813 				var->green.length = 5;
814 			var->blue.offset = 0;
815 			var->blue.length = 5;
816 			var->transp.offset = 0;
817 			var->transp.length = 0;
818 			break;
819 		case 24:	/* RGB 888 */
820 			var->red.offset = 16;
821 			var->red.length = 8;
822 			var->green.offset = 8;
823 			var->green.length = 8;
824 			var->blue.offset = 0;
825 			var->blue.length = 8;
826 			var->transp.offset = 0;
827 			var->transp.length = 0;
828 			break;
829 		case 32:	/* RGBA 8888 */
830 			var->red.offset = 16;
831 			var->red.length = 8;
832 			var->green.offset = 8;
833 			var->green.length = 8;
834 			var->blue.offset = 0;
835 			var->blue.length = 8;
836 			var->transp.offset = 24;
837 			var->transp.length = 8;
838 			break;
839 	}
840 
841 	if (var->yres == var->yres_virtual) {
842 		__u32 vram = (info->fix.smem_len - (PAGE_SIZE << 2));
843 		var->yres_virtual = ((vram << 3) / var->bits_per_pixel) / var->xres_virtual;
844 		if (var->yres_virtual < var->yres)
845 			var->yres_virtual = var->yres;
846 	}
847 
848 	var->red.msb_right = 0;
849 	var->green.msb_right = 0;
850 	var->blue.msb_right = 0;
851 	var->transp.msb_right = 0;
852 	var->height = -1;
853 	var->width = -1;
854 	var->vmode = FB_VMODE_NONINTERLACED;
855 	var->left_margin = var->right_margin = 16;
856 	var->upper_margin = var->lower_margin = 16;
857 	var->hsync_len = var->vsync_len = 8;
858 	return 0;
859 }
860 
861 static int
862 imsttfb_set_par(struct fb_info *info)
863 {
864 	struct imstt_par *par = info->par;
865 
866 	if (!compute_imstt_regvals(par, info->var.xres, info->var.yres))
867 		return -EINVAL;
868 
869 	if (info->var.green.length == 6)
870 		set_565(par);
871 	else
872 		set_555(par);
873 	set_imstt_regvals(info, info->var.bits_per_pixel);
874 	info->var.pixclock = 1000000 / getclkMHz(par);
875 	return 0;
876 }
877 
878 static int
879 imsttfb_setcolreg (u_int regno, u_int red, u_int green, u_int blue,
880 		   u_int transp, struct fb_info *info)
881 {
882 	struct imstt_par *par = info->par;
883 	u_int bpp = info->var.bits_per_pixel;
884 
885 	if (regno > 255)
886 		return 1;
887 
888 	red >>= 8;
889 	green >>= 8;
890 	blue >>= 8;
891 
892 	/* PADDRW/PDATA are the same as TVPPADDRW/TVPPDATA */
893 	if (0 && bpp == 16)	/* screws up X */
894 		par->cmap_regs[PADDRW] = regno << 3;
895 	else
896 		par->cmap_regs[PADDRW] = regno;
897 	eieio();
898 
899 	par->cmap_regs[PDATA] = red;	eieio();
900 	par->cmap_regs[PDATA] = green;	eieio();
901 	par->cmap_regs[PDATA] = blue;	eieio();
902 
903 	if (regno < 16)
904 		switch (bpp) {
905 			case 16:
906 				par->palette[regno] =
907 					(regno << (info->var.green.length ==
908 					5 ? 10 : 11)) | (regno << 5) | regno;
909 				break;
910 			case 24:
911 				par->palette[regno] =
912 					(regno << 16) | (regno << 8) | regno;
913 				break;
914 			case 32: {
915 				int i = (regno << 8) | regno;
916 				par->palette[regno] = (i << 16) |i;
917 				break;
918 			}
919 		}
920 	return 0;
921 }
922 
923 static int
924 imsttfb_pan_display(struct fb_var_screeninfo *var, struct fb_info *info)
925 {
926 	if (var->xoffset + info->var.xres > info->var.xres_virtual
927 	    || var->yoffset + info->var.yres > info->var.yres_virtual)
928 		return -EINVAL;
929 
930 	info->var.xoffset = var->xoffset;
931 	info->var.yoffset = var->yoffset;
932 	set_offset(var, info);
933 	return 0;
934 }
935 
936 static int
937 imsttfb_blank(int blank, struct fb_info *info)
938 {
939 	struct imstt_par *par = info->par;
940 	__u32 ctrl;
941 
942 	ctrl = read_reg_le32(par->dc_regs, STGCTL);
943 	if (blank > 0) {
944 		switch (blank) {
945 		case FB_BLANK_NORMAL:
946 		case FB_BLANK_POWERDOWN:
947 			ctrl &= ~0x00000380;
948 			if (par->ramdac == IBM) {
949 				par->cmap_regs[PIDXHI] = 0;		eieio();
950 				par->cmap_regs[PIDXLO] = MISCTL2;	eieio();
951 				par->cmap_regs[PIDXDATA] = 0x55;	eieio();
952 				par->cmap_regs[PIDXLO] = MISCTL1;	eieio();
953 				par->cmap_regs[PIDXDATA] = 0x11;	eieio();
954 				par->cmap_regs[PIDXLO] = SYNCCTL;	eieio();
955 				par->cmap_regs[PIDXDATA] = 0x0f;	eieio();
956 				par->cmap_regs[PIDXLO] = PWRMNGMT;	eieio();
957 				par->cmap_regs[PIDXDATA] = 0x1f;	eieio();
958 				par->cmap_regs[PIDXLO] = CLKCTL;	eieio();
959 				par->cmap_regs[PIDXDATA] = 0xc0;
960 			}
961 			break;
962 		case FB_BLANK_VSYNC_SUSPEND:
963 			ctrl &= ~0x00000020;
964 			break;
965 		case FB_BLANK_HSYNC_SUSPEND:
966 			ctrl &= ~0x00000010;
967 			break;
968 		}
969 	} else {
970 		if (par->ramdac == IBM) {
971 			ctrl |= 0x000017b0;
972 			par->cmap_regs[PIDXHI] = 0;		eieio();
973 			par->cmap_regs[PIDXLO] = CLKCTL;	eieio();
974 			par->cmap_regs[PIDXDATA] = 0x01;	eieio();
975 			par->cmap_regs[PIDXLO] = PWRMNGMT;	eieio();
976 			par->cmap_regs[PIDXDATA] = 0x00;	eieio();
977 			par->cmap_regs[PIDXLO] = SYNCCTL;	eieio();
978 			par->cmap_regs[PIDXDATA] = 0x00;	eieio();
979 			par->cmap_regs[PIDXLO] = MISCTL1;	eieio();
980 			par->cmap_regs[PIDXDATA] = 0x01;	eieio();
981 			par->cmap_regs[PIDXLO] = MISCTL2;	eieio();
982 			par->cmap_regs[PIDXDATA] = 0x45;	eieio();
983 		} else
984 			ctrl |= 0x00001780;
985 	}
986 	write_reg_le32(par->dc_regs, STGCTL, ctrl);
987 	return 0;
988 }
989 
990 static void
991 imsttfb_fillrect(struct fb_info *info, const struct fb_fillrect *rect)
992 {
993 	struct imstt_par *par = info->par;
994 	__u32 Bpp, line_pitch, bgc, dx, dy, width, height;
995 
996 	bgc = rect->color;
997 	bgc |= (bgc << 8);
998 	bgc |= (bgc << 16);
999 
1000 	Bpp = info->var.bits_per_pixel >> 3,
1001 	line_pitch = info->fix.line_length;
1002 
1003 	dy = rect->dy * line_pitch;
1004 	dx = rect->dx * Bpp;
1005 	height = rect->height;
1006 	height--;
1007 	width = rect->width * Bpp;
1008 	width--;
1009 
1010 	if (rect->rop == ROP_COPY) {
1011 		while(read_reg_le32(par->dc_regs, SSTATUS) & 0x80);
1012 		write_reg_le32(par->dc_regs, DSA, dy + dx);
1013 		write_reg_le32(par->dc_regs, CNT, (height << 16) | width);
1014 		write_reg_le32(par->dc_regs, DP_OCTL, line_pitch);
1015 		write_reg_le32(par->dc_regs, BI, 0xffffffff);
1016 		write_reg_le32(par->dc_regs, MBC, 0xffffffff);
1017 		write_reg_le32(par->dc_regs, CLR, bgc);
1018 		write_reg_le32(par->dc_regs, BLTCTL, 0x840); /* 0x200000 */
1019 		while(read_reg_le32(par->dc_regs, SSTATUS) & 0x80);
1020 		while(read_reg_le32(par->dc_regs, SSTATUS) & 0x40);
1021 	} else {
1022 		while(read_reg_le32(par->dc_regs, SSTATUS) & 0x80);
1023 		write_reg_le32(par->dc_regs, DSA, dy + dx);
1024 		write_reg_le32(par->dc_regs, S1SA, dy + dx);
1025 		write_reg_le32(par->dc_regs, CNT, (height << 16) | width);
1026 		write_reg_le32(par->dc_regs, DP_OCTL, line_pitch);
1027 		write_reg_le32(par->dc_regs, SP, line_pitch);
1028 		write_reg_le32(par->dc_regs, BLTCTL, 0x40005);
1029 		while(read_reg_le32(par->dc_regs, SSTATUS) & 0x80);
1030 		while(read_reg_le32(par->dc_regs, SSTATUS) & 0x40);
1031 	}
1032 }
1033 
1034 static void
1035 imsttfb_copyarea(struct fb_info *info, const struct fb_copyarea *area)
1036 {
1037 	struct imstt_par *par = info->par;
1038 	__u32 Bpp, line_pitch, fb_offset_old, fb_offset_new, sp, dp_octl;
1039  	__u32 cnt, bltctl, sx, sy, dx, dy, height, width;
1040 
1041 	Bpp = info->var.bits_per_pixel >> 3,
1042 
1043 	sx = area->sx * Bpp;
1044 	sy = area->sy;
1045 	dx = area->dx * Bpp;
1046 	dy = area->dy;
1047 	height = area->height;
1048 	height--;
1049 	width = area->width * Bpp;
1050 	width--;
1051 
1052 	line_pitch = info->fix.line_length;
1053 	bltctl = 0x05;
1054 	sp = line_pitch << 16;
1055 	cnt = height << 16;
1056 
1057 	if (sy < dy) {
1058 		sy += height;
1059 		dy += height;
1060 		sp |= -(line_pitch) & 0xffff;
1061 		dp_octl = -(line_pitch) & 0xffff;
1062 	} else {
1063 		sp |= line_pitch;
1064 		dp_octl = line_pitch;
1065 	}
1066 	if (sx < dx) {
1067 		sx += width;
1068 		dx += width;
1069 		bltctl |= 0x80;
1070 		cnt |= -(width) & 0xffff;
1071 	} else {
1072 		cnt |= width;
1073 	}
1074 	fb_offset_old = sy * line_pitch + sx;
1075 	fb_offset_new = dy * line_pitch + dx;
1076 
1077 	while(read_reg_le32(par->dc_regs, SSTATUS) & 0x80);
1078 	write_reg_le32(par->dc_regs, S1SA, fb_offset_old);
1079 	write_reg_le32(par->dc_regs, SP, sp);
1080 	write_reg_le32(par->dc_regs, DSA, fb_offset_new);
1081 	write_reg_le32(par->dc_regs, CNT, cnt);
1082 	write_reg_le32(par->dc_regs, DP_OCTL, dp_octl);
1083 	write_reg_le32(par->dc_regs, BLTCTL, bltctl);
1084 	while(read_reg_le32(par->dc_regs, SSTATUS) & 0x80);
1085 	while(read_reg_le32(par->dc_regs, SSTATUS) & 0x40);
1086 }
1087 
1088 #if 0
1089 static int
1090 imsttfb_load_cursor_image(struct imstt_par *par, int width, int height, __u8 fgc)
1091 {
1092 	u_int x, y;
1093 
1094 	if (width > 32 || height > 32)
1095 		return -EINVAL;
1096 
1097 	if (par->ramdac == IBM) {
1098 		par->cmap_regs[PIDXHI] = 1;	eieio();
1099 		for (x = 0; x < 0x100; x++) {
1100 			par->cmap_regs[PIDXLO] = x;		eieio();
1101 			par->cmap_regs[PIDXDATA] = 0x00;	eieio();
1102 		}
1103 		par->cmap_regs[PIDXHI] = 1;	eieio();
1104 		for (y = 0; y < height; y++)
1105 			for (x = 0; x < width >> 2; x++) {
1106 				par->cmap_regs[PIDXLO] = x + y * 8;	eieio();
1107 				par->cmap_regs[PIDXDATA] = 0xff;	eieio();
1108 			}
1109 		par->cmap_regs[PIDXHI] = 0;		eieio();
1110 		par->cmap_regs[PIDXLO] = CURS1R;	eieio();
1111 		par->cmap_regs[PIDXDATA] = fgc;		eieio();
1112 		par->cmap_regs[PIDXLO] = CURS1G;	eieio();
1113 		par->cmap_regs[PIDXDATA] = fgc;		eieio();
1114 		par->cmap_regs[PIDXLO] = CURS1B;	eieio();
1115 		par->cmap_regs[PIDXDATA] = fgc;		eieio();
1116 		par->cmap_regs[PIDXLO] = CURS2R;	eieio();
1117 		par->cmap_regs[PIDXDATA] = fgc;		eieio();
1118 		par->cmap_regs[PIDXLO] = CURS2G;	eieio();
1119 		par->cmap_regs[PIDXDATA] = fgc;		eieio();
1120 		par->cmap_regs[PIDXLO] = CURS2B;	eieio();
1121 		par->cmap_regs[PIDXDATA] = fgc;		eieio();
1122 		par->cmap_regs[PIDXLO] = CURS3R;	eieio();
1123 		par->cmap_regs[PIDXDATA] = fgc;		eieio();
1124 		par->cmap_regs[PIDXLO] = CURS3G;	eieio();
1125 		par->cmap_regs[PIDXDATA] = fgc;		eieio();
1126 		par->cmap_regs[PIDXLO] = CURS3B;	eieio();
1127 		par->cmap_regs[PIDXDATA] = fgc;		eieio();
1128 	} else {
1129 		par->cmap_regs[TVPADDRW] = TVPIRICC;	eieio();
1130 		par->cmap_regs[TVPIDATA] &= 0x03;	eieio();
1131 		par->cmap_regs[TVPADDRW] = 0;		eieio();
1132 		for (x = 0; x < 0x200; x++) {
1133 			par->cmap_regs[TVPCRDAT] = 0x00;	eieio();
1134 		}
1135 		for (x = 0; x < 0x200; x++) {
1136 			par->cmap_regs[TVPCRDAT] = 0xff;	eieio();
1137 		}
1138 		par->cmap_regs[TVPADDRW] = TVPIRICC;	eieio();
1139 		par->cmap_regs[TVPIDATA] &= 0x03;	eieio();
1140 		for (y = 0; y < height; y++)
1141 			for (x = 0; x < width >> 3; x++) {
1142 				par->cmap_regs[TVPADDRW] = x + y * 8;	eieio();
1143 				par->cmap_regs[TVPCRDAT] = 0xff;		eieio();
1144 			}
1145 		par->cmap_regs[TVPADDRW] = TVPIRICC;	eieio();
1146 		par->cmap_regs[TVPIDATA] |= 0x08;	eieio();
1147 		for (y = 0; y < height; y++)
1148 			for (x = 0; x < width >> 3; x++) {
1149 				par->cmap_regs[TVPADDRW] = x + y * 8;	eieio();
1150 				par->cmap_regs[TVPCRDAT] = 0xff;		eieio();
1151 			}
1152 		par->cmap_regs[TVPCADRW] = 0x00;	eieio();
1153 		for (x = 0; x < 12; x++) {
1154 			par->cmap_regs[TVPCDATA] = fgc;
1155 			eieio();
1156 		}
1157 	}
1158 	return 1;
1159 }
1160 
1161 static void
1162 imstt_set_cursor(struct imstt_par *par, struct fb_image *d, int on)
1163 {
1164 	if (par->ramdac == IBM) {
1165 		par->cmap_regs[PIDXHI] = 0;	eieio();
1166 		if (!on) {
1167 			par->cmap_regs[PIDXLO] = CURSCTL;	eieio();
1168 			par->cmap_regs[PIDXDATA] = 0x00;	eieio();
1169 		} else {
1170 			par->cmap_regs[PIDXLO] = CURSXHI;	eieio();
1171 			par->cmap_regs[PIDXDATA] = d->dx >> 8;	eieio();
1172 			par->cmap_regs[PIDXLO] = CURSXLO;	eieio();
1173 			par->cmap_regs[PIDXDATA] = d->dx & 0xff;eieio();
1174 			par->cmap_regs[PIDXLO] = CURSYHI;	eieio();
1175 			par->cmap_regs[PIDXDATA] = d->dy >> 8;	eieio();
1176 			par->cmap_regs[PIDXLO] = CURSYLO;	eieio();
1177 			par->cmap_regs[PIDXDATA] = d->dy & 0xff;eieio();
1178 			par->cmap_regs[PIDXLO] = CURSCTL;	eieio();
1179 			par->cmap_regs[PIDXDATA] = 0x02;	eieio();
1180 		}
1181 	} else {
1182 		if (!on) {
1183 			par->cmap_regs[TVPADDRW] = TVPIRICC;	eieio();
1184 			par->cmap_regs[TVPIDATA] = 0x00;	eieio();
1185 		} else {
1186 			__u16 x = d->dx + 0x40, y = d->dy + 0x40;
1187 
1188 			par->cmap_regs[TVPCXPOH] = x >> 8;	eieio();
1189 			par->cmap_regs[TVPCXPOL] = x & 0xff;	eieio();
1190 			par->cmap_regs[TVPCYPOH] = y >> 8;	eieio();
1191 			par->cmap_regs[TVPCYPOL] = y & 0xff;	eieio();
1192 			par->cmap_regs[TVPADDRW] = TVPIRICC;	eieio();
1193 			par->cmap_regs[TVPIDATA] = 0x02;	eieio();
1194 		}
1195 	}
1196 }
1197 
1198 static int
1199 imsttfb_cursor(struct fb_info *info, struct fb_cursor *cursor)
1200 {
1201 	struct imstt_par *par = info->par;
1202         u32 flags = cursor->set, fg, bg, xx, yy;
1203 
1204 	if (cursor->dest == NULL && cursor->rop == ROP_XOR)
1205 		return 1;
1206 
1207 	imstt_set_cursor(info, cursor, 0);
1208 
1209 	if (flags & FB_CUR_SETPOS) {
1210 		xx = cursor->image.dx - info->var.xoffset;
1211 		yy = cursor->image.dy - info->var.yoffset;
1212 	}
1213 
1214 	if (flags & FB_CUR_SETSIZE) {
1215         }
1216 
1217         if (flags & (FB_CUR_SETSHAPE | FB_CUR_SETCMAP)) {
1218                 int fg_idx = cursor->image.fg_color;
1219                 int width = (cursor->image.width+7)/8;
1220                 u8 *dat = (u8 *) cursor->image.data;
1221                 u8 *dst = (u8 *) cursor->dest;
1222                 u8 *msk = (u8 *) cursor->mask;
1223 
1224                 switch (cursor->rop) {
1225                 case ROP_XOR:
1226                         for (i = 0; i < cursor->image.height; i++) {
1227                                 for (j = 0; j < width; j++) {
1228                                         d_idx = i * MAX_CURS/8  + j;
1229                                         data[d_idx] =  byte_rev[dat[s_idx] ^
1230                                                                 dst[s_idx]];
1231                                         mask[d_idx] = byte_rev[msk[s_idx]];
1232                                         s_idx++;
1233                                 }
1234                         }
1235                         break;
1236                 case ROP_COPY:
1237                 default:
1238                         for (i = 0; i < cursor->image.height; i++) {
1239                                 for (j = 0; j < width; j++) {
1240                                         d_idx = i * MAX_CURS/8 + j;
1241                                         data[d_idx] = byte_rev[dat[s_idx]];
1242                                         mask[d_idx] = byte_rev[msk[s_idx]];
1243                                         s_idx++;
1244                                 }
1245 			}
1246 			break;
1247 		}
1248 
1249 		fg = ((info->cmap.red[fg_idx] & 0xf8) << 7) |
1250                      ((info->cmap.green[fg_idx] & 0xf8) << 2) |
1251                      ((info->cmap.blue[fg_idx] & 0xf8) >> 3) | 1 << 15;
1252 
1253 		imsttfb_load_cursor_image(par, xx, yy, fgc);
1254 	}
1255 	if (cursor->enable)
1256 		imstt_set_cursor(info, cursor, 1);
1257 	return 0;
1258 }
1259 #endif
1260 
1261 #define FBIMSTT_SETREG		0x545401
1262 #define FBIMSTT_GETREG		0x545402
1263 #define FBIMSTT_SETCMAPREG	0x545403
1264 #define FBIMSTT_GETCMAPREG	0x545404
1265 #define FBIMSTT_SETIDXREG	0x545405
1266 #define FBIMSTT_GETIDXREG	0x545406
1267 
1268 static int
1269 imsttfb_ioctl(struct fb_info *info, u_int cmd, u_long arg)
1270 {
1271 	struct imstt_par *par = info->par;
1272 	void __user *argp = (void __user *)arg;
1273 	__u32 reg[2];
1274 	__u8 idx[2];
1275 
1276 	switch (cmd) {
1277 		case FBIMSTT_SETREG:
1278 			if (copy_from_user(reg, argp, 8) || reg[0] > (0x1000 - sizeof(reg[0])) / sizeof(reg[0]))
1279 				return -EFAULT;
1280 			write_reg_le32(par->dc_regs, reg[0], reg[1]);
1281 			return 0;
1282 		case FBIMSTT_GETREG:
1283 			if (copy_from_user(reg, argp, 4) || reg[0] > (0x1000 - sizeof(reg[0])) / sizeof(reg[0]))
1284 				return -EFAULT;
1285 			reg[1] = read_reg_le32(par->dc_regs, reg[0]);
1286 			if (copy_to_user((void __user *)(arg + 4), &reg[1], 4))
1287 				return -EFAULT;
1288 			return 0;
1289 		case FBIMSTT_SETCMAPREG:
1290 			if (copy_from_user(reg, argp, 8) || reg[0] > (0x1000 - sizeof(reg[0])) / sizeof(reg[0]))
1291 				return -EFAULT;
1292 			write_reg_le32(((u_int __iomem *)par->cmap_regs), reg[0], reg[1]);
1293 			return 0;
1294 		case FBIMSTT_GETCMAPREG:
1295 			if (copy_from_user(reg, argp, 4) || reg[0] > (0x1000 - sizeof(reg[0])) / sizeof(reg[0]))
1296 				return -EFAULT;
1297 			reg[1] = read_reg_le32(((u_int __iomem *)par->cmap_regs), reg[0]);
1298 			if (copy_to_user((void __user *)(arg + 4), &reg[1], 4))
1299 				return -EFAULT;
1300 			return 0;
1301 		case FBIMSTT_SETIDXREG:
1302 			if (copy_from_user(idx, argp, 2))
1303 				return -EFAULT;
1304 			par->cmap_regs[PIDXHI] = 0;		eieio();
1305 			par->cmap_regs[PIDXLO] = idx[0];	eieio();
1306 			par->cmap_regs[PIDXDATA] = idx[1];	eieio();
1307 			return 0;
1308 		case FBIMSTT_GETIDXREG:
1309 			if (copy_from_user(idx, argp, 1))
1310 				return -EFAULT;
1311 			par->cmap_regs[PIDXHI] = 0;		eieio();
1312 			par->cmap_regs[PIDXLO] = idx[0];	eieio();
1313 			idx[1] = par->cmap_regs[PIDXDATA];
1314 			if (copy_to_user((void __user *)(arg + 1), &idx[1], 1))
1315 				return -EFAULT;
1316 			return 0;
1317 		default:
1318 			return -ENOIOCTLCMD;
1319 	}
1320 }
1321 
1322 static struct pci_device_id imsttfb_pci_tbl[] = {
1323 	{ PCI_VENDOR_ID_IMS, PCI_DEVICE_ID_IMS_TT128,
1324 	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, IBM },
1325 	{ PCI_VENDOR_ID_IMS, PCI_DEVICE_ID_IMS_TT3D,
1326 	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, TVP },
1327 	{ 0, }
1328 };
1329 
1330 MODULE_DEVICE_TABLE(pci, imsttfb_pci_tbl);
1331 
1332 static struct pci_driver imsttfb_pci_driver = {
1333 	.name =		"imsttfb",
1334 	.id_table =	imsttfb_pci_tbl,
1335 	.probe =	imsttfb_probe,
1336 	.remove =	imsttfb_remove,
1337 };
1338 
1339 static struct fb_ops imsttfb_ops = {
1340 	.owner 		= THIS_MODULE,
1341 	.fb_check_var	= imsttfb_check_var,
1342 	.fb_set_par 	= imsttfb_set_par,
1343 	.fb_setcolreg 	= imsttfb_setcolreg,
1344 	.fb_pan_display = imsttfb_pan_display,
1345 	.fb_blank 	= imsttfb_blank,
1346 	.fb_fillrect	= imsttfb_fillrect,
1347 	.fb_copyarea	= imsttfb_copyarea,
1348 	.fb_imageblit	= cfb_imageblit,
1349 	.fb_ioctl 	= imsttfb_ioctl,
1350 };
1351 
1352 static void init_imstt(struct fb_info *info)
1353 {
1354 	struct imstt_par *par = info->par;
1355 	__u32 i, tmp, *ip, *end;
1356 
1357 	tmp = read_reg_le32(par->dc_regs, PRC);
1358 	if (par->ramdac == IBM)
1359 		info->fix.smem_len = (tmp & 0x0004) ? 0x400000 : 0x200000;
1360 	else
1361 		info->fix.smem_len = 0x800000;
1362 
1363 	ip = (__u32 *)info->screen_base;
1364 	end = (__u32 *)(info->screen_base + info->fix.smem_len);
1365 	while (ip < end)
1366 		*ip++ = 0;
1367 
1368 	/* initialize the card */
1369 	tmp = read_reg_le32(par->dc_regs, STGCTL);
1370 	write_reg_le32(par->dc_regs, STGCTL, tmp & ~0x1);
1371 	write_reg_le32(par->dc_regs, SSR, 0);
1372 
1373 	/* set default values for DAC registers */
1374 	if (par->ramdac == IBM) {
1375 		par->cmap_regs[PPMASK] = 0xff;
1376 		eieio();
1377 		par->cmap_regs[PIDXHI] = 0;
1378 		eieio();
1379 		for (i = 0; i < ARRAY_SIZE(ibm_initregs); i++) {
1380 			par->cmap_regs[PIDXLO] = ibm_initregs[i].addr;
1381 			eieio();
1382 			par->cmap_regs[PIDXDATA] = ibm_initregs[i].value;
1383 			eieio();
1384 		}
1385 	} else {
1386 		for (i = 0; i < ARRAY_SIZE(tvp_initregs); i++) {
1387 			par->cmap_regs[TVPADDRW] = tvp_initregs[i].addr;
1388 			eieio();
1389 			par->cmap_regs[TVPIDATA] = tvp_initregs[i].value;
1390 			eieio();
1391 		}
1392 	}
1393 
1394 #if USE_NV_MODES && defined(CONFIG_PPC32)
1395 	{
1396 		int vmode = init_vmode, cmode = init_cmode;
1397 
1398 		if (vmode == -1) {
1399 			vmode = nvram_read_byte(NV_VMODE);
1400 			if (vmode <= 0 || vmode > VMODE_MAX)
1401 				vmode = VMODE_640_480_67;
1402 		}
1403 		if (cmode == -1) {
1404 			cmode = nvram_read_byte(NV_CMODE);
1405 			if (cmode < CMODE_8 || cmode > CMODE_32)
1406 				cmode = CMODE_8;
1407 		}
1408 		if (mac_vmode_to_var(vmode, cmode, &info->var)) {
1409 			info->var.xres = info->var.xres_virtual = INIT_XRES;
1410 			info->var.yres = info->var.yres_virtual = INIT_YRES;
1411 			info->var.bits_per_pixel = INIT_BPP;
1412 		}
1413 	}
1414 #else
1415 	info->var.xres = info->var.xres_virtual = INIT_XRES;
1416 	info->var.yres = info->var.yres_virtual = INIT_YRES;
1417 	info->var.bits_per_pixel = INIT_BPP;
1418 #endif
1419 
1420 	if ((info->var.xres * info->var.yres) * (info->var.bits_per_pixel >> 3) > info->fix.smem_len
1421 	    || !(compute_imstt_regvals(par, info->var.xres, info->var.yres))) {
1422 		printk("imsttfb: %ux%ux%u not supported\n", info->var.xres, info->var.yres, info->var.bits_per_pixel);
1423 		framebuffer_release(info);
1424 		return;
1425 	}
1426 
1427 	sprintf(info->fix.id, "IMS TT (%s)", par->ramdac == IBM ? "IBM" : "TVP");
1428 	info->fix.mmio_len = 0x1000;
1429 	info->fix.accel = FB_ACCEL_IMS_TWINTURBO;
1430 	info->fix.type = FB_TYPE_PACKED_PIXELS;
1431 	info->fix.visual = info->var.bits_per_pixel == 8 ? FB_VISUAL_PSEUDOCOLOR
1432 							: FB_VISUAL_DIRECTCOLOR;
1433 	info->fix.line_length = info->var.xres * (info->var.bits_per_pixel >> 3);
1434 	info->fix.xpanstep = 8;
1435 	info->fix.ypanstep = 1;
1436 	info->fix.ywrapstep = 0;
1437 
1438 	info->var.accel_flags = FB_ACCELF_TEXT;
1439 
1440 //	if (par->ramdac == IBM)
1441 //		imstt_cursor_init(info);
1442 	if (info->var.green.length == 6)
1443 		set_565(par);
1444 	else
1445 		set_555(par);
1446 	set_imstt_regvals(info, info->var.bits_per_pixel);
1447 
1448 	info->var.pixclock = 1000000 / getclkMHz(par);
1449 
1450 	info->fbops = &imsttfb_ops;
1451 	info->flags = FBINFO_DEFAULT |
1452                       FBINFO_HWACCEL_COPYAREA |
1453 	              FBINFO_HWACCEL_FILLRECT |
1454 	              FBINFO_HWACCEL_YPAN;
1455 
1456 	fb_alloc_cmap(&info->cmap, 0, 0);
1457 
1458 	if (register_framebuffer(info) < 0) {
1459 		framebuffer_release(info);
1460 		return;
1461 	}
1462 
1463 	tmp = (read_reg_le32(par->dc_regs, SSTATUS) & 0x0f00) >> 8;
1464 	fb_info(info, "%s frame buffer; %uMB vram; chip version %u\n",
1465 		info->fix.id, info->fix.smem_len >> 20, tmp);
1466 }
1467 
1468 static int imsttfb_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
1469 {
1470 	unsigned long addr, size;
1471 	struct imstt_par *par;
1472 	struct fb_info *info;
1473 	struct device_node *dp;
1474 
1475 	dp = pci_device_to_OF_node(pdev);
1476 	if(dp)
1477 		printk(KERN_INFO "%s: OF name %s\n",__func__, dp->name);
1478 	else if (IS_ENABLED(CONFIG_OF))
1479 		printk(KERN_ERR "imsttfb: no OF node for pci device\n");
1480 
1481 	info = framebuffer_alloc(sizeof(struct imstt_par), &pdev->dev);
1482 
1483 	if (!info) {
1484 		printk(KERN_ERR "imsttfb: Can't allocate memory\n");
1485 		return -ENOMEM;
1486 	}
1487 
1488 	par = info->par;
1489 
1490 	addr = pci_resource_start (pdev, 0);
1491 	size = pci_resource_len (pdev, 0);
1492 
1493 	if (!request_mem_region(addr, size, "imsttfb")) {
1494 		printk(KERN_ERR "imsttfb: Can't reserve memory region\n");
1495 		framebuffer_release(info);
1496 		return -ENODEV;
1497 	}
1498 
1499 	switch (pdev->device) {
1500 		case PCI_DEVICE_ID_IMS_TT128: /* IMS,tt128mbA */
1501 			par->ramdac = IBM;
1502 			if (dp && ((strcmp(dp->name, "IMS,tt128mb8") == 0) ||
1503 				   (strcmp(dp->name, "IMS,tt128mb8A") == 0)))
1504 				par->ramdac = TVP;
1505 			break;
1506 		case PCI_DEVICE_ID_IMS_TT3D:  /* IMS,tt3d */
1507 			par->ramdac = TVP;
1508 			break;
1509 		default:
1510 			printk(KERN_INFO "imsttfb: Device 0x%x unknown, "
1511 					 "contact maintainer.\n", pdev->device);
1512 			release_mem_region(addr, size);
1513 			framebuffer_release(info);
1514 			return -ENODEV;
1515 	}
1516 
1517 	info->fix.smem_start = addr;
1518 	info->screen_base = (__u8 *)ioremap(addr, par->ramdac == IBM ?
1519 					    0x400000 : 0x800000);
1520 	info->fix.mmio_start = addr + 0x800000;
1521 	par->dc_regs = ioremap(addr + 0x800000, 0x1000);
1522 	par->cmap_regs_phys = addr + 0x840000;
1523 	par->cmap_regs = (__u8 *)ioremap(addr + 0x840000, 0x1000);
1524 	info->pseudo_palette = par->palette;
1525 	init_imstt(info);
1526 
1527 	pci_set_drvdata(pdev, info);
1528 	return 0;
1529 }
1530 
1531 static void imsttfb_remove(struct pci_dev *pdev)
1532 {
1533 	struct fb_info *info = pci_get_drvdata(pdev);
1534 	struct imstt_par *par = info->par;
1535 	int size = pci_resource_len(pdev, 0);
1536 
1537 	unregister_framebuffer(info);
1538 	iounmap(par->cmap_regs);
1539 	iounmap(par->dc_regs);
1540 	iounmap(info->screen_base);
1541 	release_mem_region(info->fix.smem_start, size);
1542 	framebuffer_release(info);
1543 }
1544 
1545 #ifndef MODULE
1546 static int __init
1547 imsttfb_setup(char *options)
1548 {
1549 	char *this_opt;
1550 
1551 	if (!options || !*options)
1552 		return 0;
1553 
1554 	while ((this_opt = strsep(&options, ",")) != NULL) {
1555 		if (!strncmp(this_opt, "font:", 5)) {
1556 			char *p;
1557 			int i;
1558 
1559 			p = this_opt + 5;
1560 			for (i = 0; i < sizeof(fontname) - 1; i++)
1561 				if (!*p || *p == ' ' || *p == ',')
1562 					break;
1563 			memcpy(fontname, this_opt + 5, i);
1564 			fontname[i] = 0;
1565 		} else if (!strncmp(this_opt, "inverse", 7)) {
1566 			inverse = 1;
1567 			fb_invert_cmaps();
1568 		}
1569 #if defined(CONFIG_PPC)
1570 		else if (!strncmp(this_opt, "vmode:", 6)) {
1571 			int vmode = simple_strtoul(this_opt+6, NULL, 0);
1572 			if (vmode > 0 && vmode <= VMODE_MAX)
1573 				init_vmode = vmode;
1574 		} else if (!strncmp(this_opt, "cmode:", 6)) {
1575 			int cmode = simple_strtoul(this_opt+6, NULL, 0);
1576 			switch (cmode) {
1577 				case CMODE_8:
1578 				case 8:
1579 					init_cmode = CMODE_8;
1580 					break;
1581 				case CMODE_16:
1582 				case 15:
1583 				case 16:
1584 					init_cmode = CMODE_16;
1585 					break;
1586 				case CMODE_32:
1587 				case 24:
1588 				case 32:
1589 					init_cmode = CMODE_32;
1590 					break;
1591 			}
1592 		}
1593 #endif
1594 	}
1595 	return 0;
1596 }
1597 
1598 #endif /* MODULE */
1599 
1600 static int __init imsttfb_init(void)
1601 {
1602 #ifndef MODULE
1603 	char *option = NULL;
1604 
1605 	if (fb_get_options("imsttfb", &option))
1606 		return -ENODEV;
1607 
1608 	imsttfb_setup(option);
1609 #endif
1610 	return pci_register_driver(&imsttfb_pci_driver);
1611 }
1612 
1613 static void __exit imsttfb_exit(void)
1614 {
1615 	pci_unregister_driver(&imsttfb_pci_driver);
1616 }
1617 
1618 MODULE_LICENSE("GPL");
1619 
1620 module_init(imsttfb_init);
1621 module_exit(imsttfb_exit);
1622 
1623