xref: /linux/drivers/video/fbdev/aty/mach64_ct.c (revision c8bfe3fad4f86a029da7157bae9699c816f0c309)
1 // SPDX-License-Identifier: GPL-2.0
2 
3 /*
4  *  ATI Mach64 CT/VT/GT/LT Support
5  */
6 
7 #include <linux/fb.h>
8 #include <linux/delay.h>
9 #include <asm/io.h>
10 #include <video/mach64.h>
11 #include "atyfb.h"
12 #ifdef CONFIG_PPC
13 #include <asm/machdep.h>
14 #endif
15 
16 #undef DEBUG
17 
18 static int aty_valid_pll_ct (const struct fb_info *info, u32 vclk_per, struct pll_ct *pll);
19 static int aty_dsp_gt       (const struct fb_info *info, u32 bpp, struct pll_ct *pll);
20 static int aty_var_to_pll_ct(const struct fb_info *info, u32 vclk_per, u32 bpp, union aty_pll *pll);
21 static u32 aty_pll_to_var_ct(const struct fb_info *info, const union aty_pll *pll);
22 
23 u8 aty_ld_pll_ct(int offset, const struct atyfb_par *par)
24 {
25 
26 	/* write addr byte */
27 	aty_st_8(CLOCK_CNTL_ADDR, (offset << 2) & PLL_ADDR, par);
28 	/* read the register value */
29 	return aty_ld_8(CLOCK_CNTL_DATA, par);
30 }
31 
32 static void aty_st_pll_ct(int offset, u8 val, const struct atyfb_par *par)
33 {
34 	/* write addr byte */
35 	aty_st_8(CLOCK_CNTL_ADDR, ((offset << 2) & PLL_ADDR) | PLL_WR_EN, par);
36 	/* write the register value */
37 	aty_st_8(CLOCK_CNTL_DATA, val & PLL_DATA, par);
38 	aty_st_8(CLOCK_CNTL_ADDR, ((offset << 2) & PLL_ADDR) & ~PLL_WR_EN, par);
39 }
40 
41 /*
42  * by Daniel Mantione
43  *                                  <daniel.mantione@freepascal.org>
44  *
45  *
46  * ATI Mach64 CT clock synthesis description.
47  *
48  * All clocks on the Mach64 can be calculated using the same principle:
49  *
50  *       XTALIN * x * FB_DIV
51  * CLK = ----------------------
52  *       PLL_REF_DIV * POST_DIV
53  *
54  * XTALIN is a fixed speed clock. Common speeds are 14.31 MHz and 29.50 MHz.
55  * PLL_REF_DIV can be set by the user, but is the same for all clocks.
56  * FB_DIV can be set by the user for each clock individually, it should be set
57  * between 128 and 255, the chip will generate a bad clock signal for too low
58  * values.
59  * x depends on the type of clock; usually it is 2, but for the MCLK it can also
60  * be set to 4.
61  * POST_DIV can be set by the user for each clock individually, Possible values
62  * are 1,2,4,8 and for some clocks other values are available too.
63  * CLK is of course the clock speed that is generated.
64  *
65  * The Mach64 has these clocks:
66  *
67  * MCLK			The clock rate of the chip
68  * XCLK			The clock rate of the on-chip memory
69  * VCLK0		First pixel clock of first CRT controller
70  * VCLK1    Second pixel clock of first CRT controller
71  * VCLK2		Third pixel clock of first CRT controller
72  * VCLK3    Fourth pixel clock of first CRT controller
73  * VCLK			Selected pixel clock, one of VCLK0, VCLK1, VCLK2, VCLK3
74  * V2CLK		Pixel clock of the second CRT controller.
75  * SCLK			Multi-purpose clock
76  *
77  * - MCLK and XCLK use the same FB_DIV
78  * - VCLK0 .. VCLK3 use the same FB_DIV
79  * - V2CLK is needed when the second CRTC is used (can be used for dualhead);
80  *   i.e. CRT monitor connected to laptop has different resolution than built
81  *   in LCD monitor.
82  * - SCLK is not available on all cards; it is know to exist on the Rage LT-PRO,
83  *   Rage XL and Rage Mobility. It is know not to exist on the Mach64 VT.
84  * - V2CLK is not available on all cards, most likely only the Rage LT-PRO,
85  *   the Rage XL and the Rage Mobility
86  *
87  * SCLK can be used to:
88  * - Clock the chip instead of MCLK
89  * - Replace XTALIN with a user defined frequency
90  * - Generate the pixel clock for the LCD monitor (instead of VCLK)
91  */
92 
93  /*
94   * It can be quite hard to calculate XCLK and MCLK if they don't run at the
95   * same frequency. Luckily, until now all cards that need asynchrone clock
96   * speeds seem to have SCLK.
97   * So this driver uses SCLK to clock the chip and XCLK to clock the memory.
98   */
99 
100 /* ------------------------------------------------------------------------- */
101 
102 /*
103  *  PLL programming (Mach64 CT family)
104  *
105  *
106  * This procedure sets the display fifo. The display fifo is a buffer that
107  * contains data read from the video memory that waits to be processed by
108  * the CRT controller.
109  *
110  * On the more modern Mach64 variants, the chip doesn't calculate the
111  * interval after which the display fifo has to be reloaded from memory
112  * automatically, the driver has to do it instead.
113  */
114 
115 #define Maximum_DSP_PRECISION 7
116 const u8 aty_postdividers[8] = {1,2,4,8,3,5,6,12};
117 
118 static int aty_dsp_gt(const struct fb_info *info, u32 bpp, struct pll_ct *pll)
119 {
120 	u32 dsp_off, dsp_on, dsp_xclks;
121 	u32 multiplier, divider, ras_multiplier, ras_divider, tmp;
122 	u8 vshift, xshift;
123 	s8 dsp_precision;
124 
125 	multiplier = ((u32)pll->mclk_fb_div) * pll->vclk_post_div_real;
126 	divider = ((u32)pll->vclk_fb_div) * pll->xclk_ref_div;
127 
128 	ras_multiplier = pll->xclkmaxrasdelay;
129 	ras_divider = 1;
130 
131 	if (bpp>=8)
132 		divider = divider * (bpp >> 2);
133 
134 	vshift = (6 - 2) - pll->xclk_post_div;	/* FIFO is 64 bits wide in accelerator mode ... */
135 
136 	if (bpp == 0)
137 		vshift--;	/* ... but only 32 bits in VGA mode. */
138 
139 #ifdef CONFIG_FB_ATY_GENERIC_LCD
140 	if (pll->xres != 0) {
141 		struct atyfb_par *par = (struct atyfb_par *) info->par;
142 
143 		multiplier = multiplier * par->lcd_width;
144 		divider = divider * pll->xres & ~7;
145 
146 		ras_multiplier = ras_multiplier * par->lcd_width;
147 		ras_divider = ras_divider * pll->xres & ~7;
148 	}
149 #endif
150 	/* If we don't do this, 32 bits for multiplier & divider won't be
151 	enough in certain situations! */
152 	while (((multiplier | divider) & 1) == 0) {
153 		multiplier = multiplier >> 1;
154 		divider = divider >> 1;
155 	}
156 
157 	/* Determine DSP precision first */
158 	tmp = ((multiplier * pll->fifo_size) << vshift) / divider;
159 
160 	for (dsp_precision = -5;  tmp;  dsp_precision++)
161 		tmp >>= 1;
162 	if (dsp_precision < 0)
163 		dsp_precision = 0;
164 	else if (dsp_precision > Maximum_DSP_PRECISION)
165 		dsp_precision = Maximum_DSP_PRECISION;
166 
167 	xshift = 6 - dsp_precision;
168 	vshift += xshift;
169 
170 	/* Move on to dsp_off */
171 	dsp_off = ((multiplier * (pll->fifo_size - 1)) << vshift) / divider -
172 		(1 << (vshift - xshift));
173 
174 /*    if (bpp == 0)
175         dsp_on = ((multiplier * 20 << vshift) + divider) / divider;
176     else */
177 	{
178 		dsp_on = ((multiplier << vshift) + divider) / divider;
179 		tmp = ((ras_multiplier << xshift) + ras_divider) / ras_divider;
180 		if (dsp_on < tmp)
181 			dsp_on = tmp;
182 		dsp_on = dsp_on + (tmp * 2) + (pll->xclkpagefaultdelay << xshift);
183 	}
184 
185 	/* Calculate rounding factor and apply it to dsp_on */
186 	tmp = ((1 << (Maximum_DSP_PRECISION - dsp_precision)) - 1) >> 1;
187 	dsp_on = ((dsp_on + tmp) / (tmp + 1)) * (tmp + 1);
188 
189 	if (dsp_on >= ((dsp_off / (tmp + 1)) * (tmp + 1))) {
190 		dsp_on = dsp_off - (multiplier << vshift) / divider;
191 		dsp_on = (dsp_on / (tmp + 1)) * (tmp + 1);
192 	}
193 
194 	/* Last but not least:  dsp_xclks */
195 	dsp_xclks = ((multiplier << (vshift + 5)) + divider) / divider;
196 
197 	/* Get register values. */
198 	pll->dsp_on_off = (dsp_on << 16) + dsp_off;
199 	pll->dsp_config = (dsp_precision << 20) | (pll->dsp_loop_latency << 16) | dsp_xclks;
200 #ifdef DEBUG
201 	printk("atyfb(%s): dsp_config 0x%08x, dsp_on_off 0x%08x\n",
202 		__func__, pll->dsp_config, pll->dsp_on_off);
203 #endif
204 	return 0;
205 }
206 
207 static int aty_valid_pll_ct(const struct fb_info *info, u32 vclk_per, struct pll_ct *pll)
208 {
209 	u32 q;
210 	struct atyfb_par *par = (struct atyfb_par *) info->par;
211 	int pllvclk;
212 
213 	/* FIXME: use the VTB/GTB /{3,6,12} post dividers if they're better suited */
214 	q = par->ref_clk_per * pll->pll_ref_div * 4 / vclk_per;
215 	if (q < 16*8 || q > 255*8) {
216 		printk(KERN_CRIT "atyfb: vclk out of range\n");
217 		return -EINVAL;
218 	} else {
219 		pll->vclk_post_div  = (q < 128*8);
220 		pll->vclk_post_div += (q <  64*8);
221 		pll->vclk_post_div += (q <  32*8);
222 	}
223 	pll->vclk_post_div_real = aty_postdividers[pll->vclk_post_div];
224 	//    pll->vclk_post_div <<= 6;
225 	pll->vclk_fb_div = q * pll->vclk_post_div_real / 8;
226 	pllvclk = (1000000 * 2 * pll->vclk_fb_div) /
227 		(par->ref_clk_per * pll->pll_ref_div);
228 #ifdef DEBUG
229 	printk("atyfb(%s): pllvclk=%d MHz, vclk=%d MHz\n",
230 		__func__, pllvclk, pllvclk / pll->vclk_post_div_real);
231 #endif
232 	pll->pll_vclk_cntl = 0x03; /* VCLK = PLL_VCLK/VCLKx_POST */
233 
234 	/* Set ECP (scaler/overlay clock) divider */
235 	if (par->pll_limits.ecp_max) {
236 		int ecp = pllvclk / pll->vclk_post_div_real;
237 		int ecp_div = 0;
238 
239 		while (ecp > par->pll_limits.ecp_max && ecp_div < 2) {
240 			ecp >>= 1;
241 			ecp_div++;
242 		}
243 		pll->pll_vclk_cntl |= ecp_div << 4;
244 	}
245 
246 	return 0;
247 }
248 
249 static int aty_var_to_pll_ct(const struct fb_info *info, u32 vclk_per, u32 bpp, union aty_pll *pll)
250 {
251 	struct atyfb_par *par = (struct atyfb_par *) info->par;
252 	int err;
253 
254 	if ((err = aty_valid_pll_ct(info, vclk_per, &pll->ct)))
255 		return err;
256 	if (M64_HAS(GTB_DSP) && (err = aty_dsp_gt(info, bpp, &pll->ct)))
257 		return err;
258 	/*aty_calc_pll_ct(info, &pll->ct);*/
259 	return 0;
260 }
261 
262 static u32 aty_pll_to_var_ct(const struct fb_info *info, const union aty_pll *pll)
263 {
264 	struct atyfb_par *par = (struct atyfb_par *) info->par;
265 	u32 ret;
266 	ret = par->ref_clk_per * pll->ct.pll_ref_div * pll->ct.vclk_post_div_real / pll->ct.vclk_fb_div / 2;
267 #ifdef CONFIG_FB_ATY_GENERIC_LCD
268 	if(pll->ct.xres > 0) {
269 		ret *= par->lcd_width;
270 		ret /= pll->ct.xres;
271 	}
272 #endif
273 #ifdef DEBUG
274 	printk("atyfb(%s): calculated 0x%08X(%i)\n", __func__, ret, ret);
275 #endif
276 	return ret;
277 }
278 
279 void aty_set_pll_ct(const struct fb_info *info, const union aty_pll *pll)
280 {
281 	struct atyfb_par *par = (struct atyfb_par *) info->par;
282 	u32 crtc_gen_cntl;
283 	u8 tmp, tmp2;
284 
285 #ifdef CONFIG_FB_ATY_GENERIC_LCD
286 	u32 lcd_gen_cntrl = 0;
287 #endif
288 
289 #ifdef DEBUG
290 	printk("atyfb(%s): about to program:\n"
291 		"pll_ext_cntl=0x%02x pll_gen_cntl=0x%02x pll_vclk_cntl=0x%02x\n",
292 		__func__,
293 		pll->ct.pll_ext_cntl, pll->ct.pll_gen_cntl, pll->ct.pll_vclk_cntl);
294 
295 	printk("atyfb(%s): setting clock %lu for FeedBackDivider %i, ReferenceDivider %i, PostDivider %i(%i)\n",
296 		__func__,
297 		par->clk_wr_offset, pll->ct.vclk_fb_div,
298 		pll->ct.pll_ref_div, pll->ct.vclk_post_div, pll->ct.vclk_post_div_real);
299 #endif
300 #ifdef CONFIG_FB_ATY_GENERIC_LCD
301 	if (par->lcd_table != 0) {
302 		/* turn off LCD */
303 		lcd_gen_cntrl = aty_ld_lcd(LCD_GEN_CNTL, par);
304 		aty_st_lcd(LCD_GEN_CNTL, lcd_gen_cntrl & ~LCD_ON, par);
305 	}
306 #endif
307 	aty_st_8(CLOCK_CNTL, par->clk_wr_offset | CLOCK_STROBE, par);
308 
309 	/* Temporarily switch to accelerator mode */
310 	crtc_gen_cntl = aty_ld_le32(CRTC_GEN_CNTL, par);
311 	if (!(crtc_gen_cntl & CRTC_EXT_DISP_EN))
312 		aty_st_le32(CRTC_GEN_CNTL, crtc_gen_cntl | CRTC_EXT_DISP_EN, par);
313 
314 	/* Reset VCLK generator */
315 	aty_st_pll_ct(PLL_VCLK_CNTL, pll->ct.pll_vclk_cntl, par);
316 
317 	/* Set post-divider */
318 	tmp2 = par->clk_wr_offset << 1;
319 	tmp = aty_ld_pll_ct(VCLK_POST_DIV, par);
320 	tmp &= ~(0x03U << tmp2);
321 	tmp |= ((pll->ct.vclk_post_div & 0x03U) << tmp2);
322 	aty_st_pll_ct(VCLK_POST_DIV, tmp, par);
323 
324 	/* Set extended post-divider */
325 	tmp = aty_ld_pll_ct(PLL_EXT_CNTL, par);
326 	tmp &= ~(0x10U << par->clk_wr_offset);
327 	tmp &= 0xF0U;
328 	tmp |= pll->ct.pll_ext_cntl;
329 	aty_st_pll_ct(PLL_EXT_CNTL, tmp, par);
330 
331 	/* Set feedback divider */
332 	tmp = VCLK0_FB_DIV + par->clk_wr_offset;
333 	aty_st_pll_ct(tmp, (pll->ct.vclk_fb_div & 0xFFU), par);
334 
335 	aty_st_pll_ct(PLL_GEN_CNTL, (pll->ct.pll_gen_cntl & (~(PLL_OVERRIDE | PLL_MCLK_RST))) | OSC_EN, par);
336 
337 	/* End VCLK generator reset */
338 	aty_st_pll_ct(PLL_VCLK_CNTL, pll->ct.pll_vclk_cntl & ~(PLL_VCLK_RST), par);
339 	mdelay(5);
340 
341 	aty_st_pll_ct(PLL_GEN_CNTL, pll->ct.pll_gen_cntl, par);
342 	aty_st_pll_ct(PLL_VCLK_CNTL, pll->ct.pll_vclk_cntl, par);
343 	mdelay(1);
344 
345 	/* Restore mode register */
346 	if (!(crtc_gen_cntl & CRTC_EXT_DISP_EN))
347 		aty_st_le32(CRTC_GEN_CNTL, crtc_gen_cntl, par);
348 
349 	if (M64_HAS(GTB_DSP)) {
350 		u8 dll_cntl;
351 
352 		if (M64_HAS(XL_DLL))
353 			dll_cntl = 0x80;
354 		else if (par->ram_type >= SDRAM)
355 			dll_cntl = 0xa6;
356 		else
357 			dll_cntl = 0xa0;
358 		aty_st_pll_ct(DLL_CNTL, dll_cntl, par);
359 		aty_st_pll_ct(VFC_CNTL, 0x1b, par);
360 		aty_st_le32(DSP_CONFIG, pll->ct.dsp_config, par);
361 		aty_st_le32(DSP_ON_OFF, pll->ct.dsp_on_off, par);
362 
363 		mdelay(10);
364 		aty_st_pll_ct(DLL_CNTL, dll_cntl, par);
365 		mdelay(10);
366 		aty_st_pll_ct(DLL_CNTL, dll_cntl | 0x40, par);
367 		mdelay(10);
368 		aty_st_pll_ct(DLL_CNTL, dll_cntl & ~0x40, par);
369 	}
370 #ifdef CONFIG_FB_ATY_GENERIC_LCD
371 	if (par->lcd_table != 0) {
372 		/* restore LCD */
373 		aty_st_lcd(LCD_GEN_CNTL, lcd_gen_cntrl, par);
374 	}
375 #endif
376 }
377 
378 static void aty_get_pll_ct(const struct fb_info *info, union aty_pll *pll)
379 {
380 	struct atyfb_par *par = (struct atyfb_par *) info->par;
381 	u8 tmp, clock;
382 
383 	clock = aty_ld_8(CLOCK_CNTL, par) & 0x03U;
384 	tmp = clock << 1;
385 	pll->ct.vclk_post_div = (aty_ld_pll_ct(VCLK_POST_DIV, par) >> tmp) & 0x03U;
386 
387 	pll->ct.pll_ext_cntl = aty_ld_pll_ct(PLL_EXT_CNTL, par) & 0x0FU;
388 	pll->ct.vclk_fb_div = aty_ld_pll_ct(VCLK0_FB_DIV + clock, par) & 0xFFU;
389 	pll->ct.pll_ref_div = aty_ld_pll_ct(PLL_REF_DIV, par);
390 	pll->ct.mclk_fb_div = aty_ld_pll_ct(MCLK_FB_DIV, par);
391 
392 	pll->ct.pll_gen_cntl = aty_ld_pll_ct(PLL_GEN_CNTL, par);
393 	pll->ct.pll_vclk_cntl = aty_ld_pll_ct(PLL_VCLK_CNTL, par);
394 
395 	if (M64_HAS(GTB_DSP)) {
396 		pll->ct.dsp_config = aty_ld_le32(DSP_CONFIG, par);
397 		pll->ct.dsp_on_off = aty_ld_le32(DSP_ON_OFF, par);
398 	}
399 }
400 
401 static int aty_init_pll_ct(const struct fb_info *info, union aty_pll *pll)
402 {
403 	struct atyfb_par *par = (struct atyfb_par *) info->par;
404 	u8 mpost_div, xpost_div, sclk_post_div_real;
405 	u32 q, memcntl, trp;
406 	u32 dsp_config;
407 #ifdef DEBUG
408 	int pllmclk, pllsclk;
409 #endif
410 	pll->ct.pll_ext_cntl = aty_ld_pll_ct(PLL_EXT_CNTL, par);
411 	pll->ct.xclk_post_div = pll->ct.pll_ext_cntl & 0x07;
412 	pll->ct.xclk_ref_div = 1;
413 	switch (pll->ct.xclk_post_div) {
414 	case 0:  case 1:  case 2:  case 3:
415 		break;
416 
417 	case 4:
418 		pll->ct.xclk_ref_div = 3;
419 		pll->ct.xclk_post_div = 0;
420 		break;
421 
422 	default:
423 		printk(KERN_CRIT "atyfb: Unsupported xclk source:  %d.\n", pll->ct.xclk_post_div);
424 		return -EINVAL;
425 	}
426 	pll->ct.mclk_fb_mult = 2;
427 	if(pll->ct.pll_ext_cntl & PLL_MFB_TIMES_4_2B) {
428 		pll->ct.mclk_fb_mult = 4;
429 		pll->ct.xclk_post_div -= 1;
430 	}
431 
432 #ifdef DEBUG
433 	printk("atyfb(%s): mclk_fb_mult=%d, xclk_post_div=%d\n",
434 		__func__, pll->ct.mclk_fb_mult, pll->ct.xclk_post_div);
435 #endif
436 
437 	memcntl = aty_ld_le32(MEM_CNTL, par);
438 	trp = (memcntl & 0x300) >> 8;
439 
440 	pll->ct.xclkpagefaultdelay = ((memcntl & 0xc00) >> 10) + ((memcntl & 0x1000) >> 12) + trp + 2;
441 	pll->ct.xclkmaxrasdelay = ((memcntl & 0x70000) >> 16) + trp + 2;
442 
443 	if (M64_HAS(FIFO_32)) {
444 		pll->ct.fifo_size = 32;
445 	} else {
446 		pll->ct.fifo_size = 24;
447 		pll->ct.xclkpagefaultdelay += 2;
448 		pll->ct.xclkmaxrasdelay += 3;
449 	}
450 
451 	switch (par->ram_type) {
452 	case DRAM:
453 		if (info->fix.smem_len<=ONE_MB) {
454 			pll->ct.dsp_loop_latency = 10;
455 		} else {
456 			pll->ct.dsp_loop_latency = 8;
457 			pll->ct.xclkpagefaultdelay += 2;
458 		}
459 		break;
460 	case EDO:
461 	case PSEUDO_EDO:
462 		if (info->fix.smem_len<=ONE_MB) {
463 			pll->ct.dsp_loop_latency = 9;
464 		} else {
465 			pll->ct.dsp_loop_latency = 8;
466 			pll->ct.xclkpagefaultdelay += 1;
467 		}
468 		break;
469 	case SDRAM:
470 		if (info->fix.smem_len<=ONE_MB) {
471 			pll->ct.dsp_loop_latency = 11;
472 		} else {
473 			pll->ct.dsp_loop_latency = 10;
474 			pll->ct.xclkpagefaultdelay += 1;
475 		}
476 		break;
477 	case SGRAM:
478 		pll->ct.dsp_loop_latency = 8;
479 		pll->ct.xclkpagefaultdelay += 3;
480 		break;
481 	default:
482 		pll->ct.dsp_loop_latency = 11;
483 		pll->ct.xclkpagefaultdelay += 3;
484 		break;
485 	}
486 
487 	if (pll->ct.xclkmaxrasdelay <= pll->ct.xclkpagefaultdelay)
488 		pll->ct.xclkmaxrasdelay = pll->ct.xclkpagefaultdelay + 1;
489 
490 	/* Allow BIOS to override */
491 	dsp_config = aty_ld_le32(DSP_CONFIG, par);
492 	aty_ld_le32(DSP_ON_OFF, par);
493 	aty_ld_le32(VGA_DSP_CONFIG, par);
494 	aty_ld_le32(VGA_DSP_ON_OFF, par);
495 
496 	if (dsp_config)
497 		pll->ct.dsp_loop_latency = (dsp_config & DSP_LOOP_LATENCY) >> 16;
498 #if 0
499 	FIXME: is it relevant for us?
500 	if ((!dsp_on_off && !M64_HAS(RESET_3D)) ||
501 		((dsp_on_off == vga_dsp_on_off) &&
502 		(!dsp_config || !((dsp_config ^ vga_dsp_config) & DSP_XCLKS_PER_QW)))) {
503 		vga_dsp_on_off &= VGA_DSP_OFF;
504 		vga_dsp_config &= VGA_DSP_XCLKS_PER_QW;
505 		if (ATIDivide(vga_dsp_on_off, vga_dsp_config, 5, 1) > 24)
506 			pll->ct.fifo_size = 32;
507 		else
508 			pll->ct.fifo_size = 24;
509 	}
510 #endif
511 	/* Exit if the user does not want us to tamper with the clock
512 	rates of her chip. */
513 	if (par->mclk_per == 0) {
514 		u8 mclk_fb_div, pll_ext_cntl;
515 		pll->ct.pll_ref_div = aty_ld_pll_ct(PLL_REF_DIV, par);
516 		pll_ext_cntl = aty_ld_pll_ct(PLL_EXT_CNTL, par);
517 		pll->ct.xclk_post_div_real = aty_postdividers[pll_ext_cntl & 0x07];
518 		mclk_fb_div = aty_ld_pll_ct(MCLK_FB_DIV, par);
519 		if (pll_ext_cntl & PLL_MFB_TIMES_4_2B)
520 			mclk_fb_div <<= 1;
521 		pll->ct.mclk_fb_div = mclk_fb_div;
522 		return 0;
523 	}
524 
525 	pll->ct.pll_ref_div = par->pll_per * 2 * 255 / par->ref_clk_per;
526 
527 	/* FIXME: use the VTB/GTB /3 post divider if it's better suited */
528 	q = par->ref_clk_per * pll->ct.pll_ref_div * 8 /
529 		(pll->ct.mclk_fb_mult * par->xclk_per);
530 
531 	if (q < 16*8 || q > 255*8) {
532 		printk(KERN_CRIT "atxfb: xclk out of range\n");
533 		return -EINVAL;
534 	} else {
535 		xpost_div  = (q < 128*8);
536 		xpost_div += (q <  64*8);
537 		xpost_div += (q <  32*8);
538 	}
539 	pll->ct.xclk_post_div_real = aty_postdividers[xpost_div];
540 	pll->ct.mclk_fb_div = q * pll->ct.xclk_post_div_real / 8;
541 
542 #ifdef CONFIG_PPC
543 	if (machine_is(powermac)) {
544 		/* Override PLL_EXT_CNTL & 0x07. */
545 		pll->ct.xclk_post_div = xpost_div;
546 		pll->ct.xclk_ref_div = 1;
547 	}
548 #endif
549 
550 #ifdef DEBUG
551 	pllmclk = (1000000 * pll->ct.mclk_fb_mult * pll->ct.mclk_fb_div) /
552 			(par->ref_clk_per * pll->ct.pll_ref_div);
553 	printk("atyfb(%s): pllmclk=%d MHz, xclk=%d MHz\n",
554 		__func__, pllmclk, pllmclk / pll->ct.xclk_post_div_real);
555 #endif
556 
557 	if (M64_HAS(SDRAM_MAGIC_PLL) && (par->ram_type >= SDRAM))
558 		pll->ct.pll_gen_cntl = OSC_EN;
559 	else
560 		pll->ct.pll_gen_cntl = OSC_EN | DLL_PWDN /* | FORCE_DCLK_TRI_STATE */;
561 
562 	if (M64_HAS(MAGIC_POSTDIV))
563 		pll->ct.pll_ext_cntl = 0;
564 	else
565 		pll->ct.pll_ext_cntl = xpost_div;
566 
567 	if (pll->ct.mclk_fb_mult == 4)
568 		pll->ct.pll_ext_cntl |= PLL_MFB_TIMES_4_2B;
569 
570 	if (par->mclk_per == par->xclk_per) {
571 		pll->ct.pll_gen_cntl |= (xpost_div << 4); /* mclk == xclk */
572 	} else {
573 		/*
574 		* The chip clock is not equal to the memory clock.
575 		* Therefore we will use sclk to clock the chip.
576 		*/
577 		pll->ct.pll_gen_cntl |= (6 << 4); /* mclk == sclk */
578 
579 		q = par->ref_clk_per * pll->ct.pll_ref_div * 4 / par->mclk_per;
580 		if (q < 16*8 || q > 255*8) {
581 			printk(KERN_CRIT "atyfb: mclk out of range\n");
582 			return -EINVAL;
583 		} else {
584 			mpost_div  = (q < 128*8);
585 			mpost_div += (q <  64*8);
586 			mpost_div += (q <  32*8);
587 		}
588 		sclk_post_div_real = aty_postdividers[mpost_div];
589 		pll->ct.sclk_fb_div = q * sclk_post_div_real / 8;
590 		pll->ct.spll_cntl2 = mpost_div << 4;
591 #ifdef DEBUG
592 		pllsclk = (1000000 * 2 * pll->ct.sclk_fb_div) /
593 			(par->ref_clk_per * pll->ct.pll_ref_div);
594 		printk("atyfb(%s): use sclk, pllsclk=%d MHz, sclk=mclk=%d MHz\n",
595 			__func__, pllsclk, pllsclk / sclk_post_div_real);
596 #endif
597 	}
598 
599 	/* Disable the extra precision pixel clock controls since we do not use them. */
600 	pll->ct.ext_vpll_cntl = aty_ld_pll_ct(EXT_VPLL_CNTL, par);
601 	pll->ct.ext_vpll_cntl &= ~(EXT_VPLL_EN | EXT_VPLL_VGA_EN | EXT_VPLL_INSYNC);
602 
603 	return 0;
604 }
605 
606 static void aty_resume_pll_ct(const struct fb_info *info,
607 			      union aty_pll *pll)
608 {
609 	struct atyfb_par *par = info->par;
610 
611 	if (par->mclk_per != par->xclk_per) {
612 		/*
613 		* This disables the sclk, crashes the computer as reported:
614 		* aty_st_pll_ct(SPLL_CNTL2, 3, info);
615 		*
616 		* So it seems the sclk must be enabled before it is used;
617 		* so PLL_GEN_CNTL must be programmed *after* the sclk.
618 		*/
619 		aty_st_pll_ct(SCLK_FB_DIV, pll->ct.sclk_fb_div, par);
620 		aty_st_pll_ct(SPLL_CNTL2, pll->ct.spll_cntl2, par);
621 		/*
622 		 * SCLK has been started. Wait for the PLL to lock. 5 ms
623 		 * should be enough according to mach64 programmer's guide.
624 		 */
625 		mdelay(5);
626 	}
627 
628 	aty_st_pll_ct(PLL_REF_DIV, pll->ct.pll_ref_div, par);
629 	aty_st_pll_ct(PLL_GEN_CNTL, pll->ct.pll_gen_cntl, par);
630 	aty_st_pll_ct(MCLK_FB_DIV, pll->ct.mclk_fb_div, par);
631 	aty_st_pll_ct(PLL_EXT_CNTL, pll->ct.pll_ext_cntl, par);
632 	aty_st_pll_ct(EXT_VPLL_CNTL, pll->ct.ext_vpll_cntl, par);
633 }
634 
635 static int dummy(void)
636 {
637 	return 0;
638 }
639 
640 const struct aty_dac_ops aty_dac_ct = {
641 	.set_dac	= (void *) dummy,
642 };
643 
644 const struct aty_pll_ops aty_pll_ct = {
645 	.var_to_pll	= aty_var_to_pll_ct,
646 	.pll_to_var	= aty_pll_to_var_ct,
647 	.set_pll	= aty_set_pll_ct,
648 	.get_pll	= aty_get_pll_ct,
649 	.init_pll	= aty_init_pll_ct,
650 	.resume_pll	= aty_resume_pll_ct,
651 };
652