1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/drivers/video/cyber2000fb.c 4 * 5 * Copyright (C) 1998-2002 Russell King 6 * 7 * MIPS and 50xx clock support 8 * Copyright (C) 2001 Bradley D. LaRonde <brad@ltc.com> 9 * 10 * 32 bit support, text color and panning fixes for modes != 8 bit 11 * Copyright (C) 2002 Denis Oliver Kropp <dok@directfb.org> 12 * 13 * Integraphics CyberPro 2000, 2010 and 5000 frame buffer device 14 * 15 * Based on cyberfb.c. 16 * 17 * Note that we now use the new fbcon fix, var and cmap scheme. We do 18 * still have to check which console is the currently displayed one 19 * however, especially for the colourmap stuff. 20 * 21 * We also use the new hotplug PCI subsystem. I'm not sure if there 22 * are any such cards, but I'm erring on the side of caution. We don't 23 * want to go pop just because someone does have one. 24 * 25 * Note that this doesn't work fully in the case of multiple CyberPro 26 * cards with grabbers. We currently can only attach to the first 27 * CyberPro card found. 28 * 29 * When we're in truecolour mode, we power down the LUT RAM as a power 30 * saving feature. Also, when we enter any of the powersaving modes 31 * (except soft blanking) we power down the RAMDACs. This saves about 32 * 1W, which is roughly 8% of the power consumption of a NetWinder 33 * (which, incidentally, is about the same saving as a 2.5in hard disk 34 * entering standby mode.) 35 */ 36 #include <linux/aperture.h> 37 #include <linux/module.h> 38 #include <linux/kernel.h> 39 #include <linux/errno.h> 40 #include <linux/string.h> 41 #include <linux/mm.h> 42 #include <linux/slab.h> 43 #include <linux/delay.h> 44 #include <linux/fb.h> 45 #include <linux/pci.h> 46 #include <linux/init.h> 47 #include <linux/io.h> 48 #include <linux/i2c.h> 49 #include <linux/i2c-algo-bit.h> 50 51 #ifdef __arm__ 52 #include <asm/mach-types.h> 53 #endif 54 55 #include "cyber2000fb.h" 56 57 struct cfb_info { 58 struct fb_info fb; 59 struct display_switch *dispsw; 60 unsigned char __iomem *region; 61 unsigned char __iomem *regs; 62 u_int id; 63 u_int irq; 64 int func_use_count; 65 u_long ref_ps; 66 67 /* 68 * Clock divisors 69 */ 70 u_int divisors[4]; 71 72 struct { 73 u8 red, green, blue; 74 } palette[NR_PALETTE]; 75 76 u_char mem_ctl1; 77 u_char mem_ctl2; 78 u_char mclk_mult; 79 u_char mclk_div; 80 /* 81 * RAMDAC control register is both of these or'ed together 82 */ 83 u_char ramdac_ctrl; 84 u_char ramdac_powerdown; 85 86 u32 pseudo_palette[16]; 87 88 spinlock_t reg_b0_lock; 89 90 #ifdef CONFIG_FB_CYBER2000_DDC 91 bool ddc_registered; 92 struct i2c_adapter ddc_adapter; 93 struct i2c_algo_bit_data ddc_algo; 94 #endif 95 96 #ifdef CONFIG_FB_CYBER2000_I2C 97 struct i2c_adapter i2c_adapter; 98 struct i2c_algo_bit_data i2c_algo; 99 #endif 100 }; 101 102 static char *default_font = "Acorn8x8"; 103 module_param(default_font, charp, 0); 104 MODULE_PARM_DESC(default_font, "Default font name"); 105 106 /* 107 * Our access methods. 108 */ 109 #define cyber2000fb_writel(val, reg, cfb) writel(val, (cfb)->regs + (reg)) 110 #define cyber2000fb_writew(val, reg, cfb) writew(val, (cfb)->regs + (reg)) 111 #define cyber2000fb_writeb(val, reg, cfb) writeb(val, (cfb)->regs + (reg)) 112 113 #define cyber2000fb_readb(reg, cfb) readb((cfb)->regs + (reg)) 114 115 static inline void 116 cyber2000_crtcw(unsigned int reg, unsigned int val, struct cfb_info *cfb) 117 { 118 cyber2000fb_writew((reg & 255) | val << 8, 0x3d4, cfb); 119 } 120 121 static inline void 122 cyber2000_grphw(unsigned int reg, unsigned int val, struct cfb_info *cfb) 123 { 124 cyber2000fb_writew((reg & 255) | val << 8, 0x3ce, cfb); 125 } 126 127 static inline unsigned int 128 cyber2000_grphr(unsigned int reg, struct cfb_info *cfb) 129 { 130 cyber2000fb_writeb(reg, 0x3ce, cfb); 131 return cyber2000fb_readb(0x3cf, cfb); 132 } 133 134 static inline void 135 cyber2000_attrw(unsigned int reg, unsigned int val, struct cfb_info *cfb) 136 { 137 cyber2000fb_readb(0x3da, cfb); 138 cyber2000fb_writeb(reg, 0x3c0, cfb); 139 cyber2000fb_readb(0x3c1, cfb); 140 cyber2000fb_writeb(val, 0x3c0, cfb); 141 } 142 143 static inline void 144 cyber2000_seqw(unsigned int reg, unsigned int val, struct cfb_info *cfb) 145 { 146 cyber2000fb_writew((reg & 255) | val << 8, 0x3c4, cfb); 147 } 148 149 /* -------------------- Hardware specific routines ------------------------- */ 150 151 /* 152 * Hardware Cyber2000 Acceleration 153 */ 154 static void 155 cyber2000fb_fillrect(struct fb_info *info, const struct fb_fillrect *rect) 156 { 157 struct cfb_info *cfb = container_of(info, struct cfb_info, fb); 158 unsigned long dst, col; 159 160 if (!(cfb->fb.var.accel_flags & FB_ACCELF_TEXT)) { 161 cfb_fillrect(info, rect); 162 return; 163 } 164 165 cyber2000fb_writeb(0, CO_REG_CONTROL, cfb); 166 cyber2000fb_writew(rect->width - 1, CO_REG_PIXWIDTH, cfb); 167 cyber2000fb_writew(rect->height - 1, CO_REG_PIXHEIGHT, cfb); 168 169 col = rect->color; 170 if (cfb->fb.var.bits_per_pixel > 8) 171 col = ((u32 *)cfb->fb.pseudo_palette)[col]; 172 cyber2000fb_writel(col, CO_REG_FGCOLOUR, cfb); 173 174 dst = rect->dx + rect->dy * cfb->fb.var.xres_virtual; 175 if (cfb->fb.var.bits_per_pixel == 24) { 176 cyber2000fb_writeb(dst, CO_REG_X_PHASE, cfb); 177 dst *= 3; 178 } 179 180 cyber2000fb_writel(dst, CO_REG_DEST_PTR, cfb); 181 cyber2000fb_writeb(CO_FG_MIX_SRC, CO_REG_FGMIX, cfb); 182 cyber2000fb_writew(CO_CMD_L_PATTERN_FGCOL, CO_REG_CMD_L, cfb); 183 cyber2000fb_writew(CO_CMD_H_BLITTER, CO_REG_CMD_H, cfb); 184 } 185 186 static void 187 cyber2000fb_copyarea(struct fb_info *info, const struct fb_copyarea *region) 188 { 189 struct cfb_info *cfb = container_of(info, struct cfb_info, fb); 190 unsigned int cmd = CO_CMD_L_PATTERN_FGCOL; 191 unsigned long src, dst; 192 193 if (!(cfb->fb.var.accel_flags & FB_ACCELF_TEXT)) { 194 cfb_copyarea(info, region); 195 return; 196 } 197 198 cyber2000fb_writeb(0, CO_REG_CONTROL, cfb); 199 cyber2000fb_writew(region->width - 1, CO_REG_PIXWIDTH, cfb); 200 cyber2000fb_writew(region->height - 1, CO_REG_PIXHEIGHT, cfb); 201 202 src = region->sx + region->sy * cfb->fb.var.xres_virtual; 203 dst = region->dx + region->dy * cfb->fb.var.xres_virtual; 204 205 if (region->sx < region->dx) { 206 src += region->width - 1; 207 dst += region->width - 1; 208 cmd |= CO_CMD_L_INC_LEFT; 209 } 210 211 if (region->sy < region->dy) { 212 src += (region->height - 1) * cfb->fb.var.xres_virtual; 213 dst += (region->height - 1) * cfb->fb.var.xres_virtual; 214 cmd |= CO_CMD_L_INC_UP; 215 } 216 217 if (cfb->fb.var.bits_per_pixel == 24) { 218 cyber2000fb_writeb(dst, CO_REG_X_PHASE, cfb); 219 src *= 3; 220 dst *= 3; 221 } 222 cyber2000fb_writel(src, CO_REG_SRC1_PTR, cfb); 223 cyber2000fb_writel(dst, CO_REG_DEST_PTR, cfb); 224 cyber2000fb_writew(CO_FG_MIX_SRC, CO_REG_FGMIX, cfb); 225 cyber2000fb_writew(cmd, CO_REG_CMD_L, cfb); 226 cyber2000fb_writew(CO_CMD_H_FGSRCMAP | CO_CMD_H_BLITTER, 227 CO_REG_CMD_H, cfb); 228 } 229 230 static void 231 cyber2000fb_imageblit(struct fb_info *info, const struct fb_image *image) 232 { 233 cfb_imageblit(info, image); 234 return; 235 } 236 237 static int cyber2000fb_sync(struct fb_info *info) 238 { 239 struct cfb_info *cfb = container_of(info, struct cfb_info, fb); 240 int count = 100000; 241 242 if (!(cfb->fb.var.accel_flags & FB_ACCELF_TEXT)) 243 return 0; 244 245 while (cyber2000fb_readb(CO_REG_CONTROL, cfb) & CO_CTRL_BUSY) { 246 if (!count--) { 247 debug_printf("accel_wait timed out\n"); 248 cyber2000fb_writeb(0, CO_REG_CONTROL, cfb); 249 break; 250 } 251 udelay(1); 252 } 253 return 0; 254 } 255 256 /* 257 * =========================================================================== 258 */ 259 260 static inline u32 convert_bitfield(u_int val, struct fb_bitfield *bf) 261 { 262 u_int mask = (1 << bf->length) - 1; 263 264 return (val >> (16 - bf->length) & mask) << bf->offset; 265 } 266 267 /* 268 * Set a single color register. Return != 0 for invalid regno. 269 */ 270 static int 271 cyber2000fb_setcolreg(u_int regno, u_int red, u_int green, u_int blue, 272 u_int transp, struct fb_info *info) 273 { 274 struct cfb_info *cfb = container_of(info, struct cfb_info, fb); 275 struct fb_var_screeninfo *var = &cfb->fb.var; 276 u32 pseudo_val; 277 int ret = 1; 278 279 switch (cfb->fb.fix.visual) { 280 default: 281 return 1; 282 283 /* 284 * Pseudocolour: 285 * 8 8 286 * pixel --/--+--/--> red lut --> red dac 287 * | 8 288 * +--/--> green lut --> green dac 289 * | 8 290 * +--/--> blue lut --> blue dac 291 */ 292 case FB_VISUAL_PSEUDOCOLOR: 293 if (regno >= NR_PALETTE) 294 return 1; 295 296 red >>= 8; 297 green >>= 8; 298 blue >>= 8; 299 300 cfb->palette[regno].red = red; 301 cfb->palette[regno].green = green; 302 cfb->palette[regno].blue = blue; 303 304 cyber2000fb_writeb(regno, 0x3c8, cfb); 305 cyber2000fb_writeb(red, 0x3c9, cfb); 306 cyber2000fb_writeb(green, 0x3c9, cfb); 307 cyber2000fb_writeb(blue, 0x3c9, cfb); 308 return 0; 309 310 /* 311 * Direct colour: 312 * n rl 313 * pixel --/--+--/--> red lut --> red dac 314 * | gl 315 * +--/--> green lut --> green dac 316 * | bl 317 * +--/--> blue lut --> blue dac 318 * n = bpp, rl = red length, gl = green length, bl = blue length 319 */ 320 case FB_VISUAL_DIRECTCOLOR: 321 red >>= 8; 322 green >>= 8; 323 blue >>= 8; 324 325 if (var->green.length == 6 && regno < 64) { 326 cfb->palette[regno << 2].green = green; 327 328 /* 329 * The 6 bits of the green component are applied 330 * to the high 6 bits of the LUT. 331 */ 332 cyber2000fb_writeb(regno << 2, 0x3c8, cfb); 333 cyber2000fb_writeb(cfb->palette[regno >> 1].red, 334 0x3c9, cfb); 335 cyber2000fb_writeb(green, 0x3c9, cfb); 336 cyber2000fb_writeb(cfb->palette[regno >> 1].blue, 337 0x3c9, cfb); 338 339 green = cfb->palette[regno << 3].green; 340 341 ret = 0; 342 } 343 344 if (var->green.length >= 5 && regno < 32) { 345 cfb->palette[regno << 3].red = red; 346 cfb->palette[regno << 3].green = green; 347 cfb->palette[regno << 3].blue = blue; 348 349 /* 350 * The 5 bits of each colour component are 351 * applied to the high 5 bits of the LUT. 352 */ 353 cyber2000fb_writeb(regno << 3, 0x3c8, cfb); 354 cyber2000fb_writeb(red, 0x3c9, cfb); 355 cyber2000fb_writeb(green, 0x3c9, cfb); 356 cyber2000fb_writeb(blue, 0x3c9, cfb); 357 ret = 0; 358 } 359 360 if (var->green.length == 4 && regno < 16) { 361 cfb->palette[regno << 4].red = red; 362 cfb->palette[regno << 4].green = green; 363 cfb->palette[regno << 4].blue = blue; 364 365 /* 366 * The 5 bits of each colour component are 367 * applied to the high 5 bits of the LUT. 368 */ 369 cyber2000fb_writeb(regno << 4, 0x3c8, cfb); 370 cyber2000fb_writeb(red, 0x3c9, cfb); 371 cyber2000fb_writeb(green, 0x3c9, cfb); 372 cyber2000fb_writeb(blue, 0x3c9, cfb); 373 ret = 0; 374 } 375 376 /* 377 * Since this is only used for the first 16 colours, we 378 * don't have to care about overflowing for regno >= 32 379 */ 380 pseudo_val = regno << var->red.offset | 381 regno << var->green.offset | 382 regno << var->blue.offset; 383 break; 384 385 /* 386 * True colour: 387 * n rl 388 * pixel --/--+--/--> red dac 389 * | gl 390 * +--/--> green dac 391 * | bl 392 * +--/--> blue dac 393 * n = bpp, rl = red length, gl = green length, bl = blue length 394 */ 395 case FB_VISUAL_TRUECOLOR: 396 pseudo_val = convert_bitfield(transp ^ 0xffff, &var->transp); 397 pseudo_val |= convert_bitfield(red, &var->red); 398 pseudo_val |= convert_bitfield(green, &var->green); 399 pseudo_val |= convert_bitfield(blue, &var->blue); 400 ret = 0; 401 break; 402 } 403 404 /* 405 * Now set our pseudo palette for the CFB16/24/32 drivers. 406 */ 407 if (regno < 16) 408 ((u32 *)cfb->fb.pseudo_palette)[regno] = pseudo_val; 409 410 return ret; 411 } 412 413 struct par_info { 414 /* 415 * Hardware 416 */ 417 u_char clock_mult; 418 u_char clock_div; 419 u_char extseqmisc; 420 u_char co_pixfmt; 421 u_char crtc_ofl; 422 u_char crtc[19]; 423 u_int width; 424 u_int pitch; 425 u_int fetch; 426 427 /* 428 * Other 429 */ 430 u_char ramdac; 431 }; 432 433 static const u_char crtc_idx[] = { 434 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 435 0x08, 0x09, 436 0x10, 0x11, 0x12, 0x13, 0x14, 0x15, 0x16, 0x17, 0x18 437 }; 438 439 static void cyber2000fb_write_ramdac_ctrl(struct cfb_info *cfb) 440 { 441 unsigned int i; 442 unsigned int val = cfb->ramdac_ctrl | cfb->ramdac_powerdown; 443 444 cyber2000fb_writeb(0x56, 0x3ce, cfb); 445 i = cyber2000fb_readb(0x3cf, cfb); 446 cyber2000fb_writeb(i | 4, 0x3cf, cfb); 447 cyber2000fb_writeb(val, 0x3c6, cfb); 448 cyber2000fb_writeb(i, 0x3cf, cfb); 449 /* prevent card lock-up observed on x86 with CyberPro 2000 */ 450 cyber2000fb_readb(0x3cf, cfb); 451 } 452 453 static void cyber2000fb_set_timing(struct cfb_info *cfb, struct par_info *hw) 454 { 455 u_int i; 456 457 /* 458 * Blank palette 459 */ 460 for (i = 0; i < NR_PALETTE; i++) { 461 cyber2000fb_writeb(i, 0x3c8, cfb); 462 cyber2000fb_writeb(0, 0x3c9, cfb); 463 cyber2000fb_writeb(0, 0x3c9, cfb); 464 cyber2000fb_writeb(0, 0x3c9, cfb); 465 } 466 467 cyber2000fb_writeb(0xef, 0x3c2, cfb); 468 cyber2000_crtcw(0x11, 0x0b, cfb); 469 cyber2000_attrw(0x11, 0x00, cfb); 470 471 cyber2000_seqw(0x00, 0x01, cfb); 472 cyber2000_seqw(0x01, 0x01, cfb); 473 cyber2000_seqw(0x02, 0x0f, cfb); 474 cyber2000_seqw(0x03, 0x00, cfb); 475 cyber2000_seqw(0x04, 0x0e, cfb); 476 cyber2000_seqw(0x00, 0x03, cfb); 477 478 for (i = 0; i < sizeof(crtc_idx); i++) 479 cyber2000_crtcw(crtc_idx[i], hw->crtc[i], cfb); 480 481 for (i = 0x0a; i < 0x10; i++) 482 cyber2000_crtcw(i, 0, cfb); 483 484 cyber2000_grphw(EXT_CRT_VRTOFL, hw->crtc_ofl, cfb); 485 cyber2000_grphw(0x00, 0x00, cfb); 486 cyber2000_grphw(0x01, 0x00, cfb); 487 cyber2000_grphw(0x02, 0x00, cfb); 488 cyber2000_grphw(0x03, 0x00, cfb); 489 cyber2000_grphw(0x04, 0x00, cfb); 490 cyber2000_grphw(0x05, 0x60, cfb); 491 cyber2000_grphw(0x06, 0x05, cfb); 492 cyber2000_grphw(0x07, 0x0f, cfb); 493 cyber2000_grphw(0x08, 0xff, cfb); 494 495 /* Attribute controller registers */ 496 for (i = 0; i < 16; i++) 497 cyber2000_attrw(i, i, cfb); 498 499 cyber2000_attrw(0x10, 0x01, cfb); 500 cyber2000_attrw(0x11, 0x00, cfb); 501 cyber2000_attrw(0x12, 0x0f, cfb); 502 cyber2000_attrw(0x13, 0x00, cfb); 503 cyber2000_attrw(0x14, 0x00, cfb); 504 505 /* PLL registers */ 506 spin_lock(&cfb->reg_b0_lock); 507 cyber2000_grphw(EXT_DCLK_MULT, hw->clock_mult, cfb); 508 cyber2000_grphw(EXT_DCLK_DIV, hw->clock_div, cfb); 509 cyber2000_grphw(EXT_MCLK_MULT, cfb->mclk_mult, cfb); 510 cyber2000_grphw(EXT_MCLK_DIV, cfb->mclk_div, cfb); 511 cyber2000_grphw(0x90, 0x01, cfb); 512 cyber2000_grphw(0xb9, 0x80, cfb); 513 cyber2000_grphw(0xb9, 0x00, cfb); 514 spin_unlock(&cfb->reg_b0_lock); 515 516 cfb->ramdac_ctrl = hw->ramdac; 517 cyber2000fb_write_ramdac_ctrl(cfb); 518 519 cyber2000fb_writeb(0x20, 0x3c0, cfb); 520 cyber2000fb_writeb(0xff, 0x3c6, cfb); 521 522 cyber2000_grphw(0x14, hw->fetch, cfb); 523 cyber2000_grphw(0x15, ((hw->fetch >> 8) & 0x03) | 524 ((hw->pitch >> 4) & 0x30), cfb); 525 cyber2000_grphw(EXT_SEQ_MISC, hw->extseqmisc, cfb); 526 527 /* 528 * Set up accelerator registers 529 */ 530 cyber2000fb_writew(hw->width, CO_REG_SRC_WIDTH, cfb); 531 cyber2000fb_writew(hw->width, CO_REG_DEST_WIDTH, cfb); 532 cyber2000fb_writeb(hw->co_pixfmt, CO_REG_PIXFMT, cfb); 533 } 534 535 static inline int 536 cyber2000fb_update_start(struct cfb_info *cfb, struct fb_var_screeninfo *var) 537 { 538 u_int base = var->yoffset * var->xres_virtual + var->xoffset; 539 540 base *= var->bits_per_pixel; 541 542 /* 543 * Convert to bytes and shift two extra bits because DAC 544 * can only start on 4 byte aligned data. 545 */ 546 base >>= 5; 547 548 if (base >= 1 << 20) 549 return -EINVAL; 550 551 cyber2000_grphw(0x10, base >> 16 | 0x10, cfb); 552 cyber2000_crtcw(0x0c, base >> 8, cfb); 553 cyber2000_crtcw(0x0d, base, cfb); 554 555 return 0; 556 } 557 558 static int 559 cyber2000fb_decode_crtc(struct par_info *hw, struct cfb_info *cfb, 560 struct fb_var_screeninfo *var) 561 { 562 u_int Htotal, Hblankend, Hsyncend; 563 u_int Vtotal, Vdispend, Vblankstart, Vblankend, Vsyncstart, Vsyncend; 564 #define ENCODE_BIT(v, b1, m, b2) ((((v) >> (b1)) & (m)) << (b2)) 565 566 hw->crtc[13] = hw->pitch; 567 hw->crtc[17] = 0xe3; 568 hw->crtc[14] = 0; 569 hw->crtc[8] = 0; 570 571 Htotal = var->xres + var->right_margin + 572 var->hsync_len + var->left_margin; 573 574 if (Htotal > 2080) 575 return -EINVAL; 576 577 hw->crtc[0] = (Htotal >> 3) - 5; 578 hw->crtc[1] = (var->xres >> 3) - 1; 579 hw->crtc[2] = var->xres >> 3; 580 hw->crtc[4] = (var->xres + var->right_margin) >> 3; 581 582 Hblankend = (Htotal - 4 * 8) >> 3; 583 584 hw->crtc[3] = ENCODE_BIT(Hblankend, 0, 0x1f, 0) | 585 ENCODE_BIT(1, 0, 0x01, 7); 586 587 Hsyncend = (var->xres + var->right_margin + var->hsync_len) >> 3; 588 589 hw->crtc[5] = ENCODE_BIT(Hsyncend, 0, 0x1f, 0) | 590 ENCODE_BIT(Hblankend, 5, 0x01, 7); 591 592 Vdispend = var->yres - 1; 593 Vsyncstart = var->yres + var->lower_margin; 594 Vsyncend = var->yres + var->lower_margin + var->vsync_len; 595 Vtotal = var->yres + var->lower_margin + var->vsync_len + 596 var->upper_margin - 2; 597 598 if (Vtotal > 2047) 599 return -EINVAL; 600 601 Vblankstart = var->yres + 6; 602 Vblankend = Vtotal - 10; 603 604 hw->crtc[6] = Vtotal; 605 hw->crtc[7] = ENCODE_BIT(Vtotal, 8, 0x01, 0) | 606 ENCODE_BIT(Vdispend, 8, 0x01, 1) | 607 ENCODE_BIT(Vsyncstart, 8, 0x01, 2) | 608 ENCODE_BIT(Vblankstart, 8, 0x01, 3) | 609 ENCODE_BIT(1, 0, 0x01, 4) | 610 ENCODE_BIT(Vtotal, 9, 0x01, 5) | 611 ENCODE_BIT(Vdispend, 9, 0x01, 6) | 612 ENCODE_BIT(Vsyncstart, 9, 0x01, 7); 613 hw->crtc[9] = ENCODE_BIT(0, 0, 0x1f, 0) | 614 ENCODE_BIT(Vblankstart, 9, 0x01, 5) | 615 ENCODE_BIT(1, 0, 0x01, 6); 616 hw->crtc[10] = Vsyncstart; 617 hw->crtc[11] = ENCODE_BIT(Vsyncend, 0, 0x0f, 0) | 618 ENCODE_BIT(1, 0, 0x01, 7); 619 hw->crtc[12] = Vdispend; 620 hw->crtc[15] = Vblankstart; 621 hw->crtc[16] = Vblankend; 622 hw->crtc[18] = 0xff; 623 624 /* 625 * overflow - graphics reg 0x11 626 * 0=VTOTAL:10 1=VDEND:10 2=VRSTART:10 3=VBSTART:10 627 * 4=LINECOMP:10 5-IVIDEO 6=FIXCNT 628 */ 629 hw->crtc_ofl = 630 ENCODE_BIT(Vtotal, 10, 0x01, 0) | 631 ENCODE_BIT(Vdispend, 10, 0x01, 1) | 632 ENCODE_BIT(Vsyncstart, 10, 0x01, 2) | 633 ENCODE_BIT(Vblankstart, 10, 0x01, 3) | 634 EXT_CRT_VRTOFL_LINECOMP10; 635 636 /* woody: set the interlaced bit... */ 637 /* FIXME: what about doublescan? */ 638 if ((var->vmode & FB_VMODE_MASK) == FB_VMODE_INTERLACED) 639 hw->crtc_ofl |= EXT_CRT_VRTOFL_INTERLACE; 640 641 return 0; 642 } 643 644 /* 645 * The following was discovered by a good monitor, bit twiddling, theorising 646 * and but mostly luck. Strangely, it looks like everyone elses' PLL! 647 * 648 * Clock registers: 649 * fclock = fpll / div2 650 * fpll = fref * mult / div1 651 * where: 652 * fref = 14.318MHz (69842ps) 653 * mult = reg0xb0.7:0 654 * div1 = (reg0xb1.5:0 + 1) 655 * div2 = 2^(reg0xb1.7:6) 656 * fpll should be between 115 and 260 MHz 657 * (8696ps and 3846ps) 658 */ 659 static int 660 cyber2000fb_decode_clock(struct par_info *hw, struct cfb_info *cfb, 661 struct fb_var_screeninfo *var) 662 { 663 u_long pll_ps = var->pixclock; 664 const u_long ref_ps = cfb->ref_ps; 665 u_int div2, t_div1, best_div1, best_mult; 666 int best_diff; 667 int vco; 668 669 /* 670 * Step 1: 671 * find div2 such that 115MHz < fpll < 260MHz 672 * and 0 <= div2 < 4 673 */ 674 for (div2 = 0; div2 < 4; div2++) { 675 u_long new_pll; 676 677 new_pll = pll_ps / cfb->divisors[div2]; 678 if (8696 > new_pll && new_pll > 3846) { 679 pll_ps = new_pll; 680 break; 681 } 682 } 683 684 if (div2 == 4) 685 return -EINVAL; 686 687 /* 688 * Step 2: 689 * Given pll_ps and ref_ps, find: 690 * pll_ps * 0.995 < pll_ps_calc < pll_ps * 1.005 691 * where { 1 < best_div1 < 32, 1 < best_mult < 256 } 692 * pll_ps_calc = best_div1 / (ref_ps * best_mult) 693 */ 694 best_diff = 0x7fffffff; 695 best_mult = 2; 696 best_div1 = 32; 697 for (t_div1 = 2; t_div1 < 32; t_div1 += 1) { 698 u_int rr, t_mult, t_pll_ps; 699 int diff; 700 701 /* 702 * Find the multiplier for this divisor 703 */ 704 rr = ref_ps * t_div1; 705 t_mult = (rr + pll_ps / 2) / pll_ps; 706 707 /* 708 * Is the multiplier within the correct range? 709 */ 710 if (t_mult > 256 || t_mult < 2) 711 continue; 712 713 /* 714 * Calculate the actual clock period from this multiplier 715 * and divisor, and estimate the error. 716 */ 717 t_pll_ps = (rr + t_mult / 2) / t_mult; 718 diff = pll_ps - t_pll_ps; 719 if (diff < 0) 720 diff = -diff; 721 722 if (diff < best_diff) { 723 best_diff = diff; 724 best_mult = t_mult; 725 best_div1 = t_div1; 726 } 727 728 /* 729 * If we hit an exact value, there is no point in continuing. 730 */ 731 if (diff == 0) 732 break; 733 } 734 735 /* 736 * Step 3: 737 * combine values 738 */ 739 hw->clock_mult = best_mult - 1; 740 hw->clock_div = div2 << 6 | (best_div1 - 1); 741 742 vco = ref_ps * best_div1 / best_mult; 743 if ((ref_ps == 40690) && (vco < 5556)) 744 /* Set VFSEL when VCO > 180MHz (5.556 ps). */ 745 hw->clock_div |= EXT_DCLK_DIV_VFSEL; 746 747 return 0; 748 } 749 750 /* 751 * Set the User Defined Part of the Display 752 */ 753 static int 754 cyber2000fb_check_var(struct fb_var_screeninfo *var, struct fb_info *info) 755 { 756 struct cfb_info *cfb = container_of(info, struct cfb_info, fb); 757 struct par_info hw; 758 unsigned int mem; 759 int err; 760 761 var->transp.msb_right = 0; 762 var->red.msb_right = 0; 763 var->green.msb_right = 0; 764 var->blue.msb_right = 0; 765 var->transp.offset = 0; 766 var->transp.length = 0; 767 768 switch (var->bits_per_pixel) { 769 case 8: /* PSEUDOCOLOUR, 256 */ 770 var->red.offset = 0; 771 var->red.length = 8; 772 var->green.offset = 0; 773 var->green.length = 8; 774 var->blue.offset = 0; 775 var->blue.length = 8; 776 break; 777 778 case 16:/* DIRECTCOLOUR, 64k or 32k */ 779 switch (var->green.length) { 780 case 6: /* RGB565, 64k */ 781 var->red.offset = 11; 782 var->red.length = 5; 783 var->green.offset = 5; 784 var->green.length = 6; 785 var->blue.offset = 0; 786 var->blue.length = 5; 787 break; 788 789 default: 790 case 5: /* RGB555, 32k */ 791 var->red.offset = 10; 792 var->red.length = 5; 793 var->green.offset = 5; 794 var->green.length = 5; 795 var->blue.offset = 0; 796 var->blue.length = 5; 797 break; 798 799 case 4: /* RGB444, 4k + transparency? */ 800 var->transp.offset = 12; 801 var->transp.length = 4; 802 var->red.offset = 8; 803 var->red.length = 4; 804 var->green.offset = 4; 805 var->green.length = 4; 806 var->blue.offset = 0; 807 var->blue.length = 4; 808 break; 809 } 810 break; 811 812 case 24:/* TRUECOLOUR, 16m */ 813 var->red.offset = 16; 814 var->red.length = 8; 815 var->green.offset = 8; 816 var->green.length = 8; 817 var->blue.offset = 0; 818 var->blue.length = 8; 819 break; 820 821 case 32:/* TRUECOLOUR, 16m */ 822 var->transp.offset = 24; 823 var->transp.length = 8; 824 var->red.offset = 16; 825 var->red.length = 8; 826 var->green.offset = 8; 827 var->green.length = 8; 828 var->blue.offset = 0; 829 var->blue.length = 8; 830 break; 831 832 default: 833 return -EINVAL; 834 } 835 836 mem = var->xres_virtual * var->yres_virtual * (var->bits_per_pixel / 8); 837 if (mem > cfb->fb.fix.smem_len) 838 var->yres_virtual = cfb->fb.fix.smem_len * 8 / 839 (var->bits_per_pixel * var->xres_virtual); 840 841 if (var->yres > var->yres_virtual) 842 var->yres = var->yres_virtual; 843 if (var->xres > var->xres_virtual) 844 var->xres = var->xres_virtual; 845 846 err = cyber2000fb_decode_clock(&hw, cfb, var); 847 if (err) 848 return err; 849 850 err = cyber2000fb_decode_crtc(&hw, cfb, var); 851 if (err) 852 return err; 853 854 return 0; 855 } 856 857 static int cyber2000fb_set_par(struct fb_info *info) 858 { 859 struct cfb_info *cfb = container_of(info, struct cfb_info, fb); 860 struct fb_var_screeninfo *var = &cfb->fb.var; 861 struct par_info hw; 862 unsigned int mem; 863 864 hw.width = var->xres_virtual; 865 hw.ramdac = RAMDAC_VREFEN | RAMDAC_DAC8BIT; 866 867 switch (var->bits_per_pixel) { 868 case 8: 869 hw.co_pixfmt = CO_PIXFMT_8BPP; 870 hw.pitch = hw.width >> 3; 871 hw.extseqmisc = EXT_SEQ_MISC_8; 872 break; 873 874 case 16: 875 hw.co_pixfmt = CO_PIXFMT_16BPP; 876 hw.pitch = hw.width >> 2; 877 878 switch (var->green.length) { 879 case 6: /* RGB565, 64k */ 880 hw.extseqmisc = EXT_SEQ_MISC_16_RGB565; 881 break; 882 case 5: /* RGB555, 32k */ 883 hw.extseqmisc = EXT_SEQ_MISC_16_RGB555; 884 break; 885 case 4: /* RGB444, 4k + transparency? */ 886 hw.extseqmisc = EXT_SEQ_MISC_16_RGB444; 887 break; 888 default: 889 BUG(); 890 } 891 break; 892 893 case 24:/* TRUECOLOUR, 16m */ 894 hw.co_pixfmt = CO_PIXFMT_24BPP; 895 hw.width *= 3; 896 hw.pitch = hw.width >> 3; 897 hw.ramdac |= (RAMDAC_BYPASS | RAMDAC_RAMPWRDN); 898 hw.extseqmisc = EXT_SEQ_MISC_24_RGB888; 899 break; 900 901 case 32:/* TRUECOLOUR, 16m */ 902 hw.co_pixfmt = CO_PIXFMT_32BPP; 903 hw.pitch = hw.width >> 1; 904 hw.ramdac |= (RAMDAC_BYPASS | RAMDAC_RAMPWRDN); 905 hw.extseqmisc = EXT_SEQ_MISC_32; 906 break; 907 908 default: 909 BUG(); 910 } 911 912 /* 913 * Sigh, this is absolutely disgusting, but caused by 914 * the way the fbcon developers want to separate out 915 * the "checking" and the "setting" of the video mode. 916 * 917 * If the mode is not suitable for the hardware here, 918 * we can't prevent it being set by returning an error. 919 * 920 * In theory, since NetWinders contain just one VGA card, 921 * we should never end up hitting this problem. 922 */ 923 BUG_ON(cyber2000fb_decode_clock(&hw, cfb, var) != 0); 924 BUG_ON(cyber2000fb_decode_crtc(&hw, cfb, var) != 0); 925 926 hw.width -= 1; 927 hw.fetch = hw.pitch; 928 if (!(cfb->mem_ctl2 & MEM_CTL2_64BIT)) 929 hw.fetch <<= 1; 930 hw.fetch += 1; 931 932 cfb->fb.fix.line_length = var->xres_virtual * var->bits_per_pixel / 8; 933 934 /* 935 * Same here - if the size of the video mode exceeds the 936 * available RAM, we can't prevent this mode being set. 937 * 938 * In theory, since NetWinders contain just one VGA card, 939 * we should never end up hitting this problem. 940 */ 941 mem = cfb->fb.fix.line_length * var->yres_virtual; 942 BUG_ON(mem > cfb->fb.fix.smem_len); 943 944 /* 945 * 8bpp displays are always pseudo colour. 16bpp and above 946 * are direct colour or true colour, depending on whether 947 * the RAMDAC palettes are bypassed. (Direct colour has 948 * palettes, true colour does not.) 949 */ 950 if (var->bits_per_pixel == 8) 951 cfb->fb.fix.visual = FB_VISUAL_PSEUDOCOLOR; 952 else if (hw.ramdac & RAMDAC_BYPASS) 953 cfb->fb.fix.visual = FB_VISUAL_TRUECOLOR; 954 else 955 cfb->fb.fix.visual = FB_VISUAL_DIRECTCOLOR; 956 957 cyber2000fb_set_timing(cfb, &hw); 958 cyber2000fb_update_start(cfb, var); 959 960 return 0; 961 } 962 963 /* 964 * Pan or Wrap the Display 965 */ 966 static int 967 cyber2000fb_pan_display(struct fb_var_screeninfo *var, struct fb_info *info) 968 { 969 struct cfb_info *cfb = container_of(info, struct cfb_info, fb); 970 971 if (cyber2000fb_update_start(cfb, var)) 972 return -EINVAL; 973 974 cfb->fb.var.xoffset = var->xoffset; 975 cfb->fb.var.yoffset = var->yoffset; 976 977 if (var->vmode & FB_VMODE_YWRAP) { 978 cfb->fb.var.vmode |= FB_VMODE_YWRAP; 979 } else { 980 cfb->fb.var.vmode &= ~FB_VMODE_YWRAP; 981 } 982 983 return 0; 984 } 985 986 /* 987 * (Un)Blank the display. 988 * 989 * Blank the screen if blank_mode != 0, else unblank. If 990 * blank == NULL then the caller blanks by setting the CLUT 991 * (Color Look Up Table) to all black. Return 0 if blanking 992 * succeeded, != 0 if un-/blanking failed due to e.g. a 993 * video mode which doesn't support it. Implements VESA 994 * suspend and powerdown modes on hardware that supports 995 * disabling hsync/vsync: 996 * blank_mode == 2: suspend vsync 997 * blank_mode == 3: suspend hsync 998 * blank_mode == 4: powerdown 999 * 1000 * wms...Enable VESA DMPS compatible powerdown mode 1001 * run "setterm -powersave powerdown" to take advantage 1002 */ 1003 static int cyber2000fb_blank(int blank, struct fb_info *info) 1004 { 1005 struct cfb_info *cfb = container_of(info, struct cfb_info, fb); 1006 unsigned int sync = 0; 1007 int i; 1008 1009 switch (blank) { 1010 case FB_BLANK_POWERDOWN: /* powerdown - both sync lines down */ 1011 sync = EXT_SYNC_CTL_VS_0 | EXT_SYNC_CTL_HS_0; 1012 break; 1013 case FB_BLANK_HSYNC_SUSPEND: /* hsync off */ 1014 sync = EXT_SYNC_CTL_VS_NORMAL | EXT_SYNC_CTL_HS_0; 1015 break; 1016 case FB_BLANK_VSYNC_SUSPEND: /* vsync off */ 1017 sync = EXT_SYNC_CTL_VS_0 | EXT_SYNC_CTL_HS_NORMAL; 1018 break; 1019 case FB_BLANK_NORMAL: /* soft blank */ 1020 default: /* unblank */ 1021 break; 1022 } 1023 1024 cyber2000_grphw(EXT_SYNC_CTL, sync, cfb); 1025 1026 if (blank <= 1) { 1027 /* turn on ramdacs */ 1028 cfb->ramdac_powerdown &= ~(RAMDAC_DACPWRDN | RAMDAC_BYPASS | 1029 RAMDAC_RAMPWRDN); 1030 cyber2000fb_write_ramdac_ctrl(cfb); 1031 } 1032 1033 /* 1034 * Soft blank/unblank the display. 1035 */ 1036 if (blank) { /* soft blank */ 1037 for (i = 0; i < NR_PALETTE; i++) { 1038 cyber2000fb_writeb(i, 0x3c8, cfb); 1039 cyber2000fb_writeb(0, 0x3c9, cfb); 1040 cyber2000fb_writeb(0, 0x3c9, cfb); 1041 cyber2000fb_writeb(0, 0x3c9, cfb); 1042 } 1043 } else { /* unblank */ 1044 for (i = 0; i < NR_PALETTE; i++) { 1045 cyber2000fb_writeb(i, 0x3c8, cfb); 1046 cyber2000fb_writeb(cfb->palette[i].red, 0x3c9, cfb); 1047 cyber2000fb_writeb(cfb->palette[i].green, 0x3c9, cfb); 1048 cyber2000fb_writeb(cfb->palette[i].blue, 0x3c9, cfb); 1049 } 1050 } 1051 1052 if (blank >= 2) { 1053 /* turn off ramdacs */ 1054 cfb->ramdac_powerdown |= RAMDAC_DACPWRDN | RAMDAC_BYPASS | 1055 RAMDAC_RAMPWRDN; 1056 cyber2000fb_write_ramdac_ctrl(cfb); 1057 } 1058 1059 return 0; 1060 } 1061 1062 static const struct fb_ops cyber2000fb_ops = { 1063 .owner = THIS_MODULE, 1064 __FB_DEFAULT_IOMEM_OPS_RDWR, 1065 .fb_check_var = cyber2000fb_check_var, 1066 .fb_set_par = cyber2000fb_set_par, 1067 .fb_setcolreg = cyber2000fb_setcolreg, 1068 .fb_blank = cyber2000fb_blank, 1069 .fb_pan_display = cyber2000fb_pan_display, 1070 .fb_fillrect = cyber2000fb_fillrect, 1071 .fb_copyarea = cyber2000fb_copyarea, 1072 .fb_imageblit = cyber2000fb_imageblit, 1073 .fb_sync = cyber2000fb_sync, 1074 __FB_DEFAULT_IOMEM_OPS_MMAP, 1075 }; 1076 1077 /* 1078 * This is the only "static" reference to the internal data structures 1079 * of this driver. It is here solely at the moment to support the other 1080 * CyberPro modules external to this driver. 1081 */ 1082 static struct cfb_info *int_cfb_info; 1083 1084 /* 1085 * Enable access to the extended registers 1086 */ 1087 void cyber2000fb_enable_extregs(struct cfb_info *cfb) 1088 { 1089 cfb->func_use_count += 1; 1090 1091 if (cfb->func_use_count == 1) { 1092 int old; 1093 1094 old = cyber2000_grphr(EXT_FUNC_CTL, cfb); 1095 old |= EXT_FUNC_CTL_EXTREGENBL; 1096 cyber2000_grphw(EXT_FUNC_CTL, old, cfb); 1097 } 1098 } 1099 EXPORT_SYMBOL(cyber2000fb_enable_extregs); 1100 1101 /* 1102 * Disable access to the extended registers 1103 */ 1104 void cyber2000fb_disable_extregs(struct cfb_info *cfb) 1105 { 1106 if (cfb->func_use_count == 1) { 1107 int old; 1108 1109 old = cyber2000_grphr(EXT_FUNC_CTL, cfb); 1110 old &= ~EXT_FUNC_CTL_EXTREGENBL; 1111 cyber2000_grphw(EXT_FUNC_CTL, old, cfb); 1112 } 1113 1114 if (cfb->func_use_count == 0) 1115 printk(KERN_ERR "disable_extregs: count = 0\n"); 1116 else 1117 cfb->func_use_count -= 1; 1118 } 1119 EXPORT_SYMBOL(cyber2000fb_disable_extregs); 1120 1121 /* 1122 * Attach a capture/tv driver to the core CyberX0X0 driver. 1123 */ 1124 int cyber2000fb_attach(struct cyberpro_info *info, int idx) 1125 { 1126 if (int_cfb_info != NULL) { 1127 info->dev = int_cfb_info->fb.device; 1128 #ifdef CONFIG_FB_CYBER2000_I2C 1129 info->i2c = &int_cfb_info->i2c_adapter; 1130 #else 1131 info->i2c = NULL; 1132 #endif 1133 info->regs = int_cfb_info->regs; 1134 info->irq = int_cfb_info->irq; 1135 info->fb = int_cfb_info->fb.screen_base; 1136 info->fb_size = int_cfb_info->fb.fix.smem_len; 1137 info->info = int_cfb_info; 1138 1139 strscpy(info->dev_name, int_cfb_info->fb.fix.id, 1140 sizeof(info->dev_name)); 1141 } 1142 1143 return int_cfb_info != NULL; 1144 } 1145 EXPORT_SYMBOL(cyber2000fb_attach); 1146 1147 /* 1148 * Detach a capture/tv driver from the core CyberX0X0 driver. 1149 */ 1150 void cyber2000fb_detach(int idx) 1151 { 1152 } 1153 EXPORT_SYMBOL(cyber2000fb_detach); 1154 1155 #ifdef CONFIG_FB_CYBER2000_DDC 1156 1157 #define DDC_REG 0xb0 1158 #define DDC_SCL_OUT (1 << 0) 1159 #define DDC_SDA_OUT (1 << 4) 1160 #define DDC_SCL_IN (1 << 2) 1161 #define DDC_SDA_IN (1 << 6) 1162 1163 static void cyber2000fb_enable_ddc(struct cfb_info *cfb) 1164 __acquires(&cfb->reg_b0_lock) 1165 { 1166 spin_lock(&cfb->reg_b0_lock); 1167 cyber2000fb_writew(0x1bf, 0x3ce, cfb); 1168 } 1169 1170 static void cyber2000fb_disable_ddc(struct cfb_info *cfb) 1171 __releases(&cfb->reg_b0_lock) 1172 { 1173 cyber2000fb_writew(0x0bf, 0x3ce, cfb); 1174 spin_unlock(&cfb->reg_b0_lock); 1175 } 1176 1177 1178 static void cyber2000fb_ddc_setscl(void *data, int val) 1179 { 1180 struct cfb_info *cfb = data; 1181 unsigned char reg; 1182 1183 cyber2000fb_enable_ddc(cfb); 1184 reg = cyber2000_grphr(DDC_REG, cfb); 1185 if (!val) /* bit is inverted */ 1186 reg |= DDC_SCL_OUT; 1187 else 1188 reg &= ~DDC_SCL_OUT; 1189 cyber2000_grphw(DDC_REG, reg, cfb); 1190 cyber2000fb_disable_ddc(cfb); 1191 } 1192 1193 static void cyber2000fb_ddc_setsda(void *data, int val) 1194 { 1195 struct cfb_info *cfb = data; 1196 unsigned char reg; 1197 1198 cyber2000fb_enable_ddc(cfb); 1199 reg = cyber2000_grphr(DDC_REG, cfb); 1200 if (!val) /* bit is inverted */ 1201 reg |= DDC_SDA_OUT; 1202 else 1203 reg &= ~DDC_SDA_OUT; 1204 cyber2000_grphw(DDC_REG, reg, cfb); 1205 cyber2000fb_disable_ddc(cfb); 1206 } 1207 1208 static int cyber2000fb_ddc_getscl(void *data) 1209 { 1210 struct cfb_info *cfb = data; 1211 int retval; 1212 1213 cyber2000fb_enable_ddc(cfb); 1214 retval = !!(cyber2000_grphr(DDC_REG, cfb) & DDC_SCL_IN); 1215 cyber2000fb_disable_ddc(cfb); 1216 1217 return retval; 1218 } 1219 1220 static int cyber2000fb_ddc_getsda(void *data) 1221 { 1222 struct cfb_info *cfb = data; 1223 int retval; 1224 1225 cyber2000fb_enable_ddc(cfb); 1226 retval = !!(cyber2000_grphr(DDC_REG, cfb) & DDC_SDA_IN); 1227 cyber2000fb_disable_ddc(cfb); 1228 1229 return retval; 1230 } 1231 1232 static int cyber2000fb_setup_ddc_bus(struct cfb_info *cfb) 1233 { 1234 strscpy(cfb->ddc_adapter.name, cfb->fb.fix.id, 1235 sizeof(cfb->ddc_adapter.name)); 1236 cfb->ddc_adapter.owner = THIS_MODULE; 1237 cfb->ddc_adapter.class = I2C_CLASS_DDC; 1238 cfb->ddc_adapter.algo_data = &cfb->ddc_algo; 1239 cfb->ddc_adapter.dev.parent = cfb->fb.device; 1240 cfb->ddc_algo.setsda = cyber2000fb_ddc_setsda; 1241 cfb->ddc_algo.setscl = cyber2000fb_ddc_setscl; 1242 cfb->ddc_algo.getsda = cyber2000fb_ddc_getsda; 1243 cfb->ddc_algo.getscl = cyber2000fb_ddc_getscl; 1244 cfb->ddc_algo.udelay = 10; 1245 cfb->ddc_algo.timeout = 20; 1246 cfb->ddc_algo.data = cfb; 1247 1248 i2c_set_adapdata(&cfb->ddc_adapter, cfb); 1249 1250 return i2c_bit_add_bus(&cfb->ddc_adapter); 1251 } 1252 #endif /* CONFIG_FB_CYBER2000_DDC */ 1253 1254 #ifdef CONFIG_FB_CYBER2000_I2C 1255 static void cyber2000fb_i2c_setsda(void *data, int state) 1256 { 1257 struct cfb_info *cfb = data; 1258 unsigned int latch2; 1259 1260 spin_lock(&cfb->reg_b0_lock); 1261 latch2 = cyber2000_grphr(EXT_LATCH2, cfb); 1262 latch2 &= EXT_LATCH2_I2C_CLKEN; 1263 if (state) 1264 latch2 |= EXT_LATCH2_I2C_DATEN; 1265 cyber2000_grphw(EXT_LATCH2, latch2, cfb); 1266 spin_unlock(&cfb->reg_b0_lock); 1267 } 1268 1269 static void cyber2000fb_i2c_setscl(void *data, int state) 1270 { 1271 struct cfb_info *cfb = data; 1272 unsigned int latch2; 1273 1274 spin_lock(&cfb->reg_b0_lock); 1275 latch2 = cyber2000_grphr(EXT_LATCH2, cfb); 1276 latch2 &= EXT_LATCH2_I2C_DATEN; 1277 if (state) 1278 latch2 |= EXT_LATCH2_I2C_CLKEN; 1279 cyber2000_grphw(EXT_LATCH2, latch2, cfb); 1280 spin_unlock(&cfb->reg_b0_lock); 1281 } 1282 1283 static int cyber2000fb_i2c_getsda(void *data) 1284 { 1285 struct cfb_info *cfb = data; 1286 int ret; 1287 1288 spin_lock(&cfb->reg_b0_lock); 1289 ret = !!(cyber2000_grphr(EXT_LATCH2, cfb) & EXT_LATCH2_I2C_DAT); 1290 spin_unlock(&cfb->reg_b0_lock); 1291 1292 return ret; 1293 } 1294 1295 static int cyber2000fb_i2c_getscl(void *data) 1296 { 1297 struct cfb_info *cfb = data; 1298 int ret; 1299 1300 spin_lock(&cfb->reg_b0_lock); 1301 ret = !!(cyber2000_grphr(EXT_LATCH2, cfb) & EXT_LATCH2_I2C_CLK); 1302 spin_unlock(&cfb->reg_b0_lock); 1303 1304 return ret; 1305 } 1306 1307 static int cyber2000fb_i2c_register(struct cfb_info *cfb) 1308 { 1309 strscpy(cfb->i2c_adapter.name, cfb->fb.fix.id, 1310 sizeof(cfb->i2c_adapter.name)); 1311 cfb->i2c_adapter.owner = THIS_MODULE; 1312 cfb->i2c_adapter.algo_data = &cfb->i2c_algo; 1313 cfb->i2c_adapter.dev.parent = cfb->fb.device; 1314 cfb->i2c_algo.setsda = cyber2000fb_i2c_setsda; 1315 cfb->i2c_algo.setscl = cyber2000fb_i2c_setscl; 1316 cfb->i2c_algo.getsda = cyber2000fb_i2c_getsda; 1317 cfb->i2c_algo.getscl = cyber2000fb_i2c_getscl; 1318 cfb->i2c_algo.udelay = 5; 1319 cfb->i2c_algo.timeout = msecs_to_jiffies(100); 1320 cfb->i2c_algo.data = cfb; 1321 1322 return i2c_bit_add_bus(&cfb->i2c_adapter); 1323 } 1324 1325 static void cyber2000fb_i2c_unregister(struct cfb_info *cfb) 1326 { 1327 i2c_del_adapter(&cfb->i2c_adapter); 1328 } 1329 #else 1330 #define cyber2000fb_i2c_register(cfb) (0) 1331 #define cyber2000fb_i2c_unregister(cfb) do { } while (0) 1332 #endif 1333 1334 /* 1335 * These parameters give 1336 * 640x480, hsync 31.5kHz, vsync 60Hz 1337 */ 1338 static const struct fb_videomode cyber2000fb_default_mode = { 1339 .refresh = 60, 1340 .xres = 640, 1341 .yres = 480, 1342 .pixclock = 39722, 1343 .left_margin = 56, 1344 .right_margin = 16, 1345 .upper_margin = 34, 1346 .lower_margin = 9, 1347 .hsync_len = 88, 1348 .vsync_len = 2, 1349 .sync = FB_SYNC_COMP_HIGH_ACT | FB_SYNC_VERT_HIGH_ACT, 1350 .vmode = FB_VMODE_NONINTERLACED 1351 }; 1352 1353 static char igs_regs[] = { 1354 EXT_CRT_IRQ, 0, 1355 EXT_CRT_TEST, 0, 1356 EXT_SYNC_CTL, 0, 1357 EXT_SEG_WRITE_PTR, 0, 1358 EXT_SEG_READ_PTR, 0, 1359 EXT_BIU_MISC, EXT_BIU_MISC_LIN_ENABLE | 1360 EXT_BIU_MISC_COP_ENABLE | 1361 EXT_BIU_MISC_COP_BFC, 1362 EXT_FUNC_CTL, 0, 1363 CURS_H_START, 0, 1364 CURS_H_START + 1, 0, 1365 CURS_H_PRESET, 0, 1366 CURS_V_START, 0, 1367 CURS_V_START + 1, 0, 1368 CURS_V_PRESET, 0, 1369 CURS_CTL, 0, 1370 EXT_ATTRIB_CTL, EXT_ATTRIB_CTL_EXT, 1371 EXT_OVERSCAN_RED, 0, 1372 EXT_OVERSCAN_GREEN, 0, 1373 EXT_OVERSCAN_BLUE, 0, 1374 1375 /* some of these are questionable when we have a BIOS */ 1376 EXT_MEM_CTL0, EXT_MEM_CTL0_7CLK | 1377 EXT_MEM_CTL0_RAS_1 | 1378 EXT_MEM_CTL0_MULTCAS, 1379 EXT_HIDDEN_CTL1, 0x30, 1380 EXT_FIFO_CTL, 0x0b, 1381 EXT_FIFO_CTL + 1, 0x17, 1382 0x76, 0x00, 1383 EXT_HIDDEN_CTL4, 0xc8 1384 }; 1385 1386 /* 1387 * Initialise the CyberPro hardware. On the CyberPro5XXXX, 1388 * ensure that we're using the correct PLL (5XXX's may be 1389 * programmed to use an additional set of PLLs.) 1390 */ 1391 static void cyberpro_init_hw(struct cfb_info *cfb) 1392 { 1393 int i; 1394 1395 for (i = 0; i < sizeof(igs_regs); i += 2) 1396 cyber2000_grphw(igs_regs[i], igs_regs[i + 1], cfb); 1397 1398 if (cfb->id == ID_CYBERPRO_5000) { 1399 unsigned char val; 1400 cyber2000fb_writeb(0xba, 0x3ce, cfb); 1401 val = cyber2000fb_readb(0x3cf, cfb) & 0x80; 1402 cyber2000fb_writeb(val, 0x3cf, cfb); 1403 } 1404 } 1405 1406 static struct cfb_info *cyberpro_alloc_fb_info(unsigned int id, char *name) 1407 { 1408 struct cfb_info *cfb; 1409 1410 cfb = kzalloc(sizeof(struct cfb_info), GFP_KERNEL); 1411 if (!cfb) 1412 return NULL; 1413 1414 1415 cfb->id = id; 1416 1417 if (id == ID_CYBERPRO_5000) 1418 cfb->ref_ps = 40690; /* 24.576 MHz */ 1419 else 1420 cfb->ref_ps = 69842; /* 14.31818 MHz (69841?) */ 1421 1422 cfb->divisors[0] = 1; 1423 cfb->divisors[1] = 2; 1424 cfb->divisors[2] = 4; 1425 1426 if (id == ID_CYBERPRO_2000) 1427 cfb->divisors[3] = 8; 1428 else 1429 cfb->divisors[3] = 6; 1430 1431 strcpy(cfb->fb.fix.id, name); 1432 1433 cfb->fb.fix.type = FB_TYPE_PACKED_PIXELS; 1434 cfb->fb.fix.type_aux = 0; 1435 cfb->fb.fix.xpanstep = 0; 1436 cfb->fb.fix.ypanstep = 1; 1437 cfb->fb.fix.ywrapstep = 0; 1438 1439 switch (id) { 1440 case ID_IGA_1682: 1441 cfb->fb.fix.accel = 0; 1442 break; 1443 1444 case ID_CYBERPRO_2000: 1445 cfb->fb.fix.accel = FB_ACCEL_IGS_CYBER2000; 1446 break; 1447 1448 case ID_CYBERPRO_2010: 1449 cfb->fb.fix.accel = FB_ACCEL_IGS_CYBER2010; 1450 break; 1451 1452 case ID_CYBERPRO_5000: 1453 cfb->fb.fix.accel = FB_ACCEL_IGS_CYBER5000; 1454 break; 1455 } 1456 1457 cfb->fb.var.nonstd = 0; 1458 cfb->fb.var.activate = FB_ACTIVATE_NOW; 1459 cfb->fb.var.height = -1; 1460 cfb->fb.var.width = -1; 1461 cfb->fb.var.accel_flags = FB_ACCELF_TEXT; 1462 1463 cfb->fb.fbops = &cyber2000fb_ops; 1464 cfb->fb.flags = FBINFO_HWACCEL_YPAN; 1465 cfb->fb.pseudo_palette = cfb->pseudo_palette; 1466 1467 spin_lock_init(&cfb->reg_b0_lock); 1468 1469 fb_alloc_cmap(&cfb->fb.cmap, NR_PALETTE, 0); 1470 1471 return cfb; 1472 } 1473 1474 static void cyberpro_free_fb_info(struct cfb_info *cfb) 1475 { 1476 if (cfb) { 1477 /* 1478 * Free the colourmap 1479 */ 1480 fb_alloc_cmap(&cfb->fb.cmap, 0, 0); 1481 1482 kfree(cfb); 1483 } 1484 } 1485 1486 /* 1487 * Parse Cyber2000fb options. Usage: 1488 * video=cyber2000:font:fontname 1489 */ 1490 #ifndef MODULE 1491 static int cyber2000fb_setup(char *options) 1492 { 1493 char *opt; 1494 1495 if (!options || !*options) 1496 return 0; 1497 1498 while ((opt = strsep(&options, ",")) != NULL) { 1499 if (!*opt) 1500 continue; 1501 1502 if (strncmp(opt, "font:", 5) == 0) { 1503 static char default_font_storage[40]; 1504 1505 strscpy(default_font_storage, opt + 5, 1506 sizeof(default_font_storage)); 1507 default_font = default_font_storage; 1508 continue; 1509 } 1510 1511 printk(KERN_ERR "CyberPro20x0: unknown parameter: %s\n", opt); 1512 } 1513 return 0; 1514 } 1515 #endif /* MODULE */ 1516 1517 /* 1518 * The CyberPro chips can be placed on many different bus types. 1519 * This probe function is common to all bus types. The bus-specific 1520 * probe function is expected to have: 1521 * - enabled access to the linear memory region 1522 * - memory mapped access to the registers 1523 * - initialised mem_ctl1 and mem_ctl2 appropriately. 1524 */ 1525 static int cyberpro_common_probe(struct cfb_info *cfb) 1526 { 1527 u_long smem_size; 1528 u_int h_sync, v_sync; 1529 int err; 1530 1531 cyberpro_init_hw(cfb); 1532 1533 /* 1534 * Get the video RAM size and width from the VGA register. 1535 * This should have been already initialised by the BIOS, 1536 * but if it's garbage, claim default 1MB VRAM (woody) 1537 */ 1538 cfb->mem_ctl1 = cyber2000_grphr(EXT_MEM_CTL1, cfb); 1539 cfb->mem_ctl2 = cyber2000_grphr(EXT_MEM_CTL2, cfb); 1540 1541 /* 1542 * Determine the size of the memory. 1543 */ 1544 switch (cfb->mem_ctl2 & MEM_CTL2_SIZE_MASK) { 1545 case MEM_CTL2_SIZE_4MB: 1546 smem_size = 0x00400000; 1547 break; 1548 case MEM_CTL2_SIZE_2MB: 1549 smem_size = 0x00200000; 1550 break; 1551 case MEM_CTL2_SIZE_1MB: 1552 smem_size = 0x00100000; 1553 break; 1554 default: 1555 smem_size = 0x00100000; 1556 break; 1557 } 1558 1559 cfb->fb.fix.smem_len = smem_size; 1560 cfb->fb.fix.mmio_len = MMIO_SIZE; 1561 cfb->fb.screen_base = cfb->region; 1562 1563 #ifdef CONFIG_FB_CYBER2000_DDC 1564 if (cyber2000fb_setup_ddc_bus(cfb) == 0) 1565 cfb->ddc_registered = true; 1566 #endif 1567 1568 err = -EINVAL; 1569 if (!fb_find_mode(&cfb->fb.var, &cfb->fb, NULL, NULL, 0, 1570 &cyber2000fb_default_mode, 8)) { 1571 printk(KERN_ERR "%s: no valid mode found\n", cfb->fb.fix.id); 1572 goto failed; 1573 } 1574 1575 cfb->fb.var.yres_virtual = cfb->fb.fix.smem_len * 8 / 1576 (cfb->fb.var.bits_per_pixel * cfb->fb.var.xres_virtual); 1577 1578 if (cfb->fb.var.yres_virtual < cfb->fb.var.yres) 1579 cfb->fb.var.yres_virtual = cfb->fb.var.yres; 1580 1581 /* fb_set_var(&cfb->fb.var, -1, &cfb->fb); */ 1582 1583 /* 1584 * Calculate the hsync and vsync frequencies. Note that 1585 * we split the 1e12 constant up so that we can preserve 1586 * the precision and fit the results into 32-bit registers. 1587 * (1953125000 * 512 = 1e12) 1588 */ 1589 h_sync = 1953125000 / cfb->fb.var.pixclock; 1590 h_sync = h_sync * 512 / (cfb->fb.var.xres + cfb->fb.var.left_margin + 1591 cfb->fb.var.right_margin + cfb->fb.var.hsync_len); 1592 v_sync = h_sync / (cfb->fb.var.yres + cfb->fb.var.upper_margin + 1593 cfb->fb.var.lower_margin + cfb->fb.var.vsync_len); 1594 1595 printk(KERN_INFO "%s: %dKiB VRAM, using %dx%d, %d.%03dkHz, %dHz\n", 1596 cfb->fb.fix.id, cfb->fb.fix.smem_len >> 10, 1597 cfb->fb.var.xres, cfb->fb.var.yres, 1598 h_sync / 1000, h_sync % 1000, v_sync); 1599 1600 err = cyber2000fb_i2c_register(cfb); 1601 if (err) 1602 goto failed; 1603 1604 err = register_framebuffer(&cfb->fb); 1605 if (err) 1606 cyber2000fb_i2c_unregister(cfb); 1607 1608 failed: 1609 #ifdef CONFIG_FB_CYBER2000_DDC 1610 if (err && cfb->ddc_registered) 1611 i2c_del_adapter(&cfb->ddc_adapter); 1612 #endif 1613 return err; 1614 } 1615 1616 static void cyberpro_common_remove(struct cfb_info *cfb) 1617 { 1618 unregister_framebuffer(&cfb->fb); 1619 #ifdef CONFIG_FB_CYBER2000_DDC 1620 if (cfb->ddc_registered) 1621 i2c_del_adapter(&cfb->ddc_adapter); 1622 #endif 1623 cyber2000fb_i2c_unregister(cfb); 1624 } 1625 1626 static void cyberpro_common_resume(struct cfb_info *cfb) 1627 { 1628 cyberpro_init_hw(cfb); 1629 1630 /* 1631 * Reprogram the MEM_CTL1 and MEM_CTL2 registers 1632 */ 1633 cyber2000_grphw(EXT_MEM_CTL1, cfb->mem_ctl1, cfb); 1634 cyber2000_grphw(EXT_MEM_CTL2, cfb->mem_ctl2, cfb); 1635 1636 /* 1637 * Restore the old video mode and the palette. 1638 * We also need to tell fbcon to redraw the console. 1639 */ 1640 cyber2000fb_set_par(&cfb->fb); 1641 } 1642 1643 /* 1644 * We need to wake up the CyberPro, and make sure its in linear memory 1645 * mode. Unfortunately, this is specific to the platform and card that 1646 * we are running on. 1647 * 1648 * On x86 and ARM, should we be initialising the CyberPro first via the 1649 * IO registers, and then the MMIO registers to catch all cases? Can we 1650 * end up in the situation where the chip is in MMIO mode, but not awake 1651 * on an x86 system? 1652 */ 1653 static int cyberpro_pci_enable_mmio(struct cfb_info *cfb) 1654 { 1655 unsigned char val; 1656 1657 #if defined(__sparc_v9__) 1658 #error "You lose, consult DaveM." 1659 #elif defined(__sparc__) 1660 /* 1661 * SPARC does not have an "outb" instruction, so we generate 1662 * I/O cycles storing into a reserved memory space at 1663 * physical address 0x3000000 1664 */ 1665 unsigned char __iomem *iop; 1666 1667 iop = ioremap(0x3000000, 0x5000); 1668 if (iop == NULL) { 1669 printk(KERN_ERR "iga5000: cannot map I/O\n"); 1670 return -ENOMEM; 1671 } 1672 1673 writeb(0x18, iop + 0x46e8); 1674 writeb(0x01, iop + 0x102); 1675 writeb(0x08, iop + 0x46e8); 1676 writeb(EXT_BIU_MISC, iop + 0x3ce); 1677 writeb(EXT_BIU_MISC_LIN_ENABLE, iop + 0x3cf); 1678 1679 iounmap(iop); 1680 #else 1681 /* 1682 * Most other machine types are "normal", so 1683 * we use the standard IO-based wakeup. 1684 */ 1685 outb(0x18, 0x46e8); 1686 outb(0x01, 0x102); 1687 outb(0x08, 0x46e8); 1688 outb(EXT_BIU_MISC, 0x3ce); 1689 outb(EXT_BIU_MISC_LIN_ENABLE, 0x3cf); 1690 #endif 1691 1692 /* 1693 * Allow the CyberPro to accept PCI burst accesses 1694 */ 1695 if (cfb->id == ID_CYBERPRO_2010) { 1696 printk(KERN_INFO "%s: NOT enabling PCI bursts\n", 1697 cfb->fb.fix.id); 1698 } else { 1699 val = cyber2000_grphr(EXT_BUS_CTL, cfb); 1700 if (!(val & EXT_BUS_CTL_PCIBURST_WRITE)) { 1701 printk(KERN_INFO "%s: enabling PCI bursts\n", 1702 cfb->fb.fix.id); 1703 1704 val |= EXT_BUS_CTL_PCIBURST_WRITE; 1705 1706 if (cfb->id == ID_CYBERPRO_5000) 1707 val |= EXT_BUS_CTL_PCIBURST_READ; 1708 1709 cyber2000_grphw(EXT_BUS_CTL, val, cfb); 1710 } 1711 } 1712 1713 return 0; 1714 } 1715 1716 static int cyberpro_pci_probe(struct pci_dev *dev, 1717 const struct pci_device_id *id) 1718 { 1719 struct cfb_info *cfb; 1720 char name[16]; 1721 int err; 1722 1723 sprintf(name, "CyberPro%4X", id->device); 1724 1725 err = aperture_remove_conflicting_pci_devices(dev, name); 1726 if (err) 1727 return err; 1728 1729 err = pci_enable_device(dev); 1730 if (err) 1731 return err; 1732 1733 err = -ENOMEM; 1734 cfb = cyberpro_alloc_fb_info(id->driver_data, name); 1735 if (!cfb) 1736 goto failed_release; 1737 1738 err = pci_request_regions(dev, cfb->fb.fix.id); 1739 if (err) 1740 goto failed_regions; 1741 1742 cfb->irq = dev->irq; 1743 cfb->region = pci_ioremap_bar(dev, 0); 1744 if (!cfb->region) { 1745 err = -ENOMEM; 1746 goto failed_ioremap; 1747 } 1748 1749 cfb->regs = cfb->region + MMIO_OFFSET; 1750 cfb->fb.device = &dev->dev; 1751 cfb->fb.fix.mmio_start = pci_resource_start(dev, 0) + MMIO_OFFSET; 1752 cfb->fb.fix.smem_start = pci_resource_start(dev, 0); 1753 1754 /* 1755 * Bring up the hardware. This is expected to enable access 1756 * to the linear memory region, and allow access to the memory 1757 * mapped registers. Also, mem_ctl1 and mem_ctl2 must be 1758 * initialised. 1759 */ 1760 err = cyberpro_pci_enable_mmio(cfb); 1761 if (err) 1762 goto failed; 1763 1764 /* 1765 * Use MCLK from BIOS. FIXME: what about hotplug? 1766 */ 1767 cfb->mclk_mult = cyber2000_grphr(EXT_MCLK_MULT, cfb); 1768 cfb->mclk_div = cyber2000_grphr(EXT_MCLK_DIV, cfb); 1769 1770 #ifdef __arm__ 1771 /* 1772 * MCLK on the NetWinder and the Shark is fixed at 75MHz 1773 */ 1774 if (machine_is_netwinder()) { 1775 cfb->mclk_mult = 0xdb; 1776 cfb->mclk_div = 0x54; 1777 } 1778 #endif 1779 1780 err = cyberpro_common_probe(cfb); 1781 if (err) 1782 goto failed; 1783 1784 /* 1785 * Our driver data 1786 */ 1787 pci_set_drvdata(dev, cfb); 1788 if (int_cfb_info == NULL) 1789 int_cfb_info = cfb; 1790 1791 return 0; 1792 1793 failed: 1794 iounmap(cfb->region); 1795 failed_ioremap: 1796 pci_release_regions(dev); 1797 failed_regions: 1798 cyberpro_free_fb_info(cfb); 1799 failed_release: 1800 pci_disable_device(dev); 1801 return err; 1802 } 1803 1804 static void cyberpro_pci_remove(struct pci_dev *dev) 1805 { 1806 struct cfb_info *cfb = pci_get_drvdata(dev); 1807 1808 if (cfb) { 1809 cyberpro_common_remove(cfb); 1810 iounmap(cfb->region); 1811 cyberpro_free_fb_info(cfb); 1812 1813 if (cfb == int_cfb_info) 1814 int_cfb_info = NULL; 1815 1816 pci_release_regions(dev); 1817 pci_disable_device(dev); 1818 } 1819 } 1820 1821 static int __maybe_unused cyberpro_pci_suspend(struct device *dev) 1822 { 1823 return 0; 1824 } 1825 1826 /* 1827 * Re-initialise the CyberPro hardware 1828 */ 1829 static int __maybe_unused cyberpro_pci_resume(struct device *dev) 1830 { 1831 struct cfb_info *cfb = dev_get_drvdata(dev); 1832 1833 if (cfb) { 1834 cyberpro_pci_enable_mmio(cfb); 1835 cyberpro_common_resume(cfb); 1836 } 1837 1838 return 0; 1839 } 1840 1841 static struct pci_device_id cyberpro_pci_table[] = { 1842 /* Not yet 1843 * { PCI_VENDOR_ID_INTERG, PCI_DEVICE_ID_INTERG_1682, 1844 * PCI_ANY_ID, PCI_ANY_ID, 0, 0, ID_IGA_1682 }, 1845 */ 1846 { PCI_VENDOR_ID_INTERG, PCI_DEVICE_ID_INTERG_2000, 1847 PCI_ANY_ID, PCI_ANY_ID, 0, 0, ID_CYBERPRO_2000 }, 1848 { PCI_VENDOR_ID_INTERG, PCI_DEVICE_ID_INTERG_2010, 1849 PCI_ANY_ID, PCI_ANY_ID, 0, 0, ID_CYBERPRO_2010 }, 1850 { PCI_VENDOR_ID_INTERG, PCI_DEVICE_ID_INTERG_5000, 1851 PCI_ANY_ID, PCI_ANY_ID, 0, 0, ID_CYBERPRO_5000 }, 1852 { 0, } 1853 }; 1854 1855 MODULE_DEVICE_TABLE(pci, cyberpro_pci_table); 1856 1857 static SIMPLE_DEV_PM_OPS(cyberpro_pci_pm_ops, 1858 cyberpro_pci_suspend, 1859 cyberpro_pci_resume); 1860 1861 static struct pci_driver cyberpro_driver = { 1862 .name = "CyberPro", 1863 .probe = cyberpro_pci_probe, 1864 .remove = cyberpro_pci_remove, 1865 .driver.pm = &cyberpro_pci_pm_ops, 1866 .id_table = cyberpro_pci_table 1867 }; 1868 1869 /* 1870 * I don't think we can use the "module_init" stuff here because 1871 * the fbcon stuff may not be initialised yet. Hence the #ifdef 1872 * around module_init. 1873 * 1874 * Tony: "module_init" is now required 1875 */ 1876 static int __init cyber2000fb_init(void) 1877 { 1878 int ret = -1, err; 1879 1880 #ifndef MODULE 1881 char *option = NULL; 1882 #endif 1883 1884 if (fb_modesetting_disabled("CyberPro")) 1885 return -ENODEV; 1886 1887 #ifndef MODULE 1888 if (fb_get_options("cyber2000fb", &option)) 1889 return -ENODEV; 1890 cyber2000fb_setup(option); 1891 #endif 1892 1893 err = pci_register_driver(&cyberpro_driver); 1894 if (!err) 1895 ret = 0; 1896 1897 return ret ? err : 0; 1898 } 1899 module_init(cyber2000fb_init); 1900 1901 static void __exit cyberpro_exit(void) 1902 { 1903 pci_unregister_driver(&cyberpro_driver); 1904 } 1905 module_exit(cyberpro_exit); 1906 1907 MODULE_AUTHOR("Russell King"); 1908 MODULE_DESCRIPTION("CyberPro 2000, 2010 and 5000 framebuffer driver"); 1909 MODULE_LICENSE("GPL"); 1910