xref: /linux/drivers/video/fbdev/aty/aty128fb.c (revision 704fd176204577459beadb37d46e164d376fabc3)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /* $Id: aty128fb.c,v 1.1.1.1.36.1 1999/12/11 09:03:05 Exp $
3  *  linux/drivers/video/aty128fb.c -- Frame buffer device for ATI Rage128
4  *
5  *  Copyright (C) 1999-2003, Brad Douglas <brad@neruo.com>
6  *  Copyright (C) 1999, Anthony Tong <atong@uiuc.edu>
7  *
8  *                Ani Joshi / Jeff Garzik
9  *                      - Code cleanup
10  *
11  *                Michel Danzer <michdaen@iiic.ethz.ch>
12  *                      - 15/16 bit cleanup
13  *                      - fix panning
14  *
15  *                Benjamin Herrenschmidt
16  *                      - pmac-specific PM stuff
17  *			- various fixes & cleanups
18  *
19  *                Andreas Hundt <andi@convergence.de>
20  *                      - FB_ACTIVATE fixes
21  *
22  *		  Paul Mackerras <paulus@samba.org>
23  *			- Convert to new framebuffer API,
24  *			  fix colormap setting at 16 bits/pixel (565)
25  *
26  *		  Paul Mundt
27  *		  	- PCI hotplug
28  *
29  *		  Jon Smirl <jonsmirl@yahoo.com>
30  * 			- PCI ID update
31  * 			- replace ROM BIOS search
32  *
33  *  Based off of Geert's atyfb.c and vfb.c.
34  *
35  *  TODO:
36  *		- monitor sensing (DDC)
37  *              - virtual display
38  *		- other platform support (only ppc/x86 supported)
39  *		- hardware cursor support
40  *
41  *    Please cc: your patches to brad@neruo.com.
42  */
43 
44 /*
45  * A special note of gratitude to ATI's devrel for providing documentation,
46  * example code and hardware. Thanks Nitya.	-atong and brad
47  */
48 
49 
50 #include <linux/module.h>
51 #include <linux/moduleparam.h>
52 #include <linux/kernel.h>
53 #include <linux/errno.h>
54 #include <linux/string.h>
55 #include <linux/mm.h>
56 #include <linux/vmalloc.h>
57 #include <linux/delay.h>
58 #include <linux/interrupt.h>
59 #include <linux/uaccess.h>
60 #include <linux/fb.h>
61 #include <linux/init.h>
62 #include <linux/pci.h>
63 #include <linux/ioport.h>
64 #include <linux/console.h>
65 #include <linux/backlight.h>
66 #include <asm/io.h>
67 
68 #ifdef CONFIG_PPC_PMAC
69 #include <asm/machdep.h>
70 #include <asm/pmac_feature.h>
71 #include "../macmodes.h"
72 #endif
73 
74 #ifdef CONFIG_PMAC_BACKLIGHT
75 #include <asm/backlight.h>
76 #endif
77 
78 #ifdef CONFIG_BOOTX_TEXT
79 #include <asm/btext.h>
80 #endif /* CONFIG_BOOTX_TEXT */
81 
82 #include <video/aty128.h>
83 
84 /* Debug flag */
85 #undef DEBUG
86 
87 #ifdef DEBUG
88 #define DBG(fmt, args...) \
89 	printk(KERN_DEBUG "aty128fb: %s " fmt, __func__, ##args);
90 #else
91 #define DBG(fmt, args...)
92 #endif
93 
94 #ifndef CONFIG_PPC_PMAC
95 /* default mode */
96 static const struct fb_var_screeninfo default_var = {
97 	/* 640x480, 60 Hz, Non-Interlaced (25.175 MHz dotclock) */
98 	640, 480, 640, 480, 0, 0, 8, 0,
99 	{0, 8, 0}, {0, 8, 0}, {0, 8, 0}, {0, 0, 0},
100 	0, 0, -1, -1, 0, 39722, 48, 16, 33, 10, 96, 2,
101 	0, FB_VMODE_NONINTERLACED
102 };
103 
104 #else /* CONFIG_PPC_PMAC */
105 /* default to 1024x768 at 75Hz on PPC - this will work
106  * on the iMac, the usual 640x480 @ 60Hz doesn't. */
107 static const struct fb_var_screeninfo default_var = {
108 	/* 1024x768, 75 Hz, Non-Interlaced (78.75 MHz dotclock) */
109 	1024, 768, 1024, 768, 0, 0, 8, 0,
110 	{0, 8, 0}, {0, 8, 0}, {0, 8, 0}, {0, 0, 0},
111 	0, 0, -1, -1, 0, 12699, 160, 32, 28, 1, 96, 3,
112 	FB_SYNC_HOR_HIGH_ACT | FB_SYNC_VERT_HIGH_ACT,
113 	FB_VMODE_NONINTERLACED
114 };
115 #endif /* CONFIG_PPC_PMAC */
116 
117 /* default modedb mode */
118 /* 640x480, 60 Hz, Non-Interlaced (25.172 MHz dotclock) */
119 static const struct fb_videomode defaultmode = {
120 	.refresh =	60,
121 	.xres =		640,
122 	.yres =		480,
123 	.pixclock =	39722,
124 	.left_margin =	48,
125 	.right_margin =	16,
126 	.upper_margin =	33,
127 	.lower_margin =	10,
128 	.hsync_len =	96,
129 	.vsync_len =	2,
130 	.sync =		0,
131 	.vmode =	FB_VMODE_NONINTERLACED
132 };
133 
134 /* Chip generations */
135 enum {
136 	rage_128,
137 	rage_128_pci,
138 	rage_128_pro,
139 	rage_128_pro_pci,
140 	rage_M3,
141 	rage_M3_pci,
142 	rage_M4,
143 	rage_128_ultra,
144 };
145 
146 /* Must match above enum */
147 static char * const r128_family[] = {
148 	"AGP",
149 	"PCI",
150 	"PRO AGP",
151 	"PRO PCI",
152 	"M3 AGP",
153 	"M3 PCI",
154 	"M4 AGP",
155 	"Ultra AGP",
156 };
157 
158 /*
159  * PCI driver prototypes
160  */
161 static int aty128_probe(struct pci_dev *pdev,
162                                const struct pci_device_id *ent);
163 static void aty128_remove(struct pci_dev *pdev);
164 static int aty128_pci_suspend_late(struct device *dev, pm_message_t state);
165 static int __maybe_unused aty128_pci_suspend(struct device *dev);
166 static int __maybe_unused aty128_pci_hibernate(struct device *dev);
167 static int __maybe_unused aty128_pci_freeze(struct device *dev);
168 static int __maybe_unused aty128_pci_resume(struct device *dev);
169 static int aty128_do_resume(struct pci_dev *pdev);
170 
171 static const struct dev_pm_ops aty128_pci_pm_ops = {
172 	.suspend	= aty128_pci_suspend,
173 	.resume		= aty128_pci_resume,
174 	.freeze		= aty128_pci_freeze,
175 	.thaw		= aty128_pci_resume,
176 	.poweroff	= aty128_pci_hibernate,
177 	.restore	= aty128_pci_resume,
178 };
179 
180 /* supported Rage128 chipsets */
181 static const struct pci_device_id aty128_pci_tbl[] = {
182 	{ PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_LE,
183 	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_M3_pci },
184 	{ PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_LF,
185 	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_M3 },
186 	{ PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_MF,
187 	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_M4 },
188 	{ PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_ML,
189 	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_M4 },
190 	{ PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_PA,
191 	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_pro },
192 	{ PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_PB,
193 	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_pro },
194 	{ PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_PC,
195 	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_pro },
196 	{ PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_PD,
197 	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_pro_pci },
198 	{ PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_PE,
199 	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_pro },
200 	{ PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_PF,
201 	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_pro },
202 	{ PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_PG,
203 	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_pro },
204 	{ PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_PH,
205 	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_pro },
206 	{ PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_PI,
207 	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_pro },
208 	{ PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_PJ,
209 	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_pro },
210 	{ PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_PK,
211 	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_pro },
212 	{ PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_PL,
213 	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_pro },
214 	{ PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_PM,
215 	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_pro },
216 	{ PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_PN,
217 	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_pro },
218 	{ PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_PO,
219 	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_pro },
220 	{ PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_PP,
221 	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_pro_pci },
222 	{ PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_PQ,
223 	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_pro },
224 	{ PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_PR,
225 	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_pro_pci },
226 	{ PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_PS,
227 	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_pro },
228 	{ PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_PT,
229 	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_pro },
230 	{ PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_PU,
231 	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_pro },
232 	{ PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_PV,
233 	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_pro },
234 	{ PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_PW,
235 	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_pro },
236 	{ PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_PX,
237 	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_pro },
238 	{ PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_RE,
239 	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_pci },
240 	{ PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_RF,
241 	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128 },
242 	{ PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_RG,
243 	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128 },
244 	{ PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_RK,
245 	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_pci },
246 	{ PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_RL,
247 	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128 },
248 	{ PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_SE,
249 	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128 },
250 	{ PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_SF,
251 	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_pci },
252 	{ PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_SG,
253 	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128 },
254 	{ PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_SH,
255 	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128 },
256 	{ PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_SK,
257 	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128 },
258 	{ PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_SL,
259 	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128 },
260 	{ PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_SM,
261 	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128 },
262 	{ PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_SN,
263 	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128 },
264 	{ PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_TF,
265 	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_ultra },
266 	{ PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_TL,
267 	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_ultra },
268 	{ PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_TR,
269 	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_ultra },
270 	{ PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_TS,
271 	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_ultra },
272 	{ PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_TT,
273 	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_ultra },
274 	{ PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_TU,
275 	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_ultra },
276 	{ 0, }
277 };
278 
279 MODULE_DEVICE_TABLE(pci, aty128_pci_tbl);
280 
281 static struct pci_driver aty128fb_driver = {
282 	.name		= "aty128fb",
283 	.id_table	= aty128_pci_tbl,
284 	.probe		= aty128_probe,
285 	.remove		= aty128_remove,
286 	.driver.pm	= &aty128_pci_pm_ops,
287 };
288 
289 /* packed BIOS settings */
290 #ifndef CONFIG_PPC
291 typedef struct {
292 	u8 clock_chip_type;
293 	u8 struct_size;
294 	u8 accelerator_entry;
295 	u8 VGA_entry;
296 	u16 VGA_table_offset;
297 	u16 POST_table_offset;
298 	u16 XCLK;
299 	u16 MCLK;
300 	u8 num_PLL_blocks;
301 	u8 size_PLL_blocks;
302 	u16 PCLK_ref_freq;
303 	u16 PCLK_ref_divider;
304 	u32 PCLK_min_freq;
305 	u32 PCLK_max_freq;
306 	u16 MCLK_ref_freq;
307 	u16 MCLK_ref_divider;
308 	u32 MCLK_min_freq;
309 	u32 MCLK_max_freq;
310 	u16 XCLK_ref_freq;
311 	u16 XCLK_ref_divider;
312 	u32 XCLK_min_freq;
313 	u32 XCLK_max_freq;
314 } __attribute__ ((packed)) PLL_BLOCK;
315 #endif /* !CONFIG_PPC */
316 
317 /* onboard memory information */
318 struct aty128_meminfo {
319 	u8 ML;
320 	u8 MB;
321 	u8 Trcd;
322 	u8 Trp;
323 	u8 Twr;
324 	u8 CL;
325 	u8 Tr2w;
326 	u8 LoopLatency;
327 	u8 DspOn;
328 	u8 Rloop;
329 	const char *name;
330 };
331 
332 /* various memory configurations */
333 static const struct aty128_meminfo sdr_128 = {
334 	.ML = 4,
335 	.MB = 4,
336 	.Trcd = 3,
337 	.Trp = 3,
338 	.Twr = 1,
339 	.CL = 3,
340 	.Tr2w = 1,
341 	.LoopLatency = 16,
342 	.DspOn = 30,
343 	.Rloop = 16,
344 	.name = "128-bit SDR SGRAM (1:1)",
345 };
346 
347 static const struct aty128_meminfo sdr_sgram = {
348 	.ML = 4,
349 	.MB = 4,
350 	.Trcd = 1,
351 	.Trp = 2,
352 	.Twr = 1,
353 	.CL = 2,
354 	.Tr2w = 1,
355 	.LoopLatency = 16,
356 	.DspOn = 24,
357 	.Rloop = 16,
358 	.name = "64-bit SDR SGRAM (2:1)",
359 };
360 
361 static const struct aty128_meminfo ddr_sgram = {
362 	.ML = 4,
363 	.MB = 4,
364 	.Trcd = 3,
365 	.Trp = 3,
366 	.Twr = 2,
367 	.CL = 3,
368 	.Tr2w = 1,
369 	.LoopLatency = 16,
370 	.DspOn = 31,
371 	.Rloop = 16,
372 	.name = "64-bit DDR SGRAM",
373 };
374 
375 static const struct fb_fix_screeninfo aty128fb_fix = {
376 	.id		= "ATY Rage128",
377 	.type		= FB_TYPE_PACKED_PIXELS,
378 	.visual		= FB_VISUAL_PSEUDOCOLOR,
379 	.xpanstep	= 8,
380 	.ypanstep	= 1,
381 	.mmio_len	= 0x2000,
382 	.accel		= FB_ACCEL_ATI_RAGE128,
383 };
384 
385 static char *mode_option = NULL;
386 
387 #ifdef CONFIG_PPC_PMAC
388 static int default_vmode = VMODE_1024_768_60;
389 static int default_cmode = CMODE_8;
390 #endif
391 
392 static int default_crt_on = 0;
393 static int default_lcd_on = 1;
394 static bool mtrr = true;
395 
396 #ifdef CONFIG_FB_ATY128_BACKLIGHT
397 static int backlight = IS_BUILTIN(CONFIG_PMAC_BACKLIGHT);
398 #endif
399 
400 /* PLL constants */
401 struct aty128_constants {
402 	u32 ref_clk;
403 	u32 ppll_min;
404 	u32 ppll_max;
405 	u32 ref_divider;
406 	u32 xclk;
407 	u32 fifo_width;
408 	u32 fifo_depth;
409 };
410 
411 struct aty128_crtc {
412 	u32 gen_cntl;
413 	u32 h_total, h_sync_strt_wid;
414 	u32 v_total, v_sync_strt_wid;
415 	u32 pitch;
416 	u32 offset, offset_cntl;
417 	u32 xoffset, yoffset;
418 	u32 vxres, vyres;
419 	u32 depth, bpp;
420 };
421 
422 struct aty128_pll {
423 	u32 post_divider;
424 	u32 feedback_divider;
425 	u32 vclk;
426 };
427 
428 struct aty128_ddafifo {
429 	u32 dda_config;
430 	u32 dda_on_off;
431 };
432 
433 /* register values for a specific mode */
434 struct aty128fb_par {
435 	struct aty128_crtc crtc;
436 	struct aty128_pll pll;
437 	struct aty128_ddafifo fifo_reg;
438 	u32 accel_flags;
439 	struct aty128_constants constants;  /* PLL and others      */
440 	void __iomem *regbase;              /* remapped mmio       */
441 	u32 vram_size;                      /* onboard video ram   */
442 	int chip_gen;
443 	const struct aty128_meminfo *mem;   /* onboard mem info    */
444 	int wc_cookie;
445 	int blitter_may_be_busy;
446 	int fifo_slots;                 /* free slots in FIFO (64 max) */
447 
448 	int crt_on, lcd_on;
449 	struct pci_dev *pdev;
450 	struct fb_info *next;
451 	int	asleep;
452 	int	lock_blank;
453 
454 	u8	red[32];		/* see aty128fb_setcolreg */
455 	u8	green[64];
456 	u8	blue[32];
457 	u32	pseudo_palette[16];	/* used for TRUECOLOR */
458 };
459 
460 
461 #define round_div(n, d) ((n+(d/2))/d)
462 
463 static int aty128fb_check_var(struct fb_var_screeninfo *var,
464 			      struct fb_info *info);
465 static int aty128fb_set_par(struct fb_info *info);
466 static int aty128fb_setcolreg(u_int regno, u_int red, u_int green, u_int blue,
467 			      u_int transp, struct fb_info *info);
468 static int aty128fb_pan_display(struct fb_var_screeninfo *var,
469 			   struct fb_info *fb);
470 static int aty128fb_blank(int blank, struct fb_info *fb);
471 static int aty128fb_ioctl(struct fb_info *info, u_int cmd, unsigned long arg);
472 static int aty128fb_sync(struct fb_info *info);
473 
474     /*
475      *  Internal routines
476      */
477 
478 static int aty128_encode_var(struct fb_var_screeninfo *var,
479                              const struct aty128fb_par *par);
480 static int aty128_decode_var(struct fb_var_screeninfo *var,
481                              struct aty128fb_par *par);
482 static void aty128_timings(struct aty128fb_par *par);
483 static void aty128_init_engine(struct aty128fb_par *par);
484 static void aty128_reset_engine(const struct aty128fb_par *par);
485 static void aty128_flush_pixel_cache(const struct aty128fb_par *par);
486 static void do_wait_for_fifo(u16 entries, struct aty128fb_par *par);
487 static void wait_for_fifo(u16 entries, struct aty128fb_par *par);
488 static void wait_for_idle(struct aty128fb_par *par);
489 static u32 depth_to_dst(u32 depth);
490 
491 #ifdef CONFIG_FB_ATY128_BACKLIGHT
492 static void aty128_bl_set_power(struct fb_info *info, int power);
493 #endif
494 
495 #define BIOS_IN8(v)  	(readb(bios + (v)))
496 #define BIOS_IN16(v) 	(readb(bios + (v)) | \
497 			  (readb(bios + (v) + 1) << 8))
498 #define BIOS_IN32(v) 	(readb(bios + (v)) | \
499 			  (readb(bios + (v) + 1) << 8) | \
500 			  (readb(bios + (v) + 2) << 16) | \
501 			  (readb(bios + (v) + 3) << 24))
502 
503 
504 static const struct fb_ops aty128fb_ops = {
505 	.owner		= THIS_MODULE,
506 	.fb_check_var	= aty128fb_check_var,
507 	.fb_set_par	= aty128fb_set_par,
508 	.fb_setcolreg	= aty128fb_setcolreg,
509 	.fb_pan_display = aty128fb_pan_display,
510 	.fb_blank	= aty128fb_blank,
511 	.fb_ioctl	= aty128fb_ioctl,
512 	.fb_sync	= aty128fb_sync,
513 	.fb_fillrect	= cfb_fillrect,
514 	.fb_copyarea	= cfb_copyarea,
515 	.fb_imageblit	= cfb_imageblit,
516 };
517 
518     /*
519      * Functions to read from/write to the mmio registers
520      *	- endian conversions may possibly be avoided by
521      *    using the other register aperture. TODO.
522      */
523 static inline u32 _aty_ld_le32(volatile unsigned int regindex,
524 			       const struct aty128fb_par *par)
525 {
526 	return readl (par->regbase + regindex);
527 }
528 
529 static inline void _aty_st_le32(volatile unsigned int regindex, u32 val,
530 				const struct aty128fb_par *par)
531 {
532 	writel (val, par->regbase + regindex);
533 }
534 
535 static inline u8 _aty_ld_8(unsigned int regindex,
536 			   const struct aty128fb_par *par)
537 {
538 	return readb (par->regbase + regindex);
539 }
540 
541 static inline void _aty_st_8(unsigned int regindex, u8 val,
542 			     const struct aty128fb_par *par)
543 {
544 	writeb (val, par->regbase + regindex);
545 }
546 
547 #define aty_ld_le32(regindex)		_aty_ld_le32(regindex, par)
548 #define aty_st_le32(regindex, val)	_aty_st_le32(regindex, val, par)
549 #define aty_ld_8(regindex)		_aty_ld_8(regindex, par)
550 #define aty_st_8(regindex, val)		_aty_st_8(regindex, val, par)
551 
552     /*
553      * Functions to read from/write to the pll registers
554      */
555 
556 #define aty_ld_pll(pll_index)		_aty_ld_pll(pll_index, par)
557 #define aty_st_pll(pll_index, val)	_aty_st_pll(pll_index, val, par)
558 
559 
560 static u32 _aty_ld_pll(unsigned int pll_index,
561 		       const struct aty128fb_par *par)
562 {
563 	aty_st_8(CLOCK_CNTL_INDEX, pll_index & 0x3F);
564 	return aty_ld_le32(CLOCK_CNTL_DATA);
565 }
566 
567 
568 static void _aty_st_pll(unsigned int pll_index, u32 val,
569 			const struct aty128fb_par *par)
570 {
571 	aty_st_8(CLOCK_CNTL_INDEX, (pll_index & 0x3F) | PLL_WR_EN);
572 	aty_st_le32(CLOCK_CNTL_DATA, val);
573 }
574 
575 
576 /* return true when the PLL has completed an atomic update */
577 static int aty_pll_readupdate(const struct aty128fb_par *par)
578 {
579 	return !(aty_ld_pll(PPLL_REF_DIV) & PPLL_ATOMIC_UPDATE_R);
580 }
581 
582 
583 static void aty_pll_wait_readupdate(const struct aty128fb_par *par)
584 {
585 	unsigned long timeout = jiffies + HZ/100; // should be more than enough
586 	int reset = 1;
587 
588 	while (time_before(jiffies, timeout))
589 		if (aty_pll_readupdate(par)) {
590 			reset = 0;
591 			break;
592 		}
593 
594 	if (reset)	/* reset engine?? */
595 		printk(KERN_DEBUG "aty128fb: PLL write timeout!\n");
596 }
597 
598 
599 /* tell PLL to update */
600 static void aty_pll_writeupdate(const struct aty128fb_par *par)
601 {
602 	aty_pll_wait_readupdate(par);
603 
604 	aty_st_pll(PPLL_REF_DIV,
605 		   aty_ld_pll(PPLL_REF_DIV) | PPLL_ATOMIC_UPDATE_W);
606 }
607 
608 
609 /* write to the scratch register to test r/w functionality */
610 static int register_test(const struct aty128fb_par *par)
611 {
612 	u32 val;
613 	int flag = 0;
614 
615 	val = aty_ld_le32(BIOS_0_SCRATCH);
616 
617 	aty_st_le32(BIOS_0_SCRATCH, 0x55555555);
618 	if (aty_ld_le32(BIOS_0_SCRATCH) == 0x55555555) {
619 		aty_st_le32(BIOS_0_SCRATCH, 0xAAAAAAAA);
620 
621 		if (aty_ld_le32(BIOS_0_SCRATCH) == 0xAAAAAAAA)
622 			flag = 1;
623 	}
624 
625 	aty_st_le32(BIOS_0_SCRATCH, val);	// restore value
626 	return flag;
627 }
628 
629 
630 /*
631  * Accelerator engine functions
632  */
633 static void do_wait_for_fifo(u16 entries, struct aty128fb_par *par)
634 {
635 	int i;
636 
637 	for (;;) {
638 		for (i = 0; i < 2000000; i++) {
639 			par->fifo_slots = aty_ld_le32(GUI_STAT) & 0x0fff;
640 			if (par->fifo_slots >= entries)
641 				return;
642 		}
643 		aty128_reset_engine(par);
644 	}
645 }
646 
647 
648 static void wait_for_idle(struct aty128fb_par *par)
649 {
650 	int i;
651 
652 	do_wait_for_fifo(64, par);
653 
654 	for (;;) {
655 		for (i = 0; i < 2000000; i++) {
656 			if (!(aty_ld_le32(GUI_STAT) & (1 << 31))) {
657 				aty128_flush_pixel_cache(par);
658 				par->blitter_may_be_busy = 0;
659 				return;
660 			}
661 		}
662 		aty128_reset_engine(par);
663 	}
664 }
665 
666 
667 static void wait_for_fifo(u16 entries, struct aty128fb_par *par)
668 {
669 	if (par->fifo_slots < entries)
670 		do_wait_for_fifo(64, par);
671 	par->fifo_slots -= entries;
672 }
673 
674 
675 static void aty128_flush_pixel_cache(const struct aty128fb_par *par)
676 {
677 	int i;
678 	u32 tmp;
679 
680 	tmp = aty_ld_le32(PC_NGUI_CTLSTAT);
681 	tmp &= ~(0x00ff);
682 	tmp |= 0x00ff;
683 	aty_st_le32(PC_NGUI_CTLSTAT, tmp);
684 
685 	for (i = 0; i < 2000000; i++)
686 		if (!(aty_ld_le32(PC_NGUI_CTLSTAT) & PC_BUSY))
687 			break;
688 }
689 
690 
691 static void aty128_reset_engine(const struct aty128fb_par *par)
692 {
693 	u32 gen_reset_cntl, clock_cntl_index, mclk_cntl;
694 
695 	aty128_flush_pixel_cache(par);
696 
697 	clock_cntl_index = aty_ld_le32(CLOCK_CNTL_INDEX);
698 	mclk_cntl = aty_ld_pll(MCLK_CNTL);
699 
700 	aty_st_pll(MCLK_CNTL, mclk_cntl | 0x00030000);
701 
702 	gen_reset_cntl = aty_ld_le32(GEN_RESET_CNTL);
703 	aty_st_le32(GEN_RESET_CNTL, gen_reset_cntl | SOFT_RESET_GUI);
704 	aty_ld_le32(GEN_RESET_CNTL);
705 	aty_st_le32(GEN_RESET_CNTL, gen_reset_cntl & ~(SOFT_RESET_GUI));
706 	aty_ld_le32(GEN_RESET_CNTL);
707 
708 	aty_st_pll(MCLK_CNTL, mclk_cntl);
709 	aty_st_le32(CLOCK_CNTL_INDEX, clock_cntl_index);
710 	aty_st_le32(GEN_RESET_CNTL, gen_reset_cntl);
711 
712 	/* use old pio mode */
713 	aty_st_le32(PM4_BUFFER_CNTL, PM4_BUFFER_CNTL_NONPM4);
714 
715 	DBG("engine reset");
716 }
717 
718 
719 static void aty128_init_engine(struct aty128fb_par *par)
720 {
721 	u32 pitch_value;
722 
723 	wait_for_idle(par);
724 
725 	/* 3D scaler not spoken here */
726 	wait_for_fifo(1, par);
727 	aty_st_le32(SCALE_3D_CNTL, 0x00000000);
728 
729 	aty128_reset_engine(par);
730 
731 	pitch_value = par->crtc.pitch;
732 	if (par->crtc.bpp == 24) {
733 		pitch_value = pitch_value * 3;
734 	}
735 
736 	wait_for_fifo(4, par);
737 	/* setup engine offset registers */
738 	aty_st_le32(DEFAULT_OFFSET, 0x00000000);
739 
740 	/* setup engine pitch registers */
741 	aty_st_le32(DEFAULT_PITCH, pitch_value);
742 
743 	/* set the default scissor register to max dimensions */
744 	aty_st_le32(DEFAULT_SC_BOTTOM_RIGHT, (0x1FFF << 16) | 0x1FFF);
745 
746 	/* set the drawing controls registers */
747 	aty_st_le32(DP_GUI_MASTER_CNTL,
748 		    GMC_SRC_PITCH_OFFSET_DEFAULT		|
749 		    GMC_DST_PITCH_OFFSET_DEFAULT		|
750 		    GMC_SRC_CLIP_DEFAULT			|
751 		    GMC_DST_CLIP_DEFAULT			|
752 		    GMC_BRUSH_SOLIDCOLOR			|
753 		    (depth_to_dst(par->crtc.depth) << 8)	|
754 		    GMC_SRC_DSTCOLOR			|
755 		    GMC_BYTE_ORDER_MSB_TO_LSB		|
756 		    GMC_DP_CONVERSION_TEMP_6500		|
757 		    ROP3_PATCOPY				|
758 		    GMC_DP_SRC_RECT				|
759 		    GMC_3D_FCN_EN_CLR			|
760 		    GMC_DST_CLR_CMP_FCN_CLEAR		|
761 		    GMC_AUX_CLIP_CLEAR			|
762 		    GMC_WRITE_MASK_SET);
763 
764 	wait_for_fifo(8, par);
765 	/* clear the line drawing registers */
766 	aty_st_le32(DST_BRES_ERR, 0);
767 	aty_st_le32(DST_BRES_INC, 0);
768 	aty_st_le32(DST_BRES_DEC, 0);
769 
770 	/* set brush color registers */
771 	aty_st_le32(DP_BRUSH_FRGD_CLR, 0xFFFFFFFF); /* white */
772 	aty_st_le32(DP_BRUSH_BKGD_CLR, 0x00000000); /* black */
773 
774 	/* set source color registers */
775 	aty_st_le32(DP_SRC_FRGD_CLR, 0xFFFFFFFF);   /* white */
776 	aty_st_le32(DP_SRC_BKGD_CLR, 0x00000000);   /* black */
777 
778 	/* default write mask */
779 	aty_st_le32(DP_WRITE_MASK, 0xFFFFFFFF);
780 
781 	/* Wait for all the writes to be completed before returning */
782 	wait_for_idle(par);
783 }
784 
785 
786 /* convert depth values to their register representation */
787 static u32 depth_to_dst(u32 depth)
788 {
789 	if (depth <= 8)
790 		return DST_8BPP;
791 	else if (depth <= 15)
792 		return DST_15BPP;
793 	else if (depth == 16)
794 		return DST_16BPP;
795 	else if (depth <= 24)
796 		return DST_24BPP;
797 	else if (depth <= 32)
798 		return DST_32BPP;
799 
800 	return -EINVAL;
801 }
802 
803 /*
804  * PLL informations retreival
805  */
806 
807 
808 #ifndef __sparc__
809 static void __iomem *aty128_map_ROM(const struct aty128fb_par *par,
810 				    struct pci_dev *dev)
811 {
812 	u16 dptr;
813 	u8 rom_type;
814 	void __iomem *bios;
815 	size_t rom_size;
816 
817     	/* Fix from ATI for problem with Rage128 hardware not leaving ROM enabled */
818     	unsigned int temp;
819 	temp = aty_ld_le32(RAGE128_MPP_TB_CONFIG);
820 	temp &= 0x00ffffffu;
821 	temp |= 0x04 << 24;
822 	aty_st_le32(RAGE128_MPP_TB_CONFIG, temp);
823 	temp = aty_ld_le32(RAGE128_MPP_TB_CONFIG);
824 
825 	bios = pci_map_rom(dev, &rom_size);
826 
827 	if (!bios) {
828 		printk(KERN_ERR "aty128fb: ROM failed to map\n");
829 		return NULL;
830 	}
831 
832 	/* Very simple test to make sure it appeared */
833 	if (BIOS_IN16(0) != 0xaa55) {
834 		printk(KERN_DEBUG "aty128fb: Invalid ROM signature %x should "
835 			" be 0xaa55\n", BIOS_IN16(0));
836 		goto failed;
837 	}
838 
839 	/* Look for the PCI data to check the ROM type */
840 	dptr = BIOS_IN16(0x18);
841 
842 	/* Check the PCI data signature. If it's wrong, we still assume a normal
843 	 * x86 ROM for now, until I've verified this works everywhere.
844 	 * The goal here is more to phase out Open Firmware images.
845 	 *
846 	 * Currently, we only look at the first PCI data, we could iteratre and
847 	 * deal with them all, and we should use fb_bios_start relative to start
848 	 * of image and not relative start of ROM, but so far, I never found a
849 	 * dual-image ATI card.
850 	 *
851 	 * typedef struct {
852 	 * 	u32	signature;	+ 0x00
853 	 * 	u16	vendor;		+ 0x04
854 	 * 	u16	device;		+ 0x06
855 	 * 	u16	reserved_1;	+ 0x08
856 	 * 	u16	dlen;		+ 0x0a
857 	 * 	u8	drevision;	+ 0x0c
858 	 * 	u8	class_hi;	+ 0x0d
859 	 * 	u16	class_lo;	+ 0x0e
860 	 * 	u16	ilen;		+ 0x10
861 	 * 	u16	irevision;	+ 0x12
862 	 * 	u8	type;		+ 0x14
863 	 * 	u8	indicator;	+ 0x15
864 	 * 	u16	reserved_2;	+ 0x16
865 	 * } pci_data_t;
866 	 */
867 	if (BIOS_IN32(dptr) !=  (('R' << 24) | ('I' << 16) | ('C' << 8) | 'P')) {
868 		printk(KERN_WARNING "aty128fb: PCI DATA signature in ROM incorrect: %08x\n",
869 		       BIOS_IN32(dptr));
870 		goto anyway;
871 	}
872 	rom_type = BIOS_IN8(dptr + 0x14);
873 	switch(rom_type) {
874 	case 0:
875 		printk(KERN_INFO "aty128fb: Found Intel x86 BIOS ROM Image\n");
876 		break;
877 	case 1:
878 		printk(KERN_INFO "aty128fb: Found Open Firmware ROM Image\n");
879 		goto failed;
880 	case 2:
881 		printk(KERN_INFO "aty128fb: Found HP PA-RISC ROM Image\n");
882 		goto failed;
883 	default:
884 		printk(KERN_INFO "aty128fb: Found unknown type %d ROM Image\n",
885 		       rom_type);
886 		goto failed;
887 	}
888  anyway:
889 	return bios;
890 
891  failed:
892 	pci_unmap_rom(dev, bios);
893 	return NULL;
894 }
895 
896 static void aty128_get_pllinfo(struct aty128fb_par *par,
897 			       unsigned char __iomem *bios)
898 {
899 	unsigned int bios_hdr;
900 	unsigned int bios_pll;
901 
902 	bios_hdr = BIOS_IN16(0x48);
903 	bios_pll = BIOS_IN16(bios_hdr + 0x30);
904 
905 	par->constants.ppll_max = BIOS_IN32(bios_pll + 0x16);
906 	par->constants.ppll_min = BIOS_IN32(bios_pll + 0x12);
907 	par->constants.xclk = BIOS_IN16(bios_pll + 0x08);
908 	par->constants.ref_divider = BIOS_IN16(bios_pll + 0x10);
909 	par->constants.ref_clk = BIOS_IN16(bios_pll + 0x0e);
910 
911 	DBG("ppll_max %d ppll_min %d xclk %d ref_divider %d ref clock %d\n",
912 			par->constants.ppll_max, par->constants.ppll_min,
913 			par->constants.xclk, par->constants.ref_divider,
914 			par->constants.ref_clk);
915 
916 }
917 
918 #ifdef CONFIG_X86
919 static void __iomem *aty128_find_mem_vbios(struct aty128fb_par *par)
920 {
921 	/* I simplified this code as we used to miss the signatures in
922 	 * a lot of case. It's now closer to XFree, we just don't check
923 	 * for signatures at all... Something better will have to be done
924 	 * if we end up having conflicts
925 	 */
926         u32  segstart;
927         unsigned char __iomem *rom_base = NULL;
928 
929         for (segstart=0x000c0000; segstart<0x000f0000; segstart+=0x00001000) {
930                 rom_base = ioremap(segstart, 0x10000);
931 		if (rom_base == NULL)
932 			return NULL;
933 		if (readb(rom_base) == 0x55 && readb(rom_base + 1) == 0xaa)
934 	                break;
935                 iounmap(rom_base);
936 		rom_base = NULL;
937         }
938 	return rom_base;
939 }
940 #endif
941 #endif /* ndef(__sparc__) */
942 
943 /* fill in known card constants if pll_block is not available */
944 static void aty128_timings(struct aty128fb_par *par)
945 {
946 #ifdef CONFIG_PPC
947 	/* instead of a table lookup, assume OF has properly
948 	 * setup the PLL registers and use their values
949 	 * to set the XCLK values and reference divider values */
950 
951 	u32 x_mpll_ref_fb_div;
952 	u32 xclk_cntl;
953 	u32 Nx, M;
954 	static const unsigned int PostDivSet[] = { 0, 1, 2, 4, 8, 3, 6, 12 };
955 #endif
956 
957 	if (!par->constants.ref_clk)
958 		par->constants.ref_clk = 2950;
959 
960 #ifdef CONFIG_PPC
961 	x_mpll_ref_fb_div = aty_ld_pll(X_MPLL_REF_FB_DIV);
962 	xclk_cntl = aty_ld_pll(XCLK_CNTL) & 0x7;
963 	Nx = (x_mpll_ref_fb_div & 0x00ff00) >> 8;
964 	M  = x_mpll_ref_fb_div & 0x0000ff;
965 
966 	par->constants.xclk = round_div((2 * Nx * par->constants.ref_clk),
967 					(M * PostDivSet[xclk_cntl]));
968 
969 	par->constants.ref_divider =
970 		aty_ld_pll(PPLL_REF_DIV) & PPLL_REF_DIV_MASK;
971 #endif
972 
973 	if (!par->constants.ref_divider) {
974 		par->constants.ref_divider = 0x3b;
975 
976 		aty_st_pll(X_MPLL_REF_FB_DIV, 0x004c4c1e);
977 		aty_pll_writeupdate(par);
978 	}
979 	aty_st_pll(PPLL_REF_DIV, par->constants.ref_divider);
980 	aty_pll_writeupdate(par);
981 
982 	/* from documentation */
983 	if (!par->constants.ppll_min)
984 		par->constants.ppll_min = 12500;
985 	if (!par->constants.ppll_max)
986 		par->constants.ppll_max = 25000;    /* 23000 on some cards? */
987 	if (!par->constants.xclk)
988 		par->constants.xclk = 0x1d4d;	     /* same as mclk */
989 
990 	par->constants.fifo_width = 128;
991 	par->constants.fifo_depth = 32;
992 
993 	switch (aty_ld_le32(MEM_CNTL) & 0x3) {
994 	case 0:
995 		par->mem = &sdr_128;
996 		break;
997 	case 1:
998 		par->mem = &sdr_sgram;
999 		break;
1000 	case 2:
1001 		par->mem = &ddr_sgram;
1002 		break;
1003 	default:
1004 		par->mem = &sdr_sgram;
1005 	}
1006 }
1007 
1008 
1009 
1010 /*
1011  * CRTC programming
1012  */
1013 
1014 /* Program the CRTC registers */
1015 static void aty128_set_crtc(const struct aty128_crtc *crtc,
1016 			    const struct aty128fb_par *par)
1017 {
1018 	aty_st_le32(CRTC_GEN_CNTL, crtc->gen_cntl);
1019 	aty_st_le32(CRTC_H_TOTAL_DISP, crtc->h_total);
1020 	aty_st_le32(CRTC_H_SYNC_STRT_WID, crtc->h_sync_strt_wid);
1021 	aty_st_le32(CRTC_V_TOTAL_DISP, crtc->v_total);
1022 	aty_st_le32(CRTC_V_SYNC_STRT_WID, crtc->v_sync_strt_wid);
1023 	aty_st_le32(CRTC_PITCH, crtc->pitch);
1024 	aty_st_le32(CRTC_OFFSET, crtc->offset);
1025 	aty_st_le32(CRTC_OFFSET_CNTL, crtc->offset_cntl);
1026 	/* Disable ATOMIC updating.  Is this the right place? */
1027 	aty_st_pll(PPLL_CNTL, aty_ld_pll(PPLL_CNTL) & ~(0x00030000));
1028 }
1029 
1030 
1031 static int aty128_var_to_crtc(const struct fb_var_screeninfo *var,
1032 			      struct aty128_crtc *crtc,
1033 			      const struct aty128fb_par *par)
1034 {
1035 	u32 xres, yres, vxres, vyres, xoffset, yoffset, bpp, dst;
1036 	u32 left, right, upper, lower, hslen, vslen, sync, vmode;
1037 	u32 h_total, h_disp, h_sync_strt, h_sync_wid, h_sync_pol;
1038 	u32 v_total, v_disp, v_sync_strt, v_sync_wid, v_sync_pol, c_sync;
1039 	u32 depth, bytpp;
1040 	u8 mode_bytpp[7] = { 0, 0, 1, 2, 2, 3, 4 };
1041 
1042 	/* input */
1043 	xres = var->xres;
1044 	yres = var->yres;
1045 	vxres   = var->xres_virtual;
1046 	vyres   = var->yres_virtual;
1047 	xoffset = var->xoffset;
1048 	yoffset = var->yoffset;
1049 	bpp   = var->bits_per_pixel;
1050 	left  = var->left_margin;
1051 	right = var->right_margin;
1052 	upper = var->upper_margin;
1053 	lower = var->lower_margin;
1054 	hslen = var->hsync_len;
1055 	vslen = var->vsync_len;
1056 	sync  = var->sync;
1057 	vmode = var->vmode;
1058 
1059 	if (bpp != 16)
1060 		depth = bpp;
1061 	else
1062 		depth = (var->green.length == 6) ? 16 : 15;
1063 
1064 	/* check for mode eligibility
1065 	 * accept only non interlaced modes */
1066 	if ((vmode & FB_VMODE_MASK) != FB_VMODE_NONINTERLACED)
1067 		return -EINVAL;
1068 
1069 	/* convert (and round up) and validate */
1070 	xres = (xres + 7) & ~7;
1071 	xoffset = (xoffset + 7) & ~7;
1072 
1073 	if (vxres < xres + xoffset)
1074 		vxres = xres + xoffset;
1075 
1076 	if (vyres < yres + yoffset)
1077 		vyres = yres + yoffset;
1078 
1079 	/* convert depth into ATI register depth */
1080 	dst = depth_to_dst(depth);
1081 
1082 	if (dst == -EINVAL) {
1083 		printk(KERN_ERR "aty128fb: Invalid depth or RGBA\n");
1084 		return -EINVAL;
1085 	}
1086 
1087 	/* convert register depth to bytes per pixel */
1088 	bytpp = mode_bytpp[dst];
1089 
1090 	/* make sure there is enough video ram for the mode */
1091 	if ((u32)(vxres * vyres * bytpp) > par->vram_size) {
1092 		printk(KERN_ERR "aty128fb: Not enough memory for mode\n");
1093 		return -EINVAL;
1094 	}
1095 
1096 	h_disp = (xres >> 3) - 1;
1097 	h_total = (((xres + right + hslen + left) >> 3) - 1) & 0xFFFFL;
1098 
1099 	v_disp = yres - 1;
1100 	v_total = (yres + upper + vslen + lower - 1) & 0xFFFFL;
1101 
1102 	/* check to make sure h_total and v_total are in range */
1103 	if (((h_total >> 3) - 1) > 0x1ff || (v_total - 1) > 0x7FF) {
1104 		printk(KERN_ERR "aty128fb: invalid width ranges\n");
1105 		return -EINVAL;
1106 	}
1107 
1108 	h_sync_wid = (hslen + 7) >> 3;
1109 	if (h_sync_wid == 0)
1110 		h_sync_wid = 1;
1111 	else if (h_sync_wid > 0x3f)        /* 0x3f = max hwidth */
1112 		h_sync_wid = 0x3f;
1113 
1114 	h_sync_strt = (h_disp << 3) + right;
1115 
1116 	v_sync_wid = vslen;
1117 	if (v_sync_wid == 0)
1118 		v_sync_wid = 1;
1119 	else if (v_sync_wid > 0x1f)        /* 0x1f = max vwidth */
1120 		v_sync_wid = 0x1f;
1121 
1122 	v_sync_strt = v_disp + lower;
1123 
1124 	h_sync_pol = sync & FB_SYNC_HOR_HIGH_ACT ? 0 : 1;
1125 	v_sync_pol = sync & FB_SYNC_VERT_HIGH_ACT ? 0 : 1;
1126 
1127 	c_sync = sync & FB_SYNC_COMP_HIGH_ACT ? (1 << 4) : 0;
1128 
1129 	crtc->gen_cntl = 0x3000000L | c_sync | (dst << 8);
1130 
1131 	crtc->h_total = h_total | (h_disp << 16);
1132 	crtc->v_total = v_total | (v_disp << 16);
1133 
1134 	crtc->h_sync_strt_wid = h_sync_strt | (h_sync_wid << 16) |
1135 	        (h_sync_pol << 23);
1136 	crtc->v_sync_strt_wid = v_sync_strt | (v_sync_wid << 16) |
1137                 (v_sync_pol << 23);
1138 
1139 	crtc->pitch = vxres >> 3;
1140 
1141 	crtc->offset = 0;
1142 
1143 	if ((var->activate & FB_ACTIVATE_MASK) == FB_ACTIVATE_NOW)
1144 		crtc->offset_cntl = 0x00010000;
1145 	else
1146 		crtc->offset_cntl = 0;
1147 
1148 	crtc->vxres = vxres;
1149 	crtc->vyres = vyres;
1150 	crtc->xoffset = xoffset;
1151 	crtc->yoffset = yoffset;
1152 	crtc->depth = depth;
1153 	crtc->bpp = bpp;
1154 
1155 	return 0;
1156 }
1157 
1158 
1159 static int aty128_pix_width_to_var(int pix_width, struct fb_var_screeninfo *var)
1160 {
1161 
1162 	/* fill in pixel info */
1163 	var->red.msb_right = 0;
1164 	var->green.msb_right = 0;
1165 	var->blue.offset = 0;
1166 	var->blue.msb_right = 0;
1167 	var->transp.offset = 0;
1168 	var->transp.length = 0;
1169 	var->transp.msb_right = 0;
1170 	switch (pix_width) {
1171 	case CRTC_PIX_WIDTH_8BPP:
1172 		var->bits_per_pixel = 8;
1173 		var->red.offset = 0;
1174 		var->red.length = 8;
1175 		var->green.offset = 0;
1176 		var->green.length = 8;
1177 		var->blue.length = 8;
1178 		break;
1179 	case CRTC_PIX_WIDTH_15BPP:
1180 		var->bits_per_pixel = 16;
1181 		var->red.offset = 10;
1182 		var->red.length = 5;
1183 		var->green.offset = 5;
1184 		var->green.length = 5;
1185 		var->blue.length = 5;
1186 		break;
1187 	case CRTC_PIX_WIDTH_16BPP:
1188 		var->bits_per_pixel = 16;
1189 		var->red.offset = 11;
1190 		var->red.length = 5;
1191 		var->green.offset = 5;
1192 		var->green.length = 6;
1193 		var->blue.length = 5;
1194 		break;
1195 	case CRTC_PIX_WIDTH_24BPP:
1196 		var->bits_per_pixel = 24;
1197 		var->red.offset = 16;
1198 		var->red.length = 8;
1199 		var->green.offset = 8;
1200 		var->green.length = 8;
1201 		var->blue.length = 8;
1202 		break;
1203 	case CRTC_PIX_WIDTH_32BPP:
1204 		var->bits_per_pixel = 32;
1205 		var->red.offset = 16;
1206 		var->red.length = 8;
1207 		var->green.offset = 8;
1208 		var->green.length = 8;
1209 		var->blue.length = 8;
1210 		var->transp.offset = 24;
1211 		var->transp.length = 8;
1212 		break;
1213 	default:
1214 		printk(KERN_ERR "aty128fb: Invalid pixel width\n");
1215 		return -EINVAL;
1216 	}
1217 
1218 	return 0;
1219 }
1220 
1221 
1222 static int aty128_crtc_to_var(const struct aty128_crtc *crtc,
1223 			      struct fb_var_screeninfo *var)
1224 {
1225 	u32 xres, yres, left, right, upper, lower, hslen, vslen, sync;
1226 	u32 h_total, h_disp, h_sync_strt, h_sync_dly, h_sync_wid, h_sync_pol;
1227 	u32 v_total, v_disp, v_sync_strt, v_sync_wid, v_sync_pol, c_sync;
1228 	u32 pix_width;
1229 
1230 	/* fun with masking */
1231 	h_total     = crtc->h_total & 0x1ff;
1232 	h_disp      = (crtc->h_total >> 16) & 0xff;
1233 	h_sync_strt = (crtc->h_sync_strt_wid >> 3) & 0x1ff;
1234 	h_sync_dly  = crtc->h_sync_strt_wid & 0x7;
1235 	h_sync_wid  = (crtc->h_sync_strt_wid >> 16) & 0x3f;
1236 	h_sync_pol  = (crtc->h_sync_strt_wid >> 23) & 0x1;
1237 	v_total     = crtc->v_total & 0x7ff;
1238 	v_disp      = (crtc->v_total >> 16) & 0x7ff;
1239 	v_sync_strt = crtc->v_sync_strt_wid & 0x7ff;
1240 	v_sync_wid  = (crtc->v_sync_strt_wid >> 16) & 0x1f;
1241 	v_sync_pol  = (crtc->v_sync_strt_wid >> 23) & 0x1;
1242 	c_sync      = crtc->gen_cntl & CRTC_CSYNC_EN ? 1 : 0;
1243 	pix_width   = crtc->gen_cntl & CRTC_PIX_WIDTH_MASK;
1244 
1245 	/* do conversions */
1246 	xres  = (h_disp + 1) << 3;
1247 	yres  = v_disp + 1;
1248 	left  = ((h_total - h_sync_strt - h_sync_wid) << 3) - h_sync_dly;
1249 	right = ((h_sync_strt - h_disp) << 3) + h_sync_dly;
1250 	hslen = h_sync_wid << 3;
1251 	upper = v_total - v_sync_strt - v_sync_wid;
1252 	lower = v_sync_strt - v_disp;
1253 	vslen = v_sync_wid;
1254 	sync  = (h_sync_pol ? 0 : FB_SYNC_HOR_HIGH_ACT) |
1255 		(v_sync_pol ? 0 : FB_SYNC_VERT_HIGH_ACT) |
1256 		(c_sync ? FB_SYNC_COMP_HIGH_ACT : 0);
1257 
1258 	aty128_pix_width_to_var(pix_width, var);
1259 
1260 	var->xres = xres;
1261 	var->yres = yres;
1262 	var->xres_virtual = crtc->vxres;
1263 	var->yres_virtual = crtc->vyres;
1264 	var->xoffset = crtc->xoffset;
1265 	var->yoffset = crtc->yoffset;
1266 	var->left_margin  = left;
1267 	var->right_margin = right;
1268 	var->upper_margin = upper;
1269 	var->lower_margin = lower;
1270 	var->hsync_len = hslen;
1271 	var->vsync_len = vslen;
1272 	var->sync  = sync;
1273 	var->vmode = FB_VMODE_NONINTERLACED;
1274 
1275 	return 0;
1276 }
1277 
1278 static void aty128_set_crt_enable(struct aty128fb_par *par, int on)
1279 {
1280 	if (on) {
1281 		aty_st_le32(CRTC_EXT_CNTL, aty_ld_le32(CRTC_EXT_CNTL) |
1282 			    CRT_CRTC_ON);
1283 		aty_st_le32(DAC_CNTL, (aty_ld_le32(DAC_CNTL) |
1284 			    DAC_PALETTE2_SNOOP_EN));
1285 	} else
1286 		aty_st_le32(CRTC_EXT_CNTL, aty_ld_le32(CRTC_EXT_CNTL) &
1287 			    ~CRT_CRTC_ON);
1288 }
1289 
1290 static void aty128_set_lcd_enable(struct aty128fb_par *par, int on)
1291 {
1292 	u32 reg;
1293 #ifdef CONFIG_FB_ATY128_BACKLIGHT
1294 	struct fb_info *info = pci_get_drvdata(par->pdev);
1295 #endif
1296 
1297 	if (on) {
1298 		reg = aty_ld_le32(LVDS_GEN_CNTL);
1299 		reg |= LVDS_ON | LVDS_EN | LVDS_BLON | LVDS_DIGION;
1300 		reg &= ~LVDS_DISPLAY_DIS;
1301 		aty_st_le32(LVDS_GEN_CNTL, reg);
1302 #ifdef CONFIG_FB_ATY128_BACKLIGHT
1303 		aty128_bl_set_power(info, FB_BLANK_UNBLANK);
1304 #endif
1305 	} else {
1306 #ifdef CONFIG_FB_ATY128_BACKLIGHT
1307 		aty128_bl_set_power(info, FB_BLANK_POWERDOWN);
1308 #endif
1309 		reg = aty_ld_le32(LVDS_GEN_CNTL);
1310 		reg |= LVDS_DISPLAY_DIS;
1311 		aty_st_le32(LVDS_GEN_CNTL, reg);
1312 		mdelay(100);
1313 		reg &= ~(LVDS_ON /*| LVDS_EN*/);
1314 		aty_st_le32(LVDS_GEN_CNTL, reg);
1315 	}
1316 }
1317 
1318 static void aty128_set_pll(struct aty128_pll *pll,
1319 			   const struct aty128fb_par *par)
1320 {
1321 	u32 div3;
1322 
1323 	/* register values for post dividers */
1324 	static const unsigned char post_conv[] = {
1325 		2, 0, 1, 4, 2, 2, 6, 2, 3, 2, 2, 2, 7
1326 	};
1327 
1328 	/* select PPLL_DIV_3 */
1329 	aty_st_le32(CLOCK_CNTL_INDEX, aty_ld_le32(CLOCK_CNTL_INDEX) | (3 << 8));
1330 
1331 	/* reset PLL */
1332 	aty_st_pll(PPLL_CNTL,
1333 		   aty_ld_pll(PPLL_CNTL) | PPLL_RESET | PPLL_ATOMIC_UPDATE_EN);
1334 
1335 	/* write the reference divider */
1336 	aty_pll_wait_readupdate(par);
1337 	aty_st_pll(PPLL_REF_DIV, par->constants.ref_divider & 0x3ff);
1338 	aty_pll_writeupdate(par);
1339 
1340 	div3 = aty_ld_pll(PPLL_DIV_3);
1341 	div3 &= ~PPLL_FB3_DIV_MASK;
1342 	div3 |= pll->feedback_divider;
1343 	div3 &= ~PPLL_POST3_DIV_MASK;
1344 	div3 |= post_conv[pll->post_divider] << 16;
1345 
1346 	/* write feedback and post dividers */
1347 	aty_pll_wait_readupdate(par);
1348 	aty_st_pll(PPLL_DIV_3, div3);
1349 	aty_pll_writeupdate(par);
1350 
1351 	aty_pll_wait_readupdate(par);
1352 	aty_st_pll(HTOTAL_CNTL, 0);	/* no horiz crtc adjustment */
1353 	aty_pll_writeupdate(par);
1354 
1355 	/* clear the reset, just in case */
1356 	aty_st_pll(PPLL_CNTL, aty_ld_pll(PPLL_CNTL) & ~PPLL_RESET);
1357 }
1358 
1359 
1360 static int aty128_var_to_pll(u32 period_in_ps, struct aty128_pll *pll,
1361 			     const struct aty128fb_par *par)
1362 {
1363 	const struct aty128_constants c = par->constants;
1364 	static const unsigned char post_dividers[] = { 1, 2, 4, 8, 3, 6, 12 };
1365 	u32 output_freq;
1366 	u32 vclk;        /* in .01 MHz */
1367 	int i = 0;
1368 	u32 n, d;
1369 
1370 	vclk = 100000000 / period_in_ps;	/* convert units to 10 kHz */
1371 
1372 	/* adjust pixel clock if necessary */
1373 	if (vclk > c.ppll_max)
1374 		vclk = c.ppll_max;
1375 	if (vclk * 12 < c.ppll_min)
1376 		vclk = c.ppll_min/12;
1377 
1378 	/* now, find an acceptable divider */
1379 	for (i = 0; i < ARRAY_SIZE(post_dividers); i++) {
1380 		output_freq = post_dividers[i] * vclk;
1381 		if (output_freq >= c.ppll_min && output_freq <= c.ppll_max) {
1382 			pll->post_divider = post_dividers[i];
1383 			break;
1384 		}
1385 	}
1386 
1387 	if (i == ARRAY_SIZE(post_dividers))
1388 		return -EINVAL;
1389 
1390 	/* calculate feedback divider */
1391 	n = c.ref_divider * output_freq;
1392 	d = c.ref_clk;
1393 
1394 	pll->feedback_divider = round_div(n, d);
1395 	pll->vclk = vclk;
1396 
1397 	DBG("post %d feedback %d vlck %d output %d ref_divider %d "
1398 	    "vclk_per: %d\n", pll->post_divider,
1399 	    pll->feedback_divider, vclk, output_freq,
1400 	    c.ref_divider, period_in_ps);
1401 
1402 	return 0;
1403 }
1404 
1405 
1406 static int aty128_pll_to_var(const struct aty128_pll *pll,
1407 			     struct fb_var_screeninfo *var)
1408 {
1409 	var->pixclock = 100000000 / pll->vclk;
1410 
1411 	return 0;
1412 }
1413 
1414 
1415 static void aty128_set_fifo(const struct aty128_ddafifo *dsp,
1416 			    const struct aty128fb_par *par)
1417 {
1418 	aty_st_le32(DDA_CONFIG, dsp->dda_config);
1419 	aty_st_le32(DDA_ON_OFF, dsp->dda_on_off);
1420 }
1421 
1422 
1423 static int aty128_ddafifo(struct aty128_ddafifo *dsp,
1424 			  const struct aty128_pll *pll,
1425 			  u32 depth,
1426 			  const struct aty128fb_par *par)
1427 {
1428 	const struct aty128_meminfo *m = par->mem;
1429 	u32 xclk = par->constants.xclk;
1430 	u32 fifo_width = par->constants.fifo_width;
1431 	u32 fifo_depth = par->constants.fifo_depth;
1432 	s32 x, b, p, ron, roff;
1433 	u32 n, d, bpp;
1434 
1435 	/* round up to multiple of 8 */
1436 	bpp = (depth+7) & ~7;
1437 
1438 	n = xclk * fifo_width;
1439 	d = pll->vclk * bpp;
1440 	x = round_div(n, d);
1441 
1442 	ron = 4 * m->MB +
1443 		3 * ((m->Trcd - 2 > 0) ? m->Trcd - 2 : 0) +
1444 		2 * m->Trp +
1445 		m->Twr +
1446 		m->CL +
1447 		m->Tr2w +
1448 		x;
1449 
1450 	DBG("x %x\n", x);
1451 
1452 	b = 0;
1453 	while (x) {
1454 		x >>= 1;
1455 		b++;
1456 	}
1457 	p = b + 1;
1458 
1459 	ron <<= (11 - p);
1460 
1461 	n <<= (11 - p);
1462 	x = round_div(n, d);
1463 	roff = x * (fifo_depth - 4);
1464 
1465 	if ((ron + m->Rloop) >= roff) {
1466 		printk(KERN_ERR "aty128fb: Mode out of range!\n");
1467 		return -EINVAL;
1468 	}
1469 
1470 	DBG("p: %x rloop: %x x: %x ron: %x roff: %x\n",
1471 	    p, m->Rloop, x, ron, roff);
1472 
1473 	dsp->dda_config = p << 16 | m->Rloop << 20 | x;
1474 	dsp->dda_on_off = ron << 16 | roff;
1475 
1476 	return 0;
1477 }
1478 
1479 
1480 /*
1481  * This actually sets the video mode.
1482  */
1483 static int aty128fb_set_par(struct fb_info *info)
1484 {
1485 	struct aty128fb_par *par = info->par;
1486 	u32 config;
1487 	int err;
1488 
1489 	if ((err = aty128_decode_var(&info->var, par)) != 0)
1490 		return err;
1491 
1492 	if (par->blitter_may_be_busy)
1493 		wait_for_idle(par);
1494 
1495 	/* clear all registers that may interfere with mode setting */
1496 	aty_st_le32(OVR_CLR, 0);
1497 	aty_st_le32(OVR_WID_LEFT_RIGHT, 0);
1498 	aty_st_le32(OVR_WID_TOP_BOTTOM, 0);
1499 	aty_st_le32(OV0_SCALE_CNTL, 0);
1500 	aty_st_le32(MPP_TB_CONFIG, 0);
1501 	aty_st_le32(MPP_GP_CONFIG, 0);
1502 	aty_st_le32(SUBPIC_CNTL, 0);
1503 	aty_st_le32(VIPH_CONTROL, 0);
1504 	aty_st_le32(I2C_CNTL_1, 0);         /* turn off i2c */
1505 	aty_st_le32(GEN_INT_CNTL, 0);	/* turn off interrupts */
1506 	aty_st_le32(CAP0_TRIG_CNTL, 0);
1507 	aty_st_le32(CAP1_TRIG_CNTL, 0);
1508 
1509 	aty_st_8(CRTC_EXT_CNTL + 1, 4);	/* turn video off */
1510 
1511 	aty128_set_crtc(&par->crtc, par);
1512 	aty128_set_pll(&par->pll, par);
1513 	aty128_set_fifo(&par->fifo_reg, par);
1514 
1515 	config = aty_ld_le32(CNFG_CNTL) & ~3;
1516 
1517 #if defined(__BIG_ENDIAN)
1518 	if (par->crtc.bpp == 32)
1519 		config |= 2;	/* make aperture do 32 bit swapping */
1520 	else if (par->crtc.bpp == 16)
1521 		config |= 1;	/* make aperture do 16 bit swapping */
1522 #endif
1523 
1524 	aty_st_le32(CNFG_CNTL, config);
1525 	aty_st_8(CRTC_EXT_CNTL + 1, 0);	/* turn the video back on */
1526 
1527 	info->fix.line_length = (par->crtc.vxres * par->crtc.bpp) >> 3;
1528 	info->fix.visual = par->crtc.bpp == 8 ? FB_VISUAL_PSEUDOCOLOR
1529 		: FB_VISUAL_DIRECTCOLOR;
1530 
1531 	if (par->chip_gen == rage_M3) {
1532 		aty128_set_crt_enable(par, par->crt_on);
1533 		aty128_set_lcd_enable(par, par->lcd_on);
1534 	}
1535 	if (par->accel_flags & FB_ACCELF_TEXT)
1536 		aty128_init_engine(par);
1537 
1538 #ifdef CONFIG_BOOTX_TEXT
1539 	btext_update_display(info->fix.smem_start,
1540 			     (((par->crtc.h_total>>16) & 0xff)+1)*8,
1541 			     ((par->crtc.v_total>>16) & 0x7ff)+1,
1542 			     par->crtc.bpp,
1543 			     par->crtc.vxres*par->crtc.bpp/8);
1544 #endif /* CONFIG_BOOTX_TEXT */
1545 
1546 	return 0;
1547 }
1548 
1549 /*
1550  *  encode/decode the User Defined Part of the Display
1551  */
1552 
1553 static int aty128_decode_var(struct fb_var_screeninfo *var,
1554 			     struct aty128fb_par *par)
1555 {
1556 	int err;
1557 	struct aty128_crtc crtc;
1558 	struct aty128_pll pll;
1559 	struct aty128_ddafifo fifo_reg;
1560 
1561 	if ((err = aty128_var_to_crtc(var, &crtc, par)))
1562 		return err;
1563 
1564 	if ((err = aty128_var_to_pll(var->pixclock, &pll, par)))
1565 		return err;
1566 
1567 	if ((err = aty128_ddafifo(&fifo_reg, &pll, crtc.depth, par)))
1568 		return err;
1569 
1570 	par->crtc = crtc;
1571 	par->pll = pll;
1572 	par->fifo_reg = fifo_reg;
1573 	par->accel_flags = var->accel_flags;
1574 
1575 	return 0;
1576 }
1577 
1578 
1579 static int aty128_encode_var(struct fb_var_screeninfo *var,
1580 			     const struct aty128fb_par *par)
1581 {
1582 	int err;
1583 
1584 	if ((err = aty128_crtc_to_var(&par->crtc, var)))
1585 		return err;
1586 
1587 	if ((err = aty128_pll_to_var(&par->pll, var)))
1588 		return err;
1589 
1590 	var->nonstd = 0;
1591 	var->activate = 0;
1592 
1593 	var->height = -1;
1594 	var->width = -1;
1595 	var->accel_flags = par->accel_flags;
1596 
1597 	return 0;
1598 }
1599 
1600 
1601 static int aty128fb_check_var(struct fb_var_screeninfo *var,
1602 			      struct fb_info *info)
1603 {
1604 	struct aty128fb_par par;
1605 	int err;
1606 
1607 	par = *(struct aty128fb_par *)info->par;
1608 	if ((err = aty128_decode_var(var, &par)) != 0)
1609 		return err;
1610 	aty128_encode_var(var, &par);
1611 	return 0;
1612 }
1613 
1614 
1615 /*
1616  *  Pan or Wrap the Display
1617  */
1618 static int aty128fb_pan_display(struct fb_var_screeninfo *var,
1619 				struct fb_info *fb)
1620 {
1621 	struct aty128fb_par *par = fb->par;
1622 	u32 xoffset, yoffset;
1623 	u32 offset;
1624 	u32 xres, yres;
1625 
1626 	xres = (((par->crtc.h_total >> 16) & 0xff) + 1) << 3;
1627 	yres = ((par->crtc.v_total >> 16) & 0x7ff) + 1;
1628 
1629 	xoffset = (var->xoffset +7) & ~7;
1630 	yoffset = var->yoffset;
1631 
1632 	if (xoffset+xres > par->crtc.vxres || yoffset+yres > par->crtc.vyres)
1633 		return -EINVAL;
1634 
1635 	par->crtc.xoffset = xoffset;
1636 	par->crtc.yoffset = yoffset;
1637 
1638 	offset = ((yoffset * par->crtc.vxres + xoffset) * (par->crtc.bpp >> 3))
1639 									  & ~7;
1640 
1641 	if (par->crtc.bpp == 24)
1642 		offset += 8 * (offset % 3); /* Must be multiple of 8 and 3 */
1643 
1644 	aty_st_le32(CRTC_OFFSET, offset);
1645 
1646 	return 0;
1647 }
1648 
1649 
1650 /*
1651  *  Helper function to store a single palette register
1652  */
1653 static void aty128_st_pal(u_int regno, u_int red, u_int green, u_int blue,
1654 			  struct aty128fb_par *par)
1655 {
1656 	if (par->chip_gen == rage_M3) {
1657 		aty_st_le32(DAC_CNTL, aty_ld_le32(DAC_CNTL) &
1658 			    ~DAC_PALETTE_ACCESS_CNTL);
1659 	}
1660 
1661 	aty_st_8(PALETTE_INDEX, regno);
1662 	aty_st_le32(PALETTE_DATA, (red<<16)|(green<<8)|blue);
1663 }
1664 
1665 static int aty128fb_sync(struct fb_info *info)
1666 {
1667 	struct aty128fb_par *par = info->par;
1668 
1669 	if (par->blitter_may_be_busy)
1670 		wait_for_idle(par);
1671 	return 0;
1672 }
1673 
1674 #ifndef MODULE
1675 static int aty128fb_setup(char *options)
1676 {
1677 	char *this_opt;
1678 
1679 	if (!options || !*options)
1680 		return 0;
1681 
1682 	while ((this_opt = strsep(&options, ",")) != NULL) {
1683 		if (!strncmp(this_opt, "lcd:", 4)) {
1684 			default_lcd_on = simple_strtoul(this_opt+4, NULL, 0);
1685 			continue;
1686 		} else if (!strncmp(this_opt, "crt:", 4)) {
1687 			default_crt_on = simple_strtoul(this_opt+4, NULL, 0);
1688 			continue;
1689 		} else if (!strncmp(this_opt, "backlight:", 10)) {
1690 #ifdef CONFIG_FB_ATY128_BACKLIGHT
1691 			backlight = simple_strtoul(this_opt+10, NULL, 0);
1692 #endif
1693 			continue;
1694 		}
1695 		if(!strncmp(this_opt, "nomtrr", 6)) {
1696 			mtrr = false;
1697 			continue;
1698 		}
1699 #ifdef CONFIG_PPC_PMAC
1700 		/* vmode and cmode deprecated */
1701 		if (!strncmp(this_opt, "vmode:", 6)) {
1702 			unsigned int vmode = simple_strtoul(this_opt+6, NULL, 0);
1703 			if (vmode > 0 && vmode <= VMODE_MAX)
1704 				default_vmode = vmode;
1705 			continue;
1706 		} else if (!strncmp(this_opt, "cmode:", 6)) {
1707 			unsigned int cmode = simple_strtoul(this_opt+6, NULL, 0);
1708 			switch (cmode) {
1709 			case 0:
1710 			case 8:
1711 				default_cmode = CMODE_8;
1712 				break;
1713 			case 15:
1714 			case 16:
1715 				default_cmode = CMODE_16;
1716 				break;
1717 			case 24:
1718 			case 32:
1719 				default_cmode = CMODE_32;
1720 				break;
1721 			}
1722 			continue;
1723 		}
1724 #endif /* CONFIG_PPC_PMAC */
1725 		mode_option = this_opt;
1726 	}
1727 	return 0;
1728 }
1729 #endif  /*  MODULE  */
1730 
1731 /* Backlight */
1732 #ifdef CONFIG_FB_ATY128_BACKLIGHT
1733 #define MAX_LEVEL 0xFF
1734 
1735 static int aty128_bl_get_level_brightness(struct aty128fb_par *par,
1736 		int level)
1737 {
1738 	struct fb_info *info = pci_get_drvdata(par->pdev);
1739 	int atylevel;
1740 
1741 	/* Get and convert the value */
1742 	/* No locking of bl_curve since we read a single value */
1743 	atylevel = MAX_LEVEL -
1744 		(info->bl_curve[level] * FB_BACKLIGHT_MAX / MAX_LEVEL);
1745 
1746 	if (atylevel < 0)
1747 		atylevel = 0;
1748 	else if (atylevel > MAX_LEVEL)
1749 		atylevel = MAX_LEVEL;
1750 
1751 	return atylevel;
1752 }
1753 
1754 /* We turn off the LCD completely instead of just dimming the backlight.
1755  * This provides greater power saving and the display is useless without
1756  * backlight anyway
1757  */
1758 #define BACKLIGHT_LVDS_OFF
1759 /* That one prevents proper CRT output with LCD off */
1760 #undef BACKLIGHT_DAC_OFF
1761 
1762 static int aty128_bl_update_status(struct backlight_device *bd)
1763 {
1764 	struct aty128fb_par *par = bl_get_data(bd);
1765 	unsigned int reg = aty_ld_le32(LVDS_GEN_CNTL);
1766 	int level;
1767 
1768 	if (bd->props.power != FB_BLANK_UNBLANK ||
1769 	    bd->props.fb_blank != FB_BLANK_UNBLANK ||
1770 	    !par->lcd_on)
1771 		level = 0;
1772 	else
1773 		level = bd->props.brightness;
1774 
1775 	reg |= LVDS_BL_MOD_EN | LVDS_BLON;
1776 	if (level > 0) {
1777 		reg |= LVDS_DIGION;
1778 		if (!(reg & LVDS_ON)) {
1779 			reg &= ~LVDS_BLON;
1780 			aty_st_le32(LVDS_GEN_CNTL, reg);
1781 			aty_ld_le32(LVDS_GEN_CNTL);
1782 			mdelay(10);
1783 			reg |= LVDS_BLON;
1784 			aty_st_le32(LVDS_GEN_CNTL, reg);
1785 		}
1786 		reg &= ~LVDS_BL_MOD_LEVEL_MASK;
1787 		reg |= (aty128_bl_get_level_brightness(par, level) <<
1788 			LVDS_BL_MOD_LEVEL_SHIFT);
1789 #ifdef BACKLIGHT_LVDS_OFF
1790 		reg |= LVDS_ON | LVDS_EN;
1791 		reg &= ~LVDS_DISPLAY_DIS;
1792 #endif
1793 		aty_st_le32(LVDS_GEN_CNTL, reg);
1794 #ifdef BACKLIGHT_DAC_OFF
1795 		aty_st_le32(DAC_CNTL, aty_ld_le32(DAC_CNTL) & (~DAC_PDWN));
1796 #endif
1797 	} else {
1798 		reg &= ~LVDS_BL_MOD_LEVEL_MASK;
1799 		reg |= (aty128_bl_get_level_brightness(par, 0) <<
1800 			LVDS_BL_MOD_LEVEL_SHIFT);
1801 #ifdef BACKLIGHT_LVDS_OFF
1802 		reg |= LVDS_DISPLAY_DIS;
1803 		aty_st_le32(LVDS_GEN_CNTL, reg);
1804 		aty_ld_le32(LVDS_GEN_CNTL);
1805 		udelay(10);
1806 		reg &= ~(LVDS_ON | LVDS_EN | LVDS_BLON | LVDS_DIGION);
1807 #endif
1808 		aty_st_le32(LVDS_GEN_CNTL, reg);
1809 #ifdef BACKLIGHT_DAC_OFF
1810 		aty_st_le32(DAC_CNTL, aty_ld_le32(DAC_CNTL) | DAC_PDWN);
1811 #endif
1812 	}
1813 
1814 	return 0;
1815 }
1816 
1817 static const struct backlight_ops aty128_bl_data = {
1818 	.update_status	= aty128_bl_update_status,
1819 };
1820 
1821 static void aty128_bl_set_power(struct fb_info *info, int power)
1822 {
1823 	if (info->bl_dev) {
1824 		info->bl_dev->props.power = power;
1825 		backlight_update_status(info->bl_dev);
1826 	}
1827 }
1828 
1829 static void aty128_bl_init(struct aty128fb_par *par)
1830 {
1831 	struct backlight_properties props;
1832 	struct fb_info *info = pci_get_drvdata(par->pdev);
1833 	struct backlight_device *bd;
1834 	char name[12];
1835 
1836 	/* Could be extended to Rage128Pro LVDS output too */
1837 	if (par->chip_gen != rage_M3)
1838 		return;
1839 
1840 #ifdef CONFIG_PMAC_BACKLIGHT
1841 	if (!pmac_has_backlight_type("ati"))
1842 		return;
1843 #endif
1844 
1845 	snprintf(name, sizeof(name), "aty128bl%d", info->node);
1846 
1847 	memset(&props, 0, sizeof(struct backlight_properties));
1848 	props.type = BACKLIGHT_RAW;
1849 	props.max_brightness = FB_BACKLIGHT_LEVELS - 1;
1850 	bd = backlight_device_register(name, info->dev, par, &aty128_bl_data,
1851 				       &props);
1852 	if (IS_ERR(bd)) {
1853 		info->bl_dev = NULL;
1854 		printk(KERN_WARNING "aty128: Backlight registration failed\n");
1855 		goto error;
1856 	}
1857 
1858 	info->bl_dev = bd;
1859 	fb_bl_default_curve(info, 0,
1860 		 63 * FB_BACKLIGHT_MAX / MAX_LEVEL,
1861 		219 * FB_BACKLIGHT_MAX / MAX_LEVEL);
1862 
1863 	bd->props.brightness = bd->props.max_brightness;
1864 	bd->props.power = FB_BLANK_UNBLANK;
1865 	backlight_update_status(bd);
1866 
1867 	printk("aty128: Backlight initialized (%s)\n", name);
1868 
1869 	return;
1870 
1871 error:
1872 	return;
1873 }
1874 
1875 static void aty128_bl_exit(struct backlight_device *bd)
1876 {
1877 	backlight_device_unregister(bd);
1878 	printk("aty128: Backlight unloaded\n");
1879 }
1880 #endif /* CONFIG_FB_ATY128_BACKLIGHT */
1881 
1882 /*
1883  *  Initialisation
1884  */
1885 
1886 #ifdef CONFIG_PPC_PMAC__disabled
1887 static void aty128_early_resume(void *data)
1888 {
1889         struct aty128fb_par *par = data;
1890 
1891 	if (!console_trylock())
1892 		return;
1893 	pci_restore_state(par->pdev);
1894 	aty128_do_resume(par->pdev);
1895 	console_unlock();
1896 }
1897 #endif /* CONFIG_PPC_PMAC */
1898 
1899 static int aty128_init(struct pci_dev *pdev, const struct pci_device_id *ent)
1900 {
1901 	struct fb_info *info = pci_get_drvdata(pdev);
1902 	struct aty128fb_par *par = info->par;
1903 	struct fb_var_screeninfo var;
1904 	char video_card[50];
1905 	u8 chip_rev;
1906 	u32 dac;
1907 
1908 	/* Get the chip revision */
1909 	chip_rev = (aty_ld_le32(CNFG_CNTL) >> 16) & 0x1F;
1910 
1911 	strcpy(video_card, "Rage128 XX ");
1912 	video_card[8] = ent->device >> 8;
1913 	video_card[9] = ent->device & 0xFF;
1914 
1915 	/* range check to make sure */
1916 	if (ent->driver_data < ARRAY_SIZE(r128_family))
1917 		strlcat(video_card, r128_family[ent->driver_data],
1918 			sizeof(video_card));
1919 
1920 	printk(KERN_INFO "aty128fb: %s [chip rev 0x%x] ", video_card, chip_rev);
1921 
1922 	if (par->vram_size % (1024 * 1024) == 0)
1923 		printk("%dM %s\n", par->vram_size / (1024*1024), par->mem->name);
1924 	else
1925 		printk("%dk %s\n", par->vram_size / 1024, par->mem->name);
1926 
1927 	par->chip_gen = ent->driver_data;
1928 
1929 	/* fill in info */
1930 	info->fbops = &aty128fb_ops;
1931 	info->flags = FBINFO_FLAG_DEFAULT;
1932 
1933 	par->lcd_on = default_lcd_on;
1934 	par->crt_on = default_crt_on;
1935 
1936 	var = default_var;
1937 #ifdef CONFIG_PPC_PMAC
1938 	if (machine_is(powermac)) {
1939 		/* Indicate sleep capability */
1940 		if (par->chip_gen == rage_M3) {
1941 			pmac_call_feature(PMAC_FTR_DEVICE_CAN_WAKE, NULL, 0, 1);
1942 #if 0 /* Disable the early video resume hack for now as it's causing problems,
1943        * among others we now rely on the PCI core restoring the config space
1944        * for us, which isn't the case with that hack, and that code path causes
1945        * various things to be called with interrupts off while they shouldn't.
1946        * I'm leaving the code in as it can be useful for debugging purposes
1947        */
1948 			pmac_set_early_video_resume(aty128_early_resume, par);
1949 #endif
1950 		}
1951 
1952 		/* Find default mode */
1953 		if (mode_option) {
1954 			if (!mac_find_mode(&var, info, mode_option, 8))
1955 				var = default_var;
1956 		} else {
1957 			if (default_vmode <= 0 || default_vmode > VMODE_MAX)
1958 				default_vmode = VMODE_1024_768_60;
1959 
1960 			/* iMacs need that resolution
1961 			 * PowerMac2,1 first r128 iMacs
1962 			 * PowerMac2,2 summer 2000 iMacs
1963 			 * PowerMac4,1 january 2001 iMacs "flower power"
1964 			 */
1965 			if (of_machine_is_compatible("PowerMac2,1") ||
1966 			    of_machine_is_compatible("PowerMac2,2") ||
1967 			    of_machine_is_compatible("PowerMac4,1"))
1968 				default_vmode = VMODE_1024_768_75;
1969 
1970 			/* iBook SE */
1971 			if (of_machine_is_compatible("PowerBook2,2"))
1972 				default_vmode = VMODE_800_600_60;
1973 
1974 			/* PowerBook Firewire (Pismo), iBook Dual USB */
1975 			if (of_machine_is_compatible("PowerBook3,1") ||
1976 			    of_machine_is_compatible("PowerBook4,1"))
1977 				default_vmode = VMODE_1024_768_60;
1978 
1979 			/* PowerBook Titanium */
1980 			if (of_machine_is_compatible("PowerBook3,2"))
1981 				default_vmode = VMODE_1152_768_60;
1982 
1983 			if (default_cmode > 16)
1984 				default_cmode = CMODE_32;
1985 			else if (default_cmode > 8)
1986 				default_cmode = CMODE_16;
1987 			else
1988 				default_cmode = CMODE_8;
1989 
1990 			if (mac_vmode_to_var(default_vmode, default_cmode, &var))
1991 				var = default_var;
1992 		}
1993 	} else
1994 #endif /* CONFIG_PPC_PMAC */
1995 	{
1996 		if (mode_option)
1997 			if (fb_find_mode(&var, info, mode_option, NULL,
1998 					 0, &defaultmode, 8) == 0)
1999 				var = default_var;
2000 	}
2001 
2002 	var.accel_flags &= ~FB_ACCELF_TEXT;
2003 //	var.accel_flags |= FB_ACCELF_TEXT;/* FIXME Will add accel later */
2004 
2005 	if (aty128fb_check_var(&var, info)) {
2006 		printk(KERN_ERR "aty128fb: Cannot set default mode.\n");
2007 		return 0;
2008 	}
2009 
2010 	/* setup the DAC the way we like it */
2011 	dac = aty_ld_le32(DAC_CNTL);
2012 	dac |= (DAC_8BIT_EN | DAC_RANGE_CNTL);
2013 	dac |= DAC_MASK;
2014 	if (par->chip_gen == rage_M3)
2015 		dac |= DAC_PALETTE2_SNOOP_EN;
2016 	aty_st_le32(DAC_CNTL, dac);
2017 
2018 	/* turn off bus mastering, just in case */
2019 	aty_st_le32(BUS_CNTL, aty_ld_le32(BUS_CNTL) | BUS_MASTER_DIS);
2020 
2021 	info->var = var;
2022 	fb_alloc_cmap(&info->cmap, 256, 0);
2023 
2024 	var.activate = FB_ACTIVATE_NOW;
2025 
2026 	aty128_init_engine(par);
2027 
2028 	par->pdev = pdev;
2029 	par->asleep = 0;
2030 	par->lock_blank = 0;
2031 
2032 #ifdef CONFIG_FB_ATY128_BACKLIGHT
2033 	if (backlight)
2034 		aty128_bl_init(par);
2035 #endif
2036 
2037 	if (register_framebuffer(info) < 0)
2038 		return 0;
2039 
2040 	fb_info(info, "%s frame buffer device on %s\n",
2041 		info->fix.id, video_card);
2042 
2043 	return 1;	/* success! */
2044 }
2045 
2046 #ifdef CONFIG_PCI
2047 /* register a card    ++ajoshi */
2048 static int aty128_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
2049 {
2050 	unsigned long fb_addr, reg_addr;
2051 	struct aty128fb_par *par;
2052 	struct fb_info *info;
2053 	int err;
2054 #ifndef __sparc__
2055 	void __iomem *bios = NULL;
2056 #endif
2057 
2058 	/* Enable device in PCI config */
2059 	if ((err = pci_enable_device(pdev))) {
2060 		printk(KERN_ERR "aty128fb: Cannot enable PCI device: %d\n",
2061 				err);
2062 		return -ENODEV;
2063 	}
2064 
2065 	fb_addr = pci_resource_start(pdev, 0);
2066 	if (!request_mem_region(fb_addr, pci_resource_len(pdev, 0),
2067 				"aty128fb FB")) {
2068 		printk(KERN_ERR "aty128fb: cannot reserve frame "
2069 				"buffer memory\n");
2070 		return -ENODEV;
2071 	}
2072 
2073 	reg_addr = pci_resource_start(pdev, 2);
2074 	if (!request_mem_region(reg_addr, pci_resource_len(pdev, 2),
2075 				"aty128fb MMIO")) {
2076 		printk(KERN_ERR "aty128fb: cannot reserve MMIO region\n");
2077 		goto err_free_fb;
2078 	}
2079 
2080 	/* We have the resources. Now virtualize them */
2081 	info = framebuffer_alloc(sizeof(struct aty128fb_par), &pdev->dev);
2082 	if (!info)
2083 		goto err_free_mmio;
2084 
2085 	par = info->par;
2086 
2087 	info->pseudo_palette = par->pseudo_palette;
2088 
2089 	/* Virtualize mmio region */
2090 	info->fix.mmio_start = reg_addr;
2091 	par->regbase = pci_ioremap_bar(pdev, 2);
2092 	if (!par->regbase)
2093 		goto err_free_info;
2094 
2095 	/* Grab memory size from the card */
2096 	// How does this relate to the resource length from the PCI hardware?
2097 	par->vram_size = aty_ld_le32(CNFG_MEMSIZE) & 0x03FFFFFF;
2098 
2099 	/* Virtualize the framebuffer */
2100 	info->screen_base = ioremap_wc(fb_addr, par->vram_size);
2101 	if (!info->screen_base)
2102 		goto err_unmap_out;
2103 
2104 	/* Set up info->fix */
2105 	info->fix = aty128fb_fix;
2106 	info->fix.smem_start = fb_addr;
2107 	info->fix.smem_len = par->vram_size;
2108 	info->fix.mmio_start = reg_addr;
2109 
2110 	/* If we can't test scratch registers, something is seriously wrong */
2111 	if (!register_test(par)) {
2112 		printk(KERN_ERR "aty128fb: Can't write to video register!\n");
2113 		goto err_out;
2114 	}
2115 
2116 #ifndef __sparc__
2117 	bios = aty128_map_ROM(par, pdev);
2118 #ifdef CONFIG_X86
2119 	if (bios == NULL)
2120 		bios = aty128_find_mem_vbios(par);
2121 #endif
2122 	if (bios == NULL)
2123 		printk(KERN_INFO "aty128fb: BIOS not located, guessing timings.\n");
2124 	else {
2125 		printk(KERN_INFO "aty128fb: Rage128 BIOS located\n");
2126 		aty128_get_pllinfo(par, bios);
2127 		pci_unmap_rom(pdev, bios);
2128 	}
2129 #endif /* __sparc__ */
2130 
2131 	aty128_timings(par);
2132 	pci_set_drvdata(pdev, info);
2133 
2134 	if (!aty128_init(pdev, ent))
2135 		goto err_out;
2136 
2137 	if (mtrr)
2138 		par->wc_cookie = arch_phys_wc_add(info->fix.smem_start,
2139 						  par->vram_size);
2140 	return 0;
2141 
2142 err_out:
2143 	iounmap(info->screen_base);
2144 err_unmap_out:
2145 	iounmap(par->regbase);
2146 err_free_info:
2147 	framebuffer_release(info);
2148 err_free_mmio:
2149 	release_mem_region(pci_resource_start(pdev, 2),
2150 			pci_resource_len(pdev, 2));
2151 err_free_fb:
2152 	release_mem_region(pci_resource_start(pdev, 0),
2153 			pci_resource_len(pdev, 0));
2154 	return -ENODEV;
2155 }
2156 
2157 static void aty128_remove(struct pci_dev *pdev)
2158 {
2159 	struct fb_info *info = pci_get_drvdata(pdev);
2160 	struct aty128fb_par *par;
2161 
2162 	if (!info)
2163 		return;
2164 
2165 	par = info->par;
2166 
2167 	unregister_framebuffer(info);
2168 
2169 #ifdef CONFIG_FB_ATY128_BACKLIGHT
2170 	aty128_bl_exit(info->bl_dev);
2171 #endif
2172 
2173 	arch_phys_wc_del(par->wc_cookie);
2174 	iounmap(par->regbase);
2175 	iounmap(info->screen_base);
2176 
2177 	release_mem_region(pci_resource_start(pdev, 0),
2178 			   pci_resource_len(pdev, 0));
2179 	release_mem_region(pci_resource_start(pdev, 2),
2180 			   pci_resource_len(pdev, 2));
2181 	framebuffer_release(info);
2182 }
2183 #endif /* CONFIG_PCI */
2184 
2185 
2186 
2187     /*
2188      *  Blank the display.
2189      */
2190 static int aty128fb_blank(int blank, struct fb_info *fb)
2191 {
2192 	struct aty128fb_par *par = fb->par;
2193 	u8 state;
2194 
2195 	if (par->lock_blank || par->asleep)
2196 		return 0;
2197 
2198 	switch (blank) {
2199 	case FB_BLANK_NORMAL:
2200 		state = 4;
2201 		break;
2202 	case FB_BLANK_VSYNC_SUSPEND:
2203 		state = 6;
2204 		break;
2205 	case FB_BLANK_HSYNC_SUSPEND:
2206 		state = 5;
2207 		break;
2208 	case FB_BLANK_POWERDOWN:
2209 		state = 7;
2210 		break;
2211 	case FB_BLANK_UNBLANK:
2212 	default:
2213 		state = 0;
2214 		break;
2215 	}
2216 	aty_st_8(CRTC_EXT_CNTL+1, state);
2217 
2218 	if (par->chip_gen == rage_M3) {
2219 		aty128_set_crt_enable(par, par->crt_on && !blank);
2220 		aty128_set_lcd_enable(par, par->lcd_on && !blank);
2221 	}
2222 
2223 	return 0;
2224 }
2225 
2226 /*
2227  *  Set a single color register. The values supplied are already
2228  *  rounded down to the hardware's capabilities (according to the
2229  *  entries in the var structure). Return != 0 for invalid regno.
2230  */
2231 static int aty128fb_setcolreg(u_int regno, u_int red, u_int green, u_int blue,
2232 			      u_int transp, struct fb_info *info)
2233 {
2234 	struct aty128fb_par *par = info->par;
2235 
2236 	if (regno > 255
2237 	    || (par->crtc.depth == 16 && regno > 63)
2238 	    || (par->crtc.depth == 15 && regno > 31))
2239 		return 1;
2240 
2241 	red >>= 8;
2242 	green >>= 8;
2243 	blue >>= 8;
2244 
2245 	if (regno < 16) {
2246 		int i;
2247 		u32 *pal = info->pseudo_palette;
2248 
2249 		switch (par->crtc.depth) {
2250 		case 15:
2251 			pal[regno] = (regno << 10) | (regno << 5) | regno;
2252 			break;
2253 		case 16:
2254 			pal[regno] = (regno << 11) | (regno << 6) | regno;
2255 			break;
2256 		case 24:
2257 			pal[regno] = (regno << 16) | (regno << 8) | regno;
2258 			break;
2259 		case 32:
2260 			i = (regno << 8) | regno;
2261 			pal[regno] = (i << 16) | i;
2262 			break;
2263 		}
2264 	}
2265 
2266 	if (par->crtc.depth == 16 && regno > 0) {
2267 		/*
2268 		 * With the 5-6-5 split of bits for RGB at 16 bits/pixel, we
2269 		 * have 32 slots for R and B values but 64 slots for G values.
2270 		 * Thus the R and B values go in one slot but the G value
2271 		 * goes in a different slot, and we have to avoid disturbing
2272 		 * the other fields in the slots we touch.
2273 		 */
2274 		par->green[regno] = green;
2275 		if (regno < 32) {
2276 			par->red[regno] = red;
2277 			par->blue[regno] = blue;
2278 			aty128_st_pal(regno * 8, red, par->green[regno*2],
2279 				      blue, par);
2280 		}
2281 		red = par->red[regno/2];
2282 		blue = par->blue[regno/2];
2283 		regno <<= 2;
2284 	} else if (par->crtc.bpp == 16)
2285 		regno <<= 3;
2286 	aty128_st_pal(regno, red, green, blue, par);
2287 
2288 	return 0;
2289 }
2290 
2291 #define ATY_MIRROR_LCD_ON	0x00000001
2292 #define ATY_MIRROR_CRT_ON	0x00000002
2293 
2294 /* out param: u32*	backlight value: 0 to 15 */
2295 #define FBIO_ATY128_GET_MIRROR	_IOR('@', 1, __u32)
2296 /* in param: u32*	backlight value: 0 to 15 */
2297 #define FBIO_ATY128_SET_MIRROR	_IOW('@', 2, __u32)
2298 
2299 static int aty128fb_ioctl(struct fb_info *info, u_int cmd, u_long arg)
2300 {
2301 	struct aty128fb_par *par = info->par;
2302 	u32 value;
2303 	int rc;
2304 
2305 	switch (cmd) {
2306 	case FBIO_ATY128_SET_MIRROR:
2307 		if (par->chip_gen != rage_M3)
2308 			return -EINVAL;
2309 		rc = get_user(value, (__u32 __user *)arg);
2310 		if (rc)
2311 			return rc;
2312 		par->lcd_on = (value & 0x01) != 0;
2313 		par->crt_on = (value & 0x02) != 0;
2314 		if (!par->crt_on && !par->lcd_on)
2315 			par->lcd_on = 1;
2316 		aty128_set_crt_enable(par, par->crt_on);
2317 		aty128_set_lcd_enable(par, par->lcd_on);
2318 		return 0;
2319 	case FBIO_ATY128_GET_MIRROR:
2320 		if (par->chip_gen != rage_M3)
2321 			return -EINVAL;
2322 		value = (par->crt_on << 1) | par->lcd_on;
2323 		return put_user(value, (__u32 __user *)arg);
2324 	}
2325 	return -EINVAL;
2326 }
2327 
2328 static void aty128_set_suspend(struct aty128fb_par *par, int suspend)
2329 {
2330 	u32	pmgt;
2331 
2332 	if (!par->pdev->pm_cap)
2333 		return;
2334 
2335 	/* Set the chip into the appropriate suspend mode (we use D2,
2336 	 * D3 would require a complete re-initialisation of the chip,
2337 	 * including PCI config registers, clocks, AGP configuration, ...)
2338 	 *
2339 	 * For resume, the core will have already brought us back to D0
2340 	 */
2341 	if (suspend) {
2342 		/* Make sure CRTC2 is reset. Remove that the day we decide to
2343 		 * actually use CRTC2 and replace it with real code for disabling
2344 		 * the CRTC2 output during sleep
2345 		 */
2346 		aty_st_le32(CRTC2_GEN_CNTL, aty_ld_le32(CRTC2_GEN_CNTL) &
2347 			~(CRTC2_EN));
2348 
2349 		/* Set the power management mode to be PCI based */
2350 		/* Use this magic value for now */
2351 		pmgt = 0x0c005407;
2352 		aty_st_pll(POWER_MANAGEMENT, pmgt);
2353 		(void)aty_ld_pll(POWER_MANAGEMENT);
2354 		aty_st_le32(BUS_CNTL1, 0x00000010);
2355 		aty_st_le32(MEM_POWER_MISC, 0x0c830000);
2356 		msleep(100);
2357 	}
2358 }
2359 
2360 static int aty128_pci_suspend_late(struct device *dev, pm_message_t state)
2361 {
2362 	struct pci_dev *pdev = to_pci_dev(dev);
2363 	struct fb_info *info = pci_get_drvdata(pdev);
2364 	struct aty128fb_par *par = info->par;
2365 
2366 	/* We don't do anything but D2, for now we return 0, but
2367 	 * we may want to change that. How do we know if the BIOS
2368 	 * can properly take care of D3 ? Also, with swsusp, we
2369 	 * know we'll be rebooted, ...
2370 	 */
2371 #ifndef CONFIG_PPC_PMAC
2372 	/* HACK ALERT ! Once I find a proper way to say to each driver
2373 	 * individually what will happen with it's PCI slot, I'll change
2374 	 * that. On laptops, the AGP slot is just unclocked, so D2 is
2375 	 * expected, while on desktops, the card is powered off
2376 	 */
2377 	return 0;
2378 #endif /* CONFIG_PPC_PMAC */
2379 
2380 	if (state.event == pdev->dev.power.power_state.event)
2381 		return 0;
2382 
2383 	printk(KERN_DEBUG "aty128fb: suspending...\n");
2384 
2385 	console_lock();
2386 
2387 	fb_set_suspend(info, 1);
2388 
2389 	/* Make sure engine is reset */
2390 	wait_for_idle(par);
2391 	aty128_reset_engine(par);
2392 	wait_for_idle(par);
2393 
2394 	/* Blank display and LCD */
2395 	aty128fb_blank(FB_BLANK_POWERDOWN, info);
2396 
2397 	/* Sleep */
2398 	par->asleep = 1;
2399 	par->lock_blank = 1;
2400 
2401 #ifdef CONFIG_PPC_PMAC
2402 	/* On powermac, we have hooks to properly suspend/resume AGP now,
2403 	 * use them here. We'll ultimately need some generic support here,
2404 	 * but the generic code isn't quite ready for that yet
2405 	 */
2406 	pmac_suspend_agp_for_card(pdev);
2407 #endif /* CONFIG_PPC_PMAC */
2408 
2409 	/* We need a way to make sure the fbdev layer will _not_ touch the
2410 	 * framebuffer before we put the chip to suspend state. On 2.4, I
2411 	 * used dummy fb ops, 2.5 need proper support for this at the
2412 	 * fbdev level
2413 	 */
2414 	if (state.event != PM_EVENT_ON)
2415 		aty128_set_suspend(par, 1);
2416 
2417 	console_unlock();
2418 
2419 	pdev->dev.power.power_state = state;
2420 
2421 	return 0;
2422 }
2423 
2424 static int __maybe_unused aty128_pci_suspend(struct device *dev)
2425 {
2426 	return aty128_pci_suspend_late(dev, PMSG_SUSPEND);
2427 }
2428 
2429 static int __maybe_unused aty128_pci_hibernate(struct device *dev)
2430 {
2431 	return aty128_pci_suspend_late(dev, PMSG_HIBERNATE);
2432 }
2433 
2434 static int __maybe_unused aty128_pci_freeze(struct device *dev)
2435 {
2436 	return aty128_pci_suspend_late(dev, PMSG_FREEZE);
2437 }
2438 
2439 static int aty128_do_resume(struct pci_dev *pdev)
2440 {
2441 	struct fb_info *info = pci_get_drvdata(pdev);
2442 	struct aty128fb_par *par = info->par;
2443 
2444 	if (pdev->dev.power.power_state.event == PM_EVENT_ON)
2445 		return 0;
2446 
2447 	/* PCI state will have been restored by the core, so
2448 	 * we should be in D0 now with our config space fully
2449 	 * restored
2450 	 */
2451 
2452 	/* Wakeup chip */
2453 	aty128_set_suspend(par, 0);
2454 	par->asleep = 0;
2455 
2456 	/* Restore display & engine */
2457 	aty128_reset_engine(par);
2458 	wait_for_idle(par);
2459 	aty128fb_set_par(info);
2460 	fb_pan_display(info, &info->var);
2461 	fb_set_cmap(&info->cmap, info);
2462 
2463 	/* Refresh */
2464 	fb_set_suspend(info, 0);
2465 
2466 	/* Unblank */
2467 	par->lock_blank = 0;
2468 	aty128fb_blank(0, info);
2469 
2470 #ifdef CONFIG_PPC_PMAC
2471 	/* On powermac, we have hooks to properly suspend/resume AGP now,
2472 	 * use them here. We'll ultimately need some generic support here,
2473 	 * but the generic code isn't quite ready for that yet
2474 	 */
2475 	pmac_resume_agp_for_card(pdev);
2476 #endif /* CONFIG_PPC_PMAC */
2477 
2478 	pdev->dev.power.power_state = PMSG_ON;
2479 
2480 	printk(KERN_DEBUG "aty128fb: resumed !\n");
2481 
2482 	return 0;
2483 }
2484 
2485 static int __maybe_unused aty128_pci_resume(struct device *dev)
2486 {
2487 	int rc;
2488 
2489 	console_lock();
2490 	rc = aty128_do_resume(to_pci_dev(dev));
2491 	console_unlock();
2492 
2493 	return rc;
2494 }
2495 
2496 
2497 static int aty128fb_init(void)
2498 {
2499 #ifndef MODULE
2500 	char *option = NULL;
2501 
2502 	if (fb_get_options("aty128fb", &option))
2503 		return -ENODEV;
2504 	aty128fb_setup(option);
2505 #endif
2506 
2507 	return pci_register_driver(&aty128fb_driver);
2508 }
2509 
2510 static void __exit aty128fb_exit(void)
2511 {
2512 	pci_unregister_driver(&aty128fb_driver);
2513 }
2514 
2515 module_init(aty128fb_init);
2516 
2517 module_exit(aty128fb_exit);
2518 
2519 MODULE_AUTHOR("(c)1999-2003 Brad Douglas <brad@neruo.com>");
2520 MODULE_DESCRIPTION("FBDev driver for ATI Rage128 / Pro cards");
2521 MODULE_LICENSE("GPL");
2522 module_param(mode_option, charp, 0);
2523 MODULE_PARM_DESC(mode_option, "Specify resolution as \"<xres>x<yres>[-<bpp>][@<refresh>]\" ");
2524 module_param_named(nomtrr, mtrr, invbool, 0);
2525 MODULE_PARM_DESC(nomtrr, "bool: Disable MTRR support (0 or 1=disabled) (default=0)");
2526