xref: /linux/drivers/video/fbdev/aty/aty128fb.c (revision 36110669ddf832e6c9ceba4dd203749d5be31d31)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /* $Id: aty128fb.c,v 1.1.1.1.36.1 1999/12/11 09:03:05 Exp $
3  *  linux/drivers/video/aty128fb.c -- Frame buffer device for ATI Rage128
4  *
5  *  Copyright (C) 1999-2003, Brad Douglas <brad@neruo.com>
6  *  Copyright (C) 1999, Anthony Tong <atong@uiuc.edu>
7  *
8  *                Ani Joshi / Jeff Garzik
9  *                      - Code cleanup
10  *
11  *                Michel Danzer <michdaen@iiic.ethz.ch>
12  *                      - 15/16 bit cleanup
13  *                      - fix panning
14  *
15  *                Benjamin Herrenschmidt
16  *                      - pmac-specific PM stuff
17  *			- various fixes & cleanups
18  *
19  *                Andreas Hundt <andi@convergence.de>
20  *                      - FB_ACTIVATE fixes
21  *
22  *		  Paul Mackerras <paulus@samba.org>
23  *			- Convert to new framebuffer API,
24  *			  fix colormap setting at 16 bits/pixel (565)
25  *
26  *		  Paul Mundt
27  *		  	- PCI hotplug
28  *
29  *		  Jon Smirl <jonsmirl@yahoo.com>
30  * 			- PCI ID update
31  * 			- replace ROM BIOS search
32  *
33  *  Based off of Geert's atyfb.c and vfb.c.
34  *
35  *  TODO:
36  *		- monitor sensing (DDC)
37  *              - virtual display
38  *		- other platform support (only ppc/x86 supported)
39  *		- hardware cursor support
40  *
41  *    Please cc: your patches to brad@neruo.com.
42  */
43 
44 /*
45  * A special note of gratitude to ATI's devrel for providing documentation,
46  * example code and hardware. Thanks Nitya.	-atong and brad
47  */
48 
49 
50 #include <linux/aperture.h>
51 #include <linux/module.h>
52 #include <linux/moduleparam.h>
53 #include <linux/kernel.h>
54 #include <linux/errno.h>
55 #include <linux/string.h>
56 #include <linux/mm.h>
57 #include <linux/vmalloc.h>
58 #include <linux/delay.h>
59 #include <linux/interrupt.h>
60 #include <linux/uaccess.h>
61 #include <linux/fb.h>
62 #include <linux/init.h>
63 #include <linux/pci.h>
64 #include <linux/ioport.h>
65 #include <linux/console.h>
66 #include <linux/backlight.h>
67 #include <asm/io.h>
68 
69 #ifdef CONFIG_PPC_PMAC
70 #include <asm/machdep.h>
71 #include <asm/pmac_feature.h>
72 #include "../macmodes.h"
73 #endif
74 
75 #ifdef CONFIG_PMAC_BACKLIGHT
76 #include <asm/backlight.h>
77 #endif
78 
79 #ifdef CONFIG_BOOTX_TEXT
80 #include <asm/btext.h>
81 #endif /* CONFIG_BOOTX_TEXT */
82 
83 #include <video/aty128.h>
84 
85 /* Debug flag */
86 #undef DEBUG
87 
88 #ifdef DEBUG
89 #define DBG(fmt, args...) \
90 	printk(KERN_DEBUG "aty128fb: %s " fmt, __func__, ##args);
91 #else
92 #define DBG(fmt, args...)
93 #endif
94 
95 #ifndef CONFIG_PPC_PMAC
96 /* default mode */
97 static const struct fb_var_screeninfo default_var = {
98 	/* 640x480, 60 Hz, Non-Interlaced (25.175 MHz dotclock) */
99 	640, 480, 640, 480, 0, 0, 8, 0,
100 	{0, 8, 0}, {0, 8, 0}, {0, 8, 0}, {0, 0, 0},
101 	0, 0, -1, -1, 0, 39722, 48, 16, 33, 10, 96, 2,
102 	0, FB_VMODE_NONINTERLACED
103 };
104 
105 #else /* CONFIG_PPC_PMAC */
106 /* default to 1024x768 at 75Hz on PPC - this will work
107  * on the iMac, the usual 640x480 @ 60Hz doesn't. */
108 static const struct fb_var_screeninfo default_var = {
109 	/* 1024x768, 75 Hz, Non-Interlaced (78.75 MHz dotclock) */
110 	1024, 768, 1024, 768, 0, 0, 8, 0,
111 	{0, 8, 0}, {0, 8, 0}, {0, 8, 0}, {0, 0, 0},
112 	0, 0, -1, -1, 0, 12699, 160, 32, 28, 1, 96, 3,
113 	FB_SYNC_HOR_HIGH_ACT | FB_SYNC_VERT_HIGH_ACT,
114 	FB_VMODE_NONINTERLACED
115 };
116 #endif /* CONFIG_PPC_PMAC */
117 
118 /* default modedb mode */
119 /* 640x480, 60 Hz, Non-Interlaced (25.172 MHz dotclock) */
120 static const struct fb_videomode defaultmode = {
121 	.refresh =	60,
122 	.xres =		640,
123 	.yres =		480,
124 	.pixclock =	39722,
125 	.left_margin =	48,
126 	.right_margin =	16,
127 	.upper_margin =	33,
128 	.lower_margin =	10,
129 	.hsync_len =	96,
130 	.vsync_len =	2,
131 	.sync =		0,
132 	.vmode =	FB_VMODE_NONINTERLACED
133 };
134 
135 /* Chip generations */
136 enum {
137 	rage_128,
138 	rage_128_pci,
139 	rage_128_pro,
140 	rage_128_pro_pci,
141 	rage_M3,
142 	rage_M3_pci,
143 	rage_M4,
144 	rage_128_ultra,
145 };
146 
147 /* Must match above enum */
148 static char * const r128_family[] = {
149 	"AGP",
150 	"PCI",
151 	"PRO AGP",
152 	"PRO PCI",
153 	"M3 AGP",
154 	"M3 PCI",
155 	"M4 AGP",
156 	"Ultra AGP",
157 };
158 
159 /*
160  * PCI driver prototypes
161  */
162 static int aty128_probe(struct pci_dev *pdev,
163                                const struct pci_device_id *ent);
164 static void aty128_remove(struct pci_dev *pdev);
165 static int aty128_pci_suspend_late(struct device *dev, pm_message_t state);
166 static int __maybe_unused aty128_pci_suspend(struct device *dev);
167 static int __maybe_unused aty128_pci_hibernate(struct device *dev);
168 static int __maybe_unused aty128_pci_freeze(struct device *dev);
169 static int __maybe_unused aty128_pci_resume(struct device *dev);
170 static int aty128_do_resume(struct pci_dev *pdev);
171 
172 static const struct dev_pm_ops aty128_pci_pm_ops = {
173 	.suspend	= aty128_pci_suspend,
174 	.resume		= aty128_pci_resume,
175 	.freeze		= aty128_pci_freeze,
176 	.thaw		= aty128_pci_resume,
177 	.poweroff	= aty128_pci_hibernate,
178 	.restore	= aty128_pci_resume,
179 };
180 
181 /* supported Rage128 chipsets */
182 static const struct pci_device_id aty128_pci_tbl[] = {
183 	{ PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_LE,
184 	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_M3_pci },
185 	{ PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_LF,
186 	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_M3 },
187 	{ PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_MF,
188 	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_M4 },
189 	{ PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_ML,
190 	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_M4 },
191 	{ PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_PA,
192 	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_pro },
193 	{ PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_PB,
194 	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_pro },
195 	{ PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_PC,
196 	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_pro },
197 	{ PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_PD,
198 	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_pro_pci },
199 	{ PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_PE,
200 	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_pro },
201 	{ PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_PF,
202 	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_pro },
203 	{ PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_PG,
204 	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_pro },
205 	{ PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_PH,
206 	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_pro },
207 	{ PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_PI,
208 	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_pro },
209 	{ PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_PJ,
210 	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_pro },
211 	{ PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_PK,
212 	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_pro },
213 	{ PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_PL,
214 	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_pro },
215 	{ PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_PM,
216 	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_pro },
217 	{ PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_PN,
218 	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_pro },
219 	{ PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_PO,
220 	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_pro },
221 	{ PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_PP,
222 	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_pro_pci },
223 	{ PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_PQ,
224 	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_pro },
225 	{ PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_PR,
226 	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_pro_pci },
227 	{ PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_PS,
228 	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_pro },
229 	{ PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_PT,
230 	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_pro },
231 	{ PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_PU,
232 	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_pro },
233 	{ PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_PV,
234 	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_pro },
235 	{ PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_PW,
236 	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_pro },
237 	{ PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_PX,
238 	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_pro },
239 	{ PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_RE,
240 	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_pci },
241 	{ PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_RF,
242 	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128 },
243 	{ PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_RG,
244 	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128 },
245 	{ PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_RK,
246 	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_pci },
247 	{ PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_RL,
248 	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128 },
249 	{ PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_SE,
250 	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128 },
251 	{ PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_SF,
252 	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_pci },
253 	{ PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_SG,
254 	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128 },
255 	{ PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_SH,
256 	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128 },
257 	{ PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_SK,
258 	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128 },
259 	{ PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_SL,
260 	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128 },
261 	{ PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_SM,
262 	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128 },
263 	{ PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_SN,
264 	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128 },
265 	{ PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_TF,
266 	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_ultra },
267 	{ PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_TL,
268 	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_ultra },
269 	{ PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_TR,
270 	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_ultra },
271 	{ PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_TS,
272 	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_ultra },
273 	{ PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_TT,
274 	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_ultra },
275 	{ PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_TU,
276 	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_ultra },
277 	{ 0, }
278 };
279 
280 MODULE_DEVICE_TABLE(pci, aty128_pci_tbl);
281 
282 static struct pci_driver aty128fb_driver = {
283 	.name		= "aty128fb",
284 	.id_table	= aty128_pci_tbl,
285 	.probe		= aty128_probe,
286 	.remove		= aty128_remove,
287 	.driver.pm	= &aty128_pci_pm_ops,
288 };
289 
290 /* packed BIOS settings */
291 #ifndef CONFIG_PPC
292 typedef struct {
293 	u8 clock_chip_type;
294 	u8 struct_size;
295 	u8 accelerator_entry;
296 	u8 VGA_entry;
297 	u16 VGA_table_offset;
298 	u16 POST_table_offset;
299 	u16 XCLK;
300 	u16 MCLK;
301 	u8 num_PLL_blocks;
302 	u8 size_PLL_blocks;
303 	u16 PCLK_ref_freq;
304 	u16 PCLK_ref_divider;
305 	u32 PCLK_min_freq;
306 	u32 PCLK_max_freq;
307 	u16 MCLK_ref_freq;
308 	u16 MCLK_ref_divider;
309 	u32 MCLK_min_freq;
310 	u32 MCLK_max_freq;
311 	u16 XCLK_ref_freq;
312 	u16 XCLK_ref_divider;
313 	u32 XCLK_min_freq;
314 	u32 XCLK_max_freq;
315 } __attribute__ ((packed)) PLL_BLOCK;
316 #endif /* !CONFIG_PPC */
317 
318 /* onboard memory information */
319 struct aty128_meminfo {
320 	u8 ML;
321 	u8 MB;
322 	u8 Trcd;
323 	u8 Trp;
324 	u8 Twr;
325 	u8 CL;
326 	u8 Tr2w;
327 	u8 LoopLatency;
328 	u8 DspOn;
329 	u8 Rloop;
330 	const char *name;
331 };
332 
333 /* various memory configurations */
334 static const struct aty128_meminfo sdr_128 = {
335 	.ML = 4,
336 	.MB = 4,
337 	.Trcd = 3,
338 	.Trp = 3,
339 	.Twr = 1,
340 	.CL = 3,
341 	.Tr2w = 1,
342 	.LoopLatency = 16,
343 	.DspOn = 30,
344 	.Rloop = 16,
345 	.name = "128-bit SDR SGRAM (1:1)",
346 };
347 
348 static const struct aty128_meminfo sdr_sgram = {
349 	.ML = 4,
350 	.MB = 4,
351 	.Trcd = 1,
352 	.Trp = 2,
353 	.Twr = 1,
354 	.CL = 2,
355 	.Tr2w = 1,
356 	.LoopLatency = 16,
357 	.DspOn = 24,
358 	.Rloop = 16,
359 	.name = "64-bit SDR SGRAM (2:1)",
360 };
361 
362 static const struct aty128_meminfo ddr_sgram = {
363 	.ML = 4,
364 	.MB = 4,
365 	.Trcd = 3,
366 	.Trp = 3,
367 	.Twr = 2,
368 	.CL = 3,
369 	.Tr2w = 1,
370 	.LoopLatency = 16,
371 	.DspOn = 31,
372 	.Rloop = 16,
373 	.name = "64-bit DDR SGRAM",
374 };
375 
376 static const struct fb_fix_screeninfo aty128fb_fix = {
377 	.id		= "ATY Rage128",
378 	.type		= FB_TYPE_PACKED_PIXELS,
379 	.visual		= FB_VISUAL_PSEUDOCOLOR,
380 	.xpanstep	= 8,
381 	.ypanstep	= 1,
382 	.mmio_len	= 0x2000,
383 	.accel		= FB_ACCEL_ATI_RAGE128,
384 };
385 
386 static char *mode_option = NULL;
387 
388 #ifdef CONFIG_PPC_PMAC
389 static int default_vmode = VMODE_1024_768_60;
390 static int default_cmode = CMODE_8;
391 #endif
392 
393 static int default_crt_on = 0;
394 static int default_lcd_on = 1;
395 static bool mtrr = true;
396 
397 #ifdef CONFIG_FB_ATY128_BACKLIGHT
398 static int backlight = IS_BUILTIN(CONFIG_PMAC_BACKLIGHT);
399 #endif
400 
401 /* PLL constants */
402 struct aty128_constants {
403 	u32 ref_clk;
404 	u32 ppll_min;
405 	u32 ppll_max;
406 	u32 ref_divider;
407 	u32 xclk;
408 	u32 fifo_width;
409 	u32 fifo_depth;
410 };
411 
412 struct aty128_crtc {
413 	u32 gen_cntl;
414 	u32 h_total, h_sync_strt_wid;
415 	u32 v_total, v_sync_strt_wid;
416 	u32 pitch;
417 	u32 offset, offset_cntl;
418 	u32 xoffset, yoffset;
419 	u32 vxres, vyres;
420 	u32 depth, bpp;
421 };
422 
423 struct aty128_pll {
424 	u32 post_divider;
425 	u32 feedback_divider;
426 	u32 vclk;
427 };
428 
429 struct aty128_ddafifo {
430 	u32 dda_config;
431 	u32 dda_on_off;
432 };
433 
434 /* register values for a specific mode */
435 struct aty128fb_par {
436 	struct aty128_crtc crtc;
437 	struct aty128_pll pll;
438 	struct aty128_ddafifo fifo_reg;
439 	u32 accel_flags;
440 	struct aty128_constants constants;  /* PLL and others      */
441 	void __iomem *regbase;              /* remapped mmio       */
442 	u32 vram_size;                      /* onboard video ram   */
443 	int chip_gen;
444 	const struct aty128_meminfo *mem;   /* onboard mem info    */
445 	int wc_cookie;
446 	int blitter_may_be_busy;
447 	int fifo_slots;                 /* free slots in FIFO (64 max) */
448 
449 	int crt_on, lcd_on;
450 	struct pci_dev *pdev;
451 	struct fb_info *next;
452 	int	asleep;
453 	int	lock_blank;
454 
455 	u8	red[32];		/* see aty128fb_setcolreg */
456 	u8	green[64];
457 	u8	blue[32];
458 	u32	pseudo_palette[16];	/* used for TRUECOLOR */
459 };
460 
461 
462 #define round_div(n, d) ((n+(d/2))/d)
463 
464 static int aty128fb_check_var(struct fb_var_screeninfo *var,
465 			      struct fb_info *info);
466 static int aty128fb_set_par(struct fb_info *info);
467 static int aty128fb_setcolreg(u_int regno, u_int red, u_int green, u_int blue,
468 			      u_int transp, struct fb_info *info);
469 static int aty128fb_pan_display(struct fb_var_screeninfo *var,
470 			   struct fb_info *fb);
471 static int aty128fb_blank(int blank, struct fb_info *fb);
472 static int aty128fb_ioctl(struct fb_info *info, u_int cmd, unsigned long arg);
473 static int aty128fb_sync(struct fb_info *info);
474 
475     /*
476      *  Internal routines
477      */
478 
479 static int aty128_encode_var(struct fb_var_screeninfo *var,
480                              const struct aty128fb_par *par);
481 static int aty128_decode_var(struct fb_var_screeninfo *var,
482                              struct aty128fb_par *par);
483 static void aty128_timings(struct aty128fb_par *par);
484 static void aty128_init_engine(struct aty128fb_par *par);
485 static void aty128_reset_engine(const struct aty128fb_par *par);
486 static void aty128_flush_pixel_cache(const struct aty128fb_par *par);
487 static void do_wait_for_fifo(u16 entries, struct aty128fb_par *par);
488 static void wait_for_fifo(u16 entries, struct aty128fb_par *par);
489 static void wait_for_idle(struct aty128fb_par *par);
490 static u32 depth_to_dst(u32 depth);
491 
492 #ifdef CONFIG_FB_ATY128_BACKLIGHT
493 static void aty128_bl_set_power(struct fb_info *info, int power);
494 #endif
495 
496 #define BIOS_IN8(v)  	(readb(bios + (v)))
497 #define BIOS_IN16(v) 	(readb(bios + (v)) | \
498 			  (readb(bios + (v) + 1) << 8))
499 #define BIOS_IN32(v) 	(readb(bios + (v)) | \
500 			  (readb(bios + (v) + 1) << 8) | \
501 			  (readb(bios + (v) + 2) << 16) | \
502 			  (readb(bios + (v) + 3) << 24))
503 
504 
505 static const struct fb_ops aty128fb_ops = {
506 	.owner		= THIS_MODULE,
507 	FB_DEFAULT_IOMEM_OPS,
508 	.fb_check_var	= aty128fb_check_var,
509 	.fb_set_par	= aty128fb_set_par,
510 	.fb_setcolreg	= aty128fb_setcolreg,
511 	.fb_pan_display = aty128fb_pan_display,
512 	.fb_blank	= aty128fb_blank,
513 	.fb_ioctl	= aty128fb_ioctl,
514 	.fb_sync	= aty128fb_sync,
515 };
516 
517     /*
518      * Functions to read from/write to the mmio registers
519      *	- endian conversions may possibly be avoided by
520      *    using the other register aperture. TODO.
521      */
522 static inline u32 _aty_ld_le32(volatile unsigned int regindex,
523 			       const struct aty128fb_par *par)
524 {
525 	return readl (par->regbase + regindex);
526 }
527 
528 static inline void _aty_st_le32(volatile unsigned int regindex, u32 val,
529 				const struct aty128fb_par *par)
530 {
531 	writel (val, par->regbase + regindex);
532 }
533 
534 static inline u8 _aty_ld_8(unsigned int regindex,
535 			   const struct aty128fb_par *par)
536 {
537 	return readb (par->regbase + regindex);
538 }
539 
540 static inline void _aty_st_8(unsigned int regindex, u8 val,
541 			     const struct aty128fb_par *par)
542 {
543 	writeb (val, par->regbase + regindex);
544 }
545 
546 #define aty_ld_le32(regindex)		_aty_ld_le32(regindex, par)
547 #define aty_st_le32(regindex, val)	_aty_st_le32(regindex, val, par)
548 #define aty_ld_8(regindex)		_aty_ld_8(regindex, par)
549 #define aty_st_8(regindex, val)		_aty_st_8(regindex, val, par)
550 
551     /*
552      * Functions to read from/write to the pll registers
553      */
554 
555 #define aty_ld_pll(pll_index)		_aty_ld_pll(pll_index, par)
556 #define aty_st_pll(pll_index, val)	_aty_st_pll(pll_index, val, par)
557 
558 
559 static u32 _aty_ld_pll(unsigned int pll_index,
560 		       const struct aty128fb_par *par)
561 {
562 	aty_st_8(CLOCK_CNTL_INDEX, pll_index & 0x3F);
563 	return aty_ld_le32(CLOCK_CNTL_DATA);
564 }
565 
566 
567 static void _aty_st_pll(unsigned int pll_index, u32 val,
568 			const struct aty128fb_par *par)
569 {
570 	aty_st_8(CLOCK_CNTL_INDEX, (pll_index & 0x3F) | PLL_WR_EN);
571 	aty_st_le32(CLOCK_CNTL_DATA, val);
572 }
573 
574 
575 /* return true when the PLL has completed an atomic update */
576 static int aty_pll_readupdate(const struct aty128fb_par *par)
577 {
578 	return !(aty_ld_pll(PPLL_REF_DIV) & PPLL_ATOMIC_UPDATE_R);
579 }
580 
581 
582 static void aty_pll_wait_readupdate(const struct aty128fb_par *par)
583 {
584 	unsigned long timeout = jiffies + HZ/100; // should be more than enough
585 	int reset = 1;
586 
587 	while (time_before(jiffies, timeout))
588 		if (aty_pll_readupdate(par)) {
589 			reset = 0;
590 			break;
591 		}
592 
593 	if (reset)	/* reset engine?? */
594 		printk(KERN_DEBUG "aty128fb: PLL write timeout!\n");
595 }
596 
597 
598 /* tell PLL to update */
599 static void aty_pll_writeupdate(const struct aty128fb_par *par)
600 {
601 	aty_pll_wait_readupdate(par);
602 
603 	aty_st_pll(PPLL_REF_DIV,
604 		   aty_ld_pll(PPLL_REF_DIV) | PPLL_ATOMIC_UPDATE_W);
605 }
606 
607 
608 /* write to the scratch register to test r/w functionality */
609 static int register_test(const struct aty128fb_par *par)
610 {
611 	u32 val;
612 	int flag = 0;
613 
614 	val = aty_ld_le32(BIOS_0_SCRATCH);
615 
616 	aty_st_le32(BIOS_0_SCRATCH, 0x55555555);
617 	if (aty_ld_le32(BIOS_0_SCRATCH) == 0x55555555) {
618 		aty_st_le32(BIOS_0_SCRATCH, 0xAAAAAAAA);
619 
620 		if (aty_ld_le32(BIOS_0_SCRATCH) == 0xAAAAAAAA)
621 			flag = 1;
622 	}
623 
624 	aty_st_le32(BIOS_0_SCRATCH, val);	// restore value
625 	return flag;
626 }
627 
628 
629 /*
630  * Accelerator engine functions
631  */
632 static void do_wait_for_fifo(u16 entries, struct aty128fb_par *par)
633 {
634 	int i;
635 
636 	for (;;) {
637 		for (i = 0; i < 2000000; i++) {
638 			par->fifo_slots = aty_ld_le32(GUI_STAT) & 0x0fff;
639 			if (par->fifo_slots >= entries)
640 				return;
641 		}
642 		aty128_reset_engine(par);
643 	}
644 }
645 
646 
647 static void wait_for_idle(struct aty128fb_par *par)
648 {
649 	int i;
650 
651 	do_wait_for_fifo(64, par);
652 
653 	for (;;) {
654 		for (i = 0; i < 2000000; i++) {
655 			if (!(aty_ld_le32(GUI_STAT) & (1 << 31))) {
656 				aty128_flush_pixel_cache(par);
657 				par->blitter_may_be_busy = 0;
658 				return;
659 			}
660 		}
661 		aty128_reset_engine(par);
662 	}
663 }
664 
665 
666 static void wait_for_fifo(u16 entries, struct aty128fb_par *par)
667 {
668 	if (par->fifo_slots < entries)
669 		do_wait_for_fifo(64, par);
670 	par->fifo_slots -= entries;
671 }
672 
673 
674 static void aty128_flush_pixel_cache(const struct aty128fb_par *par)
675 {
676 	int i;
677 	u32 tmp;
678 
679 	tmp = aty_ld_le32(PC_NGUI_CTLSTAT);
680 	tmp &= ~(0x00ff);
681 	tmp |= 0x00ff;
682 	aty_st_le32(PC_NGUI_CTLSTAT, tmp);
683 
684 	for (i = 0; i < 2000000; i++)
685 		if (!(aty_ld_le32(PC_NGUI_CTLSTAT) & PC_BUSY))
686 			break;
687 }
688 
689 
690 static void aty128_reset_engine(const struct aty128fb_par *par)
691 {
692 	u32 gen_reset_cntl, clock_cntl_index, mclk_cntl;
693 
694 	aty128_flush_pixel_cache(par);
695 
696 	clock_cntl_index = aty_ld_le32(CLOCK_CNTL_INDEX);
697 	mclk_cntl = aty_ld_pll(MCLK_CNTL);
698 
699 	aty_st_pll(MCLK_CNTL, mclk_cntl | 0x00030000);
700 
701 	gen_reset_cntl = aty_ld_le32(GEN_RESET_CNTL);
702 	aty_st_le32(GEN_RESET_CNTL, gen_reset_cntl | SOFT_RESET_GUI);
703 	aty_ld_le32(GEN_RESET_CNTL);
704 	aty_st_le32(GEN_RESET_CNTL, gen_reset_cntl & ~(SOFT_RESET_GUI));
705 	aty_ld_le32(GEN_RESET_CNTL);
706 
707 	aty_st_pll(MCLK_CNTL, mclk_cntl);
708 	aty_st_le32(CLOCK_CNTL_INDEX, clock_cntl_index);
709 	aty_st_le32(GEN_RESET_CNTL, gen_reset_cntl);
710 
711 	/* use old pio mode */
712 	aty_st_le32(PM4_BUFFER_CNTL, PM4_BUFFER_CNTL_NONPM4);
713 
714 	DBG("engine reset");
715 }
716 
717 
718 static void aty128_init_engine(struct aty128fb_par *par)
719 {
720 	u32 pitch_value;
721 
722 	wait_for_idle(par);
723 
724 	/* 3D scaler not spoken here */
725 	wait_for_fifo(1, par);
726 	aty_st_le32(SCALE_3D_CNTL, 0x00000000);
727 
728 	aty128_reset_engine(par);
729 
730 	pitch_value = par->crtc.pitch;
731 	if (par->crtc.bpp == 24) {
732 		pitch_value = pitch_value * 3;
733 	}
734 
735 	wait_for_fifo(4, par);
736 	/* setup engine offset registers */
737 	aty_st_le32(DEFAULT_OFFSET, 0x00000000);
738 
739 	/* setup engine pitch registers */
740 	aty_st_le32(DEFAULT_PITCH, pitch_value);
741 
742 	/* set the default scissor register to max dimensions */
743 	aty_st_le32(DEFAULT_SC_BOTTOM_RIGHT, (0x1FFF << 16) | 0x1FFF);
744 
745 	/* set the drawing controls registers */
746 	aty_st_le32(DP_GUI_MASTER_CNTL,
747 		    GMC_SRC_PITCH_OFFSET_DEFAULT		|
748 		    GMC_DST_PITCH_OFFSET_DEFAULT		|
749 		    GMC_SRC_CLIP_DEFAULT			|
750 		    GMC_DST_CLIP_DEFAULT			|
751 		    GMC_BRUSH_SOLIDCOLOR			|
752 		    (depth_to_dst(par->crtc.depth) << 8)	|
753 		    GMC_SRC_DSTCOLOR			|
754 		    GMC_BYTE_ORDER_MSB_TO_LSB		|
755 		    GMC_DP_CONVERSION_TEMP_6500		|
756 		    ROP3_PATCOPY				|
757 		    GMC_DP_SRC_RECT				|
758 		    GMC_3D_FCN_EN_CLR			|
759 		    GMC_DST_CLR_CMP_FCN_CLEAR		|
760 		    GMC_AUX_CLIP_CLEAR			|
761 		    GMC_WRITE_MASK_SET);
762 
763 	wait_for_fifo(8, par);
764 	/* clear the line drawing registers */
765 	aty_st_le32(DST_BRES_ERR, 0);
766 	aty_st_le32(DST_BRES_INC, 0);
767 	aty_st_le32(DST_BRES_DEC, 0);
768 
769 	/* set brush color registers */
770 	aty_st_le32(DP_BRUSH_FRGD_CLR, 0xFFFFFFFF); /* white */
771 	aty_st_le32(DP_BRUSH_BKGD_CLR, 0x00000000); /* black */
772 
773 	/* set source color registers */
774 	aty_st_le32(DP_SRC_FRGD_CLR, 0xFFFFFFFF);   /* white */
775 	aty_st_le32(DP_SRC_BKGD_CLR, 0x00000000);   /* black */
776 
777 	/* default write mask */
778 	aty_st_le32(DP_WRITE_MASK, 0xFFFFFFFF);
779 
780 	/* Wait for all the writes to be completed before returning */
781 	wait_for_idle(par);
782 }
783 
784 
785 /* convert depth values to their register representation */
786 static u32 depth_to_dst(u32 depth)
787 {
788 	if (depth <= 8)
789 		return DST_8BPP;
790 	else if (depth <= 15)
791 		return DST_15BPP;
792 	else if (depth == 16)
793 		return DST_16BPP;
794 	else if (depth <= 24)
795 		return DST_24BPP;
796 	else if (depth <= 32)
797 		return DST_32BPP;
798 
799 	return -EINVAL;
800 }
801 
802 /*
803  * PLL informations retreival
804  */
805 
806 
807 #ifndef __sparc__
808 static void __iomem *aty128_map_ROM(const struct aty128fb_par *par,
809 				    struct pci_dev *dev)
810 {
811 	u16 dptr;
812 	u8 rom_type;
813 	void __iomem *bios;
814 	size_t rom_size;
815 
816     	/* Fix from ATI for problem with Rage128 hardware not leaving ROM enabled */
817     	unsigned int temp;
818 	temp = aty_ld_le32(RAGE128_MPP_TB_CONFIG);
819 	temp &= 0x00ffffffu;
820 	temp |= 0x04 << 24;
821 	aty_st_le32(RAGE128_MPP_TB_CONFIG, temp);
822 	temp = aty_ld_le32(RAGE128_MPP_TB_CONFIG);
823 
824 	bios = pci_map_rom(dev, &rom_size);
825 
826 	if (!bios) {
827 		printk(KERN_ERR "aty128fb: ROM failed to map\n");
828 		return NULL;
829 	}
830 
831 	/* Very simple test to make sure it appeared */
832 	if (BIOS_IN16(0) != 0xaa55) {
833 		printk(KERN_DEBUG "aty128fb: Invalid ROM signature %x should "
834 			" be 0xaa55\n", BIOS_IN16(0));
835 		goto failed;
836 	}
837 
838 	/* Look for the PCI data to check the ROM type */
839 	dptr = BIOS_IN16(0x18);
840 
841 	/* Check the PCI data signature. If it's wrong, we still assume a normal
842 	 * x86 ROM for now, until I've verified this works everywhere.
843 	 * The goal here is more to phase out Open Firmware images.
844 	 *
845 	 * Currently, we only look at the first PCI data, we could iteratre and
846 	 * deal with them all, and we should use fb_bios_start relative to start
847 	 * of image and not relative start of ROM, but so far, I never found a
848 	 * dual-image ATI card.
849 	 *
850 	 * typedef struct {
851 	 * 	u32	signature;	+ 0x00
852 	 * 	u16	vendor;		+ 0x04
853 	 * 	u16	device;		+ 0x06
854 	 * 	u16	reserved_1;	+ 0x08
855 	 * 	u16	dlen;		+ 0x0a
856 	 * 	u8	drevision;	+ 0x0c
857 	 * 	u8	class_hi;	+ 0x0d
858 	 * 	u16	class_lo;	+ 0x0e
859 	 * 	u16	ilen;		+ 0x10
860 	 * 	u16	irevision;	+ 0x12
861 	 * 	u8	type;		+ 0x14
862 	 * 	u8	indicator;	+ 0x15
863 	 * 	u16	reserved_2;	+ 0x16
864 	 * } pci_data_t;
865 	 */
866 	if (BIOS_IN32(dptr) !=  (('R' << 24) | ('I' << 16) | ('C' << 8) | 'P')) {
867 		printk(KERN_WARNING "aty128fb: PCI DATA signature in ROM incorrect: %08x\n",
868 		       BIOS_IN32(dptr));
869 		goto anyway;
870 	}
871 	rom_type = BIOS_IN8(dptr + 0x14);
872 	switch(rom_type) {
873 	case 0:
874 		printk(KERN_INFO "aty128fb: Found Intel x86 BIOS ROM Image\n");
875 		break;
876 	case 1:
877 		printk(KERN_INFO "aty128fb: Found Open Firmware ROM Image\n");
878 		goto failed;
879 	case 2:
880 		printk(KERN_INFO "aty128fb: Found HP PA-RISC ROM Image\n");
881 		goto failed;
882 	default:
883 		printk(KERN_INFO "aty128fb: Found unknown type %d ROM Image\n",
884 		       rom_type);
885 		goto failed;
886 	}
887  anyway:
888 	return bios;
889 
890  failed:
891 	pci_unmap_rom(dev, bios);
892 	return NULL;
893 }
894 
895 static void aty128_get_pllinfo(struct aty128fb_par *par,
896 			       unsigned char __iomem *bios)
897 {
898 	unsigned int bios_hdr;
899 	unsigned int bios_pll;
900 
901 	bios_hdr = BIOS_IN16(0x48);
902 	bios_pll = BIOS_IN16(bios_hdr + 0x30);
903 
904 	par->constants.ppll_max = BIOS_IN32(bios_pll + 0x16);
905 	par->constants.ppll_min = BIOS_IN32(bios_pll + 0x12);
906 	par->constants.xclk = BIOS_IN16(bios_pll + 0x08);
907 	par->constants.ref_divider = BIOS_IN16(bios_pll + 0x10);
908 	par->constants.ref_clk = BIOS_IN16(bios_pll + 0x0e);
909 
910 	DBG("ppll_max %d ppll_min %d xclk %d ref_divider %d ref clock %d\n",
911 			par->constants.ppll_max, par->constants.ppll_min,
912 			par->constants.xclk, par->constants.ref_divider,
913 			par->constants.ref_clk);
914 
915 }
916 
917 #ifdef CONFIG_X86
918 static void __iomem *aty128_find_mem_vbios(struct aty128fb_par *par)
919 {
920 	/* I simplified this code as we used to miss the signatures in
921 	 * a lot of case. It's now closer to XFree, we just don't check
922 	 * for signatures at all... Something better will have to be done
923 	 * if we end up having conflicts
924 	 */
925         u32  segstart;
926         unsigned char __iomem *rom_base = NULL;
927 
928         for (segstart=0x000c0000; segstart<0x000f0000; segstart+=0x00001000) {
929                 rom_base = ioremap(segstart, 0x10000);
930 		if (rom_base == NULL)
931 			return NULL;
932 		if (readb(rom_base) == 0x55 && readb(rom_base + 1) == 0xaa)
933 	                break;
934                 iounmap(rom_base);
935 		rom_base = NULL;
936         }
937 	return rom_base;
938 }
939 #endif
940 #endif /* ndef(__sparc__) */
941 
942 /* fill in known card constants if pll_block is not available */
943 static void aty128_timings(struct aty128fb_par *par)
944 {
945 #ifdef CONFIG_PPC
946 	/* instead of a table lookup, assume OF has properly
947 	 * setup the PLL registers and use their values
948 	 * to set the XCLK values and reference divider values */
949 
950 	u32 x_mpll_ref_fb_div;
951 	u32 xclk_cntl;
952 	u32 Nx, M;
953 	static const unsigned int PostDivSet[] = { 0, 1, 2, 4, 8, 3, 6, 12 };
954 #endif
955 
956 	if (!par->constants.ref_clk)
957 		par->constants.ref_clk = 2950;
958 
959 #ifdef CONFIG_PPC
960 	x_mpll_ref_fb_div = aty_ld_pll(X_MPLL_REF_FB_DIV);
961 	xclk_cntl = aty_ld_pll(XCLK_CNTL) & 0x7;
962 	Nx = (x_mpll_ref_fb_div & 0x00ff00) >> 8;
963 	M  = x_mpll_ref_fb_div & 0x0000ff;
964 
965 	par->constants.xclk = round_div((2 * Nx * par->constants.ref_clk),
966 					(M * PostDivSet[xclk_cntl]));
967 
968 	par->constants.ref_divider =
969 		aty_ld_pll(PPLL_REF_DIV) & PPLL_REF_DIV_MASK;
970 #endif
971 
972 	if (!par->constants.ref_divider) {
973 		par->constants.ref_divider = 0x3b;
974 
975 		aty_st_pll(X_MPLL_REF_FB_DIV, 0x004c4c1e);
976 		aty_pll_writeupdate(par);
977 	}
978 	aty_st_pll(PPLL_REF_DIV, par->constants.ref_divider);
979 	aty_pll_writeupdate(par);
980 
981 	/* from documentation */
982 	if (!par->constants.ppll_min)
983 		par->constants.ppll_min = 12500;
984 	if (!par->constants.ppll_max)
985 		par->constants.ppll_max = 25000;    /* 23000 on some cards? */
986 	if (!par->constants.xclk)
987 		par->constants.xclk = 0x1d4d;	     /* same as mclk */
988 
989 	par->constants.fifo_width = 128;
990 	par->constants.fifo_depth = 32;
991 
992 	switch (aty_ld_le32(MEM_CNTL) & 0x3) {
993 	case 0:
994 		par->mem = &sdr_128;
995 		break;
996 	case 1:
997 		par->mem = &sdr_sgram;
998 		break;
999 	case 2:
1000 		par->mem = &ddr_sgram;
1001 		break;
1002 	default:
1003 		par->mem = &sdr_sgram;
1004 	}
1005 }
1006 
1007 
1008 
1009 /*
1010  * CRTC programming
1011  */
1012 
1013 /* Program the CRTC registers */
1014 static void aty128_set_crtc(const struct aty128_crtc *crtc,
1015 			    const struct aty128fb_par *par)
1016 {
1017 	aty_st_le32(CRTC_GEN_CNTL, crtc->gen_cntl);
1018 	aty_st_le32(CRTC_H_TOTAL_DISP, crtc->h_total);
1019 	aty_st_le32(CRTC_H_SYNC_STRT_WID, crtc->h_sync_strt_wid);
1020 	aty_st_le32(CRTC_V_TOTAL_DISP, crtc->v_total);
1021 	aty_st_le32(CRTC_V_SYNC_STRT_WID, crtc->v_sync_strt_wid);
1022 	aty_st_le32(CRTC_PITCH, crtc->pitch);
1023 	aty_st_le32(CRTC_OFFSET, crtc->offset);
1024 	aty_st_le32(CRTC_OFFSET_CNTL, crtc->offset_cntl);
1025 	/* Disable ATOMIC updating.  Is this the right place? */
1026 	aty_st_pll(PPLL_CNTL, aty_ld_pll(PPLL_CNTL) & ~(0x00030000));
1027 }
1028 
1029 
1030 static int aty128_var_to_crtc(const struct fb_var_screeninfo *var,
1031 			      struct aty128_crtc *crtc,
1032 			      const struct aty128fb_par *par)
1033 {
1034 	u32 xres, yres, vxres, vyres, xoffset, yoffset, bpp, dst;
1035 	u32 left, right, upper, lower, hslen, vslen, sync, vmode;
1036 	u32 h_total, h_disp, h_sync_strt, h_sync_wid, h_sync_pol;
1037 	u32 v_total, v_disp, v_sync_strt, v_sync_wid, v_sync_pol, c_sync;
1038 	u32 depth, bytpp;
1039 	u8 mode_bytpp[7] = { 0, 0, 1, 2, 2, 3, 4 };
1040 
1041 	/* input */
1042 	xres = var->xres;
1043 	yres = var->yres;
1044 	vxres   = var->xres_virtual;
1045 	vyres   = var->yres_virtual;
1046 	xoffset = var->xoffset;
1047 	yoffset = var->yoffset;
1048 	bpp   = var->bits_per_pixel;
1049 	left  = var->left_margin;
1050 	right = var->right_margin;
1051 	upper = var->upper_margin;
1052 	lower = var->lower_margin;
1053 	hslen = var->hsync_len;
1054 	vslen = var->vsync_len;
1055 	sync  = var->sync;
1056 	vmode = var->vmode;
1057 
1058 	if (bpp != 16)
1059 		depth = bpp;
1060 	else
1061 		depth = (var->green.length == 6) ? 16 : 15;
1062 
1063 	/* check for mode eligibility
1064 	 * accept only non interlaced modes */
1065 	if ((vmode & FB_VMODE_MASK) != FB_VMODE_NONINTERLACED)
1066 		return -EINVAL;
1067 
1068 	/* convert (and round up) and validate */
1069 	xres = (xres + 7) & ~7;
1070 	xoffset = (xoffset + 7) & ~7;
1071 
1072 	if (vxres < xres + xoffset)
1073 		vxres = xres + xoffset;
1074 
1075 	if (vyres < yres + yoffset)
1076 		vyres = yres + yoffset;
1077 
1078 	/* convert depth into ATI register depth */
1079 	dst = depth_to_dst(depth);
1080 
1081 	if (dst == -EINVAL) {
1082 		printk(KERN_ERR "aty128fb: Invalid depth or RGBA\n");
1083 		return -EINVAL;
1084 	}
1085 
1086 	/* convert register depth to bytes per pixel */
1087 	bytpp = mode_bytpp[dst];
1088 
1089 	/* make sure there is enough video ram for the mode */
1090 	if ((u32)(vxres * vyres * bytpp) > par->vram_size) {
1091 		printk(KERN_ERR "aty128fb: Not enough memory for mode\n");
1092 		return -EINVAL;
1093 	}
1094 
1095 	h_disp = (xres >> 3) - 1;
1096 	h_total = (((xres + right + hslen + left) >> 3) - 1) & 0xFFFFL;
1097 
1098 	v_disp = yres - 1;
1099 	v_total = (yres + upper + vslen + lower - 1) & 0xFFFFL;
1100 
1101 	/* check to make sure h_total and v_total are in range */
1102 	if (((h_total >> 3) - 1) > 0x1ff || (v_total - 1) > 0x7FF) {
1103 		printk(KERN_ERR "aty128fb: invalid width ranges\n");
1104 		return -EINVAL;
1105 	}
1106 
1107 	h_sync_wid = (hslen + 7) >> 3;
1108 	if (h_sync_wid == 0)
1109 		h_sync_wid = 1;
1110 	else if (h_sync_wid > 0x3f)        /* 0x3f = max hwidth */
1111 		h_sync_wid = 0x3f;
1112 
1113 	h_sync_strt = (h_disp << 3) + right;
1114 
1115 	v_sync_wid = vslen;
1116 	if (v_sync_wid == 0)
1117 		v_sync_wid = 1;
1118 	else if (v_sync_wid > 0x1f)        /* 0x1f = max vwidth */
1119 		v_sync_wid = 0x1f;
1120 
1121 	v_sync_strt = v_disp + lower;
1122 
1123 	h_sync_pol = sync & FB_SYNC_HOR_HIGH_ACT ? 0 : 1;
1124 	v_sync_pol = sync & FB_SYNC_VERT_HIGH_ACT ? 0 : 1;
1125 
1126 	c_sync = sync & FB_SYNC_COMP_HIGH_ACT ? (1 << 4) : 0;
1127 
1128 	crtc->gen_cntl = 0x3000000L | c_sync | (dst << 8);
1129 
1130 	crtc->h_total = h_total | (h_disp << 16);
1131 	crtc->v_total = v_total | (v_disp << 16);
1132 
1133 	crtc->h_sync_strt_wid = h_sync_strt | (h_sync_wid << 16) |
1134 	        (h_sync_pol << 23);
1135 	crtc->v_sync_strt_wid = v_sync_strt | (v_sync_wid << 16) |
1136                 (v_sync_pol << 23);
1137 
1138 	crtc->pitch = vxres >> 3;
1139 
1140 	crtc->offset = 0;
1141 
1142 	if ((var->activate & FB_ACTIVATE_MASK) == FB_ACTIVATE_NOW)
1143 		crtc->offset_cntl = 0x00010000;
1144 	else
1145 		crtc->offset_cntl = 0;
1146 
1147 	crtc->vxres = vxres;
1148 	crtc->vyres = vyres;
1149 	crtc->xoffset = xoffset;
1150 	crtc->yoffset = yoffset;
1151 	crtc->depth = depth;
1152 	crtc->bpp = bpp;
1153 
1154 	return 0;
1155 }
1156 
1157 
1158 static int aty128_pix_width_to_var(int pix_width, struct fb_var_screeninfo *var)
1159 {
1160 
1161 	/* fill in pixel info */
1162 	var->red.msb_right = 0;
1163 	var->green.msb_right = 0;
1164 	var->blue.offset = 0;
1165 	var->blue.msb_right = 0;
1166 	var->transp.offset = 0;
1167 	var->transp.length = 0;
1168 	var->transp.msb_right = 0;
1169 	switch (pix_width) {
1170 	case CRTC_PIX_WIDTH_8BPP:
1171 		var->bits_per_pixel = 8;
1172 		var->red.offset = 0;
1173 		var->red.length = 8;
1174 		var->green.offset = 0;
1175 		var->green.length = 8;
1176 		var->blue.length = 8;
1177 		break;
1178 	case CRTC_PIX_WIDTH_15BPP:
1179 		var->bits_per_pixel = 16;
1180 		var->red.offset = 10;
1181 		var->red.length = 5;
1182 		var->green.offset = 5;
1183 		var->green.length = 5;
1184 		var->blue.length = 5;
1185 		break;
1186 	case CRTC_PIX_WIDTH_16BPP:
1187 		var->bits_per_pixel = 16;
1188 		var->red.offset = 11;
1189 		var->red.length = 5;
1190 		var->green.offset = 5;
1191 		var->green.length = 6;
1192 		var->blue.length = 5;
1193 		break;
1194 	case CRTC_PIX_WIDTH_24BPP:
1195 		var->bits_per_pixel = 24;
1196 		var->red.offset = 16;
1197 		var->red.length = 8;
1198 		var->green.offset = 8;
1199 		var->green.length = 8;
1200 		var->blue.length = 8;
1201 		break;
1202 	case CRTC_PIX_WIDTH_32BPP:
1203 		var->bits_per_pixel = 32;
1204 		var->red.offset = 16;
1205 		var->red.length = 8;
1206 		var->green.offset = 8;
1207 		var->green.length = 8;
1208 		var->blue.length = 8;
1209 		var->transp.offset = 24;
1210 		var->transp.length = 8;
1211 		break;
1212 	default:
1213 		printk(KERN_ERR "aty128fb: Invalid pixel width\n");
1214 		return -EINVAL;
1215 	}
1216 
1217 	return 0;
1218 }
1219 
1220 
1221 static int aty128_crtc_to_var(const struct aty128_crtc *crtc,
1222 			      struct fb_var_screeninfo *var)
1223 {
1224 	u32 xres, yres, left, right, upper, lower, hslen, vslen, sync;
1225 	u32 h_total, h_disp, h_sync_strt, h_sync_dly, h_sync_wid, h_sync_pol;
1226 	u32 v_total, v_disp, v_sync_strt, v_sync_wid, v_sync_pol, c_sync;
1227 	u32 pix_width;
1228 
1229 	/* fun with masking */
1230 	h_total     = crtc->h_total & 0x1ff;
1231 	h_disp      = (crtc->h_total >> 16) & 0xff;
1232 	h_sync_strt = (crtc->h_sync_strt_wid >> 3) & 0x1ff;
1233 	h_sync_dly  = crtc->h_sync_strt_wid & 0x7;
1234 	h_sync_wid  = (crtc->h_sync_strt_wid >> 16) & 0x3f;
1235 	h_sync_pol  = (crtc->h_sync_strt_wid >> 23) & 0x1;
1236 	v_total     = crtc->v_total & 0x7ff;
1237 	v_disp      = (crtc->v_total >> 16) & 0x7ff;
1238 	v_sync_strt = crtc->v_sync_strt_wid & 0x7ff;
1239 	v_sync_wid  = (crtc->v_sync_strt_wid >> 16) & 0x1f;
1240 	v_sync_pol  = (crtc->v_sync_strt_wid >> 23) & 0x1;
1241 	c_sync      = crtc->gen_cntl & CRTC_CSYNC_EN ? 1 : 0;
1242 	pix_width   = crtc->gen_cntl & CRTC_PIX_WIDTH_MASK;
1243 
1244 	/* do conversions */
1245 	xres  = (h_disp + 1) << 3;
1246 	yres  = v_disp + 1;
1247 	left  = ((h_total - h_sync_strt - h_sync_wid) << 3) - h_sync_dly;
1248 	right = ((h_sync_strt - h_disp) << 3) + h_sync_dly;
1249 	hslen = h_sync_wid << 3;
1250 	upper = v_total - v_sync_strt - v_sync_wid;
1251 	lower = v_sync_strt - v_disp;
1252 	vslen = v_sync_wid;
1253 	sync  = (h_sync_pol ? 0 : FB_SYNC_HOR_HIGH_ACT) |
1254 		(v_sync_pol ? 0 : FB_SYNC_VERT_HIGH_ACT) |
1255 		(c_sync ? FB_SYNC_COMP_HIGH_ACT : 0);
1256 
1257 	aty128_pix_width_to_var(pix_width, var);
1258 
1259 	var->xres = xres;
1260 	var->yres = yres;
1261 	var->xres_virtual = crtc->vxres;
1262 	var->yres_virtual = crtc->vyres;
1263 	var->xoffset = crtc->xoffset;
1264 	var->yoffset = crtc->yoffset;
1265 	var->left_margin  = left;
1266 	var->right_margin = right;
1267 	var->upper_margin = upper;
1268 	var->lower_margin = lower;
1269 	var->hsync_len = hslen;
1270 	var->vsync_len = vslen;
1271 	var->sync  = sync;
1272 	var->vmode = FB_VMODE_NONINTERLACED;
1273 
1274 	return 0;
1275 }
1276 
1277 static void aty128_set_crt_enable(struct aty128fb_par *par, int on)
1278 {
1279 	if (on) {
1280 		aty_st_le32(CRTC_EXT_CNTL, aty_ld_le32(CRTC_EXT_CNTL) |
1281 			    CRT_CRTC_ON);
1282 		aty_st_le32(DAC_CNTL, (aty_ld_le32(DAC_CNTL) |
1283 			    DAC_PALETTE2_SNOOP_EN));
1284 	} else
1285 		aty_st_le32(CRTC_EXT_CNTL, aty_ld_le32(CRTC_EXT_CNTL) &
1286 			    ~CRT_CRTC_ON);
1287 }
1288 
1289 static void aty128_set_lcd_enable(struct aty128fb_par *par, int on)
1290 {
1291 	u32 reg;
1292 #ifdef CONFIG_FB_ATY128_BACKLIGHT
1293 	struct fb_info *info = pci_get_drvdata(par->pdev);
1294 #endif
1295 
1296 	if (on) {
1297 		reg = aty_ld_le32(LVDS_GEN_CNTL);
1298 		reg |= LVDS_ON | LVDS_EN | LVDS_BLON | LVDS_DIGION;
1299 		reg &= ~LVDS_DISPLAY_DIS;
1300 		aty_st_le32(LVDS_GEN_CNTL, reg);
1301 #ifdef CONFIG_FB_ATY128_BACKLIGHT
1302 		aty128_bl_set_power(info, FB_BLANK_UNBLANK);
1303 #endif
1304 	} else {
1305 #ifdef CONFIG_FB_ATY128_BACKLIGHT
1306 		aty128_bl_set_power(info, FB_BLANK_POWERDOWN);
1307 #endif
1308 		reg = aty_ld_le32(LVDS_GEN_CNTL);
1309 		reg |= LVDS_DISPLAY_DIS;
1310 		aty_st_le32(LVDS_GEN_CNTL, reg);
1311 		mdelay(100);
1312 		reg &= ~(LVDS_ON /*| LVDS_EN*/);
1313 		aty_st_le32(LVDS_GEN_CNTL, reg);
1314 	}
1315 }
1316 
1317 static void aty128_set_pll(struct aty128_pll *pll,
1318 			   const struct aty128fb_par *par)
1319 {
1320 	u32 div3;
1321 
1322 	/* register values for post dividers */
1323 	static const unsigned char post_conv[] = {
1324 		2, 0, 1, 4, 2, 2, 6, 2, 3, 2, 2, 2, 7
1325 	};
1326 
1327 	/* select PPLL_DIV_3 */
1328 	aty_st_le32(CLOCK_CNTL_INDEX, aty_ld_le32(CLOCK_CNTL_INDEX) | (3 << 8));
1329 
1330 	/* reset PLL */
1331 	aty_st_pll(PPLL_CNTL,
1332 		   aty_ld_pll(PPLL_CNTL) | PPLL_RESET | PPLL_ATOMIC_UPDATE_EN);
1333 
1334 	/* write the reference divider */
1335 	aty_pll_wait_readupdate(par);
1336 	aty_st_pll(PPLL_REF_DIV, par->constants.ref_divider & 0x3ff);
1337 	aty_pll_writeupdate(par);
1338 
1339 	div3 = aty_ld_pll(PPLL_DIV_3);
1340 	div3 &= ~PPLL_FB3_DIV_MASK;
1341 	div3 |= pll->feedback_divider;
1342 	div3 &= ~PPLL_POST3_DIV_MASK;
1343 	div3 |= post_conv[pll->post_divider] << 16;
1344 
1345 	/* write feedback and post dividers */
1346 	aty_pll_wait_readupdate(par);
1347 	aty_st_pll(PPLL_DIV_3, div3);
1348 	aty_pll_writeupdate(par);
1349 
1350 	aty_pll_wait_readupdate(par);
1351 	aty_st_pll(HTOTAL_CNTL, 0);	/* no horiz crtc adjustment */
1352 	aty_pll_writeupdate(par);
1353 
1354 	/* clear the reset, just in case */
1355 	aty_st_pll(PPLL_CNTL, aty_ld_pll(PPLL_CNTL) & ~PPLL_RESET);
1356 }
1357 
1358 
1359 static int aty128_var_to_pll(u32 period_in_ps, struct aty128_pll *pll,
1360 			     const struct aty128fb_par *par)
1361 {
1362 	const struct aty128_constants c = par->constants;
1363 	static const unsigned char post_dividers[] = { 1, 2, 4, 8, 3, 6, 12 };
1364 	u32 output_freq;
1365 	u32 vclk;        /* in .01 MHz */
1366 	int i = 0;
1367 	u32 n, d;
1368 
1369 	vclk = 100000000 / period_in_ps;	/* convert units to 10 kHz */
1370 
1371 	/* adjust pixel clock if necessary */
1372 	if (vclk > c.ppll_max)
1373 		vclk = c.ppll_max;
1374 	if (vclk * 12 < c.ppll_min)
1375 		vclk = c.ppll_min/12;
1376 
1377 	/* now, find an acceptable divider */
1378 	for (i = 0; i < ARRAY_SIZE(post_dividers); i++) {
1379 		output_freq = post_dividers[i] * vclk;
1380 		if (output_freq >= c.ppll_min && output_freq <= c.ppll_max) {
1381 			pll->post_divider = post_dividers[i];
1382 			break;
1383 		}
1384 	}
1385 
1386 	if (i == ARRAY_SIZE(post_dividers))
1387 		return -EINVAL;
1388 
1389 	/* calculate feedback divider */
1390 	n = c.ref_divider * output_freq;
1391 	d = c.ref_clk;
1392 
1393 	pll->feedback_divider = round_div(n, d);
1394 	pll->vclk = vclk;
1395 
1396 	DBG("post %d feedback %d vlck %d output %d ref_divider %d "
1397 	    "vclk_per: %d\n", pll->post_divider,
1398 	    pll->feedback_divider, vclk, output_freq,
1399 	    c.ref_divider, period_in_ps);
1400 
1401 	return 0;
1402 }
1403 
1404 
1405 static int aty128_pll_to_var(const struct aty128_pll *pll,
1406 			     struct fb_var_screeninfo *var)
1407 {
1408 	var->pixclock = 100000000 / pll->vclk;
1409 
1410 	return 0;
1411 }
1412 
1413 
1414 static void aty128_set_fifo(const struct aty128_ddafifo *dsp,
1415 			    const struct aty128fb_par *par)
1416 {
1417 	aty_st_le32(DDA_CONFIG, dsp->dda_config);
1418 	aty_st_le32(DDA_ON_OFF, dsp->dda_on_off);
1419 }
1420 
1421 
1422 static int aty128_ddafifo(struct aty128_ddafifo *dsp,
1423 			  const struct aty128_pll *pll,
1424 			  u32 depth,
1425 			  const struct aty128fb_par *par)
1426 {
1427 	const struct aty128_meminfo *m = par->mem;
1428 	u32 xclk = par->constants.xclk;
1429 	u32 fifo_width = par->constants.fifo_width;
1430 	u32 fifo_depth = par->constants.fifo_depth;
1431 	s32 x, b, p, ron, roff;
1432 	u32 n, d, bpp;
1433 
1434 	/* round up to multiple of 8 */
1435 	bpp = (depth+7) & ~7;
1436 
1437 	n = xclk * fifo_width;
1438 	d = pll->vclk * bpp;
1439 	x = round_div(n, d);
1440 
1441 	ron = 4 * m->MB +
1442 		3 * ((m->Trcd - 2 > 0) ? m->Trcd - 2 : 0) +
1443 		2 * m->Trp +
1444 		m->Twr +
1445 		m->CL +
1446 		m->Tr2w +
1447 		x;
1448 
1449 	DBG("x %x\n", x);
1450 
1451 	b = 0;
1452 	while (x) {
1453 		x >>= 1;
1454 		b++;
1455 	}
1456 	p = b + 1;
1457 
1458 	ron <<= (11 - p);
1459 
1460 	n <<= (11 - p);
1461 	x = round_div(n, d);
1462 	roff = x * (fifo_depth - 4);
1463 
1464 	if ((ron + m->Rloop) >= roff) {
1465 		printk(KERN_ERR "aty128fb: Mode out of range!\n");
1466 		return -EINVAL;
1467 	}
1468 
1469 	DBG("p: %x rloop: %x x: %x ron: %x roff: %x\n",
1470 	    p, m->Rloop, x, ron, roff);
1471 
1472 	dsp->dda_config = p << 16 | m->Rloop << 20 | x;
1473 	dsp->dda_on_off = ron << 16 | roff;
1474 
1475 	return 0;
1476 }
1477 
1478 
1479 /*
1480  * This actually sets the video mode.
1481  */
1482 static int aty128fb_set_par(struct fb_info *info)
1483 {
1484 	struct aty128fb_par *par = info->par;
1485 	u32 config;
1486 	int err;
1487 
1488 	if ((err = aty128_decode_var(&info->var, par)) != 0)
1489 		return err;
1490 
1491 	if (par->blitter_may_be_busy)
1492 		wait_for_idle(par);
1493 
1494 	/* clear all registers that may interfere with mode setting */
1495 	aty_st_le32(OVR_CLR, 0);
1496 	aty_st_le32(OVR_WID_LEFT_RIGHT, 0);
1497 	aty_st_le32(OVR_WID_TOP_BOTTOM, 0);
1498 	aty_st_le32(OV0_SCALE_CNTL, 0);
1499 	aty_st_le32(MPP_TB_CONFIG, 0);
1500 	aty_st_le32(MPP_GP_CONFIG, 0);
1501 	aty_st_le32(SUBPIC_CNTL, 0);
1502 	aty_st_le32(VIPH_CONTROL, 0);
1503 	aty_st_le32(I2C_CNTL_1, 0);         /* turn off i2c */
1504 	aty_st_le32(GEN_INT_CNTL, 0);	/* turn off interrupts */
1505 	aty_st_le32(CAP0_TRIG_CNTL, 0);
1506 	aty_st_le32(CAP1_TRIG_CNTL, 0);
1507 
1508 	aty_st_8(CRTC_EXT_CNTL + 1, 4);	/* turn video off */
1509 
1510 	aty128_set_crtc(&par->crtc, par);
1511 	aty128_set_pll(&par->pll, par);
1512 	aty128_set_fifo(&par->fifo_reg, par);
1513 
1514 	config = aty_ld_le32(CNFG_CNTL) & ~3;
1515 
1516 #if defined(__BIG_ENDIAN)
1517 	if (par->crtc.bpp == 32)
1518 		config |= 2;	/* make aperture do 32 bit swapping */
1519 	else if (par->crtc.bpp == 16)
1520 		config |= 1;	/* make aperture do 16 bit swapping */
1521 #endif
1522 
1523 	aty_st_le32(CNFG_CNTL, config);
1524 	aty_st_8(CRTC_EXT_CNTL + 1, 0);	/* turn the video back on */
1525 
1526 	info->fix.line_length = (par->crtc.vxres * par->crtc.bpp) >> 3;
1527 	info->fix.visual = par->crtc.bpp == 8 ? FB_VISUAL_PSEUDOCOLOR
1528 		: FB_VISUAL_DIRECTCOLOR;
1529 
1530 	if (par->chip_gen == rage_M3) {
1531 		aty128_set_crt_enable(par, par->crt_on);
1532 		aty128_set_lcd_enable(par, par->lcd_on);
1533 	}
1534 	if (par->accel_flags & FB_ACCELF_TEXT)
1535 		aty128_init_engine(par);
1536 
1537 #ifdef CONFIG_BOOTX_TEXT
1538 	btext_update_display(info->fix.smem_start,
1539 			     (((par->crtc.h_total>>16) & 0xff)+1)*8,
1540 			     ((par->crtc.v_total>>16) & 0x7ff)+1,
1541 			     par->crtc.bpp,
1542 			     par->crtc.vxres*par->crtc.bpp/8);
1543 #endif /* CONFIG_BOOTX_TEXT */
1544 
1545 	return 0;
1546 }
1547 
1548 /*
1549  *  encode/decode the User Defined Part of the Display
1550  */
1551 
1552 static int aty128_decode_var(struct fb_var_screeninfo *var,
1553 			     struct aty128fb_par *par)
1554 {
1555 	int err;
1556 	struct aty128_crtc crtc;
1557 	struct aty128_pll pll;
1558 	struct aty128_ddafifo fifo_reg;
1559 
1560 	if ((err = aty128_var_to_crtc(var, &crtc, par)))
1561 		return err;
1562 
1563 	if ((err = aty128_var_to_pll(var->pixclock, &pll, par)))
1564 		return err;
1565 
1566 	if ((err = aty128_ddafifo(&fifo_reg, &pll, crtc.depth, par)))
1567 		return err;
1568 
1569 	par->crtc = crtc;
1570 	par->pll = pll;
1571 	par->fifo_reg = fifo_reg;
1572 	par->accel_flags = var->accel_flags;
1573 
1574 	return 0;
1575 }
1576 
1577 
1578 static int aty128_encode_var(struct fb_var_screeninfo *var,
1579 			     const struct aty128fb_par *par)
1580 {
1581 	int err;
1582 
1583 	if ((err = aty128_crtc_to_var(&par->crtc, var)))
1584 		return err;
1585 
1586 	if ((err = aty128_pll_to_var(&par->pll, var)))
1587 		return err;
1588 
1589 	var->nonstd = 0;
1590 	var->activate = 0;
1591 
1592 	var->height = -1;
1593 	var->width = -1;
1594 	var->accel_flags = par->accel_flags;
1595 
1596 	return 0;
1597 }
1598 
1599 
1600 static int aty128fb_check_var(struct fb_var_screeninfo *var,
1601 			      struct fb_info *info)
1602 {
1603 	struct aty128fb_par par;
1604 	int err;
1605 
1606 	par = *(struct aty128fb_par *)info->par;
1607 	if ((err = aty128_decode_var(var, &par)) != 0)
1608 		return err;
1609 	aty128_encode_var(var, &par);
1610 	return 0;
1611 }
1612 
1613 
1614 /*
1615  *  Pan or Wrap the Display
1616  */
1617 static int aty128fb_pan_display(struct fb_var_screeninfo *var,
1618 				struct fb_info *fb)
1619 {
1620 	struct aty128fb_par *par = fb->par;
1621 	u32 xoffset, yoffset;
1622 	u32 offset;
1623 	u32 xres, yres;
1624 
1625 	xres = (((par->crtc.h_total >> 16) & 0xff) + 1) << 3;
1626 	yres = ((par->crtc.v_total >> 16) & 0x7ff) + 1;
1627 
1628 	xoffset = (var->xoffset +7) & ~7;
1629 	yoffset = var->yoffset;
1630 
1631 	if (xoffset+xres > par->crtc.vxres || yoffset+yres > par->crtc.vyres)
1632 		return -EINVAL;
1633 
1634 	par->crtc.xoffset = xoffset;
1635 	par->crtc.yoffset = yoffset;
1636 
1637 	offset = ((yoffset * par->crtc.vxres + xoffset) * (par->crtc.bpp >> 3))
1638 									  & ~7;
1639 
1640 	if (par->crtc.bpp == 24)
1641 		offset += 8 * (offset % 3); /* Must be multiple of 8 and 3 */
1642 
1643 	aty_st_le32(CRTC_OFFSET, offset);
1644 
1645 	return 0;
1646 }
1647 
1648 
1649 /*
1650  *  Helper function to store a single palette register
1651  */
1652 static void aty128_st_pal(u_int regno, u_int red, u_int green, u_int blue,
1653 			  struct aty128fb_par *par)
1654 {
1655 	if (par->chip_gen == rage_M3) {
1656 		aty_st_le32(DAC_CNTL, aty_ld_le32(DAC_CNTL) &
1657 			    ~DAC_PALETTE_ACCESS_CNTL);
1658 	}
1659 
1660 	aty_st_8(PALETTE_INDEX, regno);
1661 	aty_st_le32(PALETTE_DATA, (red<<16)|(green<<8)|blue);
1662 }
1663 
1664 static int aty128fb_sync(struct fb_info *info)
1665 {
1666 	struct aty128fb_par *par = info->par;
1667 
1668 	if (par->blitter_may_be_busy)
1669 		wait_for_idle(par);
1670 	return 0;
1671 }
1672 
1673 #ifndef MODULE
1674 static int aty128fb_setup(char *options)
1675 {
1676 	char *this_opt;
1677 
1678 	if (!options || !*options)
1679 		return 0;
1680 
1681 	while ((this_opt = strsep(&options, ",")) != NULL) {
1682 		if (!strncmp(this_opt, "lcd:", 4)) {
1683 			default_lcd_on = simple_strtoul(this_opt+4, NULL, 0);
1684 			continue;
1685 		} else if (!strncmp(this_opt, "crt:", 4)) {
1686 			default_crt_on = simple_strtoul(this_opt+4, NULL, 0);
1687 			continue;
1688 		} else if (!strncmp(this_opt, "backlight:", 10)) {
1689 #ifdef CONFIG_FB_ATY128_BACKLIGHT
1690 			backlight = simple_strtoul(this_opt+10, NULL, 0);
1691 #endif
1692 			continue;
1693 		}
1694 		if(!strncmp(this_opt, "nomtrr", 6)) {
1695 			mtrr = false;
1696 			continue;
1697 		}
1698 #ifdef CONFIG_PPC_PMAC
1699 		/* vmode and cmode deprecated */
1700 		if (!strncmp(this_opt, "vmode:", 6)) {
1701 			unsigned int vmode = simple_strtoul(this_opt+6, NULL, 0);
1702 			if (vmode > 0 && vmode <= VMODE_MAX)
1703 				default_vmode = vmode;
1704 			continue;
1705 		} else if (!strncmp(this_opt, "cmode:", 6)) {
1706 			unsigned int cmode = simple_strtoul(this_opt+6, NULL, 0);
1707 			switch (cmode) {
1708 			case 0:
1709 			case 8:
1710 				default_cmode = CMODE_8;
1711 				break;
1712 			case 15:
1713 			case 16:
1714 				default_cmode = CMODE_16;
1715 				break;
1716 			case 24:
1717 			case 32:
1718 				default_cmode = CMODE_32;
1719 				break;
1720 			}
1721 			continue;
1722 		}
1723 #endif /* CONFIG_PPC_PMAC */
1724 		mode_option = this_opt;
1725 	}
1726 	return 0;
1727 }
1728 #endif  /*  MODULE  */
1729 
1730 /* Backlight */
1731 #ifdef CONFIG_FB_ATY128_BACKLIGHT
1732 #define MAX_LEVEL 0xFF
1733 
1734 static int aty128_bl_get_level_brightness(struct aty128fb_par *par,
1735 		int level)
1736 {
1737 	struct fb_info *info = pci_get_drvdata(par->pdev);
1738 	int atylevel;
1739 
1740 	/* Get and convert the value */
1741 	/* No locking of bl_curve since we read a single value */
1742 	atylevel = MAX_LEVEL -
1743 		(info->bl_curve[level] * FB_BACKLIGHT_MAX / MAX_LEVEL);
1744 
1745 	if (atylevel < 0)
1746 		atylevel = 0;
1747 	else if (atylevel > MAX_LEVEL)
1748 		atylevel = MAX_LEVEL;
1749 
1750 	return atylevel;
1751 }
1752 
1753 /* We turn off the LCD completely instead of just dimming the backlight.
1754  * This provides greater power saving and the display is useless without
1755  * backlight anyway
1756  */
1757 #define BACKLIGHT_LVDS_OFF
1758 /* That one prevents proper CRT output with LCD off */
1759 #undef BACKLIGHT_DAC_OFF
1760 
1761 static int aty128_bl_update_status(struct backlight_device *bd)
1762 {
1763 	struct aty128fb_par *par = bl_get_data(bd);
1764 	unsigned int reg = aty_ld_le32(LVDS_GEN_CNTL);
1765 	int level;
1766 
1767 	if (!par->lcd_on)
1768 		level = 0;
1769 	else
1770 		level = backlight_get_brightness(bd);
1771 
1772 	reg |= LVDS_BL_MOD_EN | LVDS_BLON;
1773 	if (level > 0) {
1774 		reg |= LVDS_DIGION;
1775 		if (!(reg & LVDS_ON)) {
1776 			reg &= ~LVDS_BLON;
1777 			aty_st_le32(LVDS_GEN_CNTL, reg);
1778 			aty_ld_le32(LVDS_GEN_CNTL);
1779 			mdelay(10);
1780 			reg |= LVDS_BLON;
1781 			aty_st_le32(LVDS_GEN_CNTL, reg);
1782 		}
1783 		reg &= ~LVDS_BL_MOD_LEVEL_MASK;
1784 		reg |= (aty128_bl_get_level_brightness(par, level) <<
1785 			LVDS_BL_MOD_LEVEL_SHIFT);
1786 #ifdef BACKLIGHT_LVDS_OFF
1787 		reg |= LVDS_ON | LVDS_EN;
1788 		reg &= ~LVDS_DISPLAY_DIS;
1789 #endif
1790 		aty_st_le32(LVDS_GEN_CNTL, reg);
1791 #ifdef BACKLIGHT_DAC_OFF
1792 		aty_st_le32(DAC_CNTL, aty_ld_le32(DAC_CNTL) & (~DAC_PDWN));
1793 #endif
1794 	} else {
1795 		reg &= ~LVDS_BL_MOD_LEVEL_MASK;
1796 		reg |= (aty128_bl_get_level_brightness(par, 0) <<
1797 			LVDS_BL_MOD_LEVEL_SHIFT);
1798 #ifdef BACKLIGHT_LVDS_OFF
1799 		reg |= LVDS_DISPLAY_DIS;
1800 		aty_st_le32(LVDS_GEN_CNTL, reg);
1801 		aty_ld_le32(LVDS_GEN_CNTL);
1802 		udelay(10);
1803 		reg &= ~(LVDS_ON | LVDS_EN | LVDS_BLON | LVDS_DIGION);
1804 #endif
1805 		aty_st_le32(LVDS_GEN_CNTL, reg);
1806 #ifdef BACKLIGHT_DAC_OFF
1807 		aty_st_le32(DAC_CNTL, aty_ld_le32(DAC_CNTL) | DAC_PDWN);
1808 #endif
1809 	}
1810 
1811 	return 0;
1812 }
1813 
1814 static const struct backlight_ops aty128_bl_data = {
1815 	.update_status	= aty128_bl_update_status,
1816 };
1817 
1818 static void aty128_bl_set_power(struct fb_info *info, int power)
1819 {
1820 	if (info->bl_dev) {
1821 		info->bl_dev->props.power = power;
1822 		backlight_update_status(info->bl_dev);
1823 	}
1824 }
1825 
1826 static void aty128_bl_init(struct aty128fb_par *par)
1827 {
1828 	struct backlight_properties props;
1829 	struct fb_info *info = pci_get_drvdata(par->pdev);
1830 	struct backlight_device *bd;
1831 	char name[12];
1832 
1833 	/* Could be extended to Rage128Pro LVDS output too */
1834 	if (par->chip_gen != rage_M3)
1835 		return;
1836 
1837 #ifdef CONFIG_PMAC_BACKLIGHT
1838 	if (!pmac_has_backlight_type("ati"))
1839 		return;
1840 #endif
1841 
1842 	snprintf(name, sizeof(name), "aty128bl%d", info->node);
1843 
1844 	memset(&props, 0, sizeof(struct backlight_properties));
1845 	props.type = BACKLIGHT_RAW;
1846 	props.max_brightness = FB_BACKLIGHT_LEVELS - 1;
1847 	bd = backlight_device_register(name, info->device, par, &aty128_bl_data,
1848 				       &props);
1849 	if (IS_ERR(bd)) {
1850 		info->bl_dev = NULL;
1851 		printk(KERN_WARNING "aty128: Backlight registration failed\n");
1852 		goto error;
1853 	}
1854 
1855 	info->bl_dev = bd;
1856 	fb_bl_default_curve(info, 0,
1857 		 63 * FB_BACKLIGHT_MAX / MAX_LEVEL,
1858 		219 * FB_BACKLIGHT_MAX / MAX_LEVEL);
1859 
1860 	bd->props.brightness = bd->props.max_brightness;
1861 	bd->props.power = FB_BLANK_UNBLANK;
1862 	backlight_update_status(bd);
1863 
1864 	printk("aty128: Backlight initialized (%s)\n", name);
1865 
1866 	return;
1867 
1868 error:
1869 	return;
1870 }
1871 
1872 static void aty128_bl_exit(struct backlight_device *bd)
1873 {
1874 	backlight_device_unregister(bd);
1875 	printk("aty128: Backlight unloaded\n");
1876 }
1877 #endif /* CONFIG_FB_ATY128_BACKLIGHT */
1878 
1879 /*
1880  *  Initialisation
1881  */
1882 
1883 #ifdef CONFIG_PPC_PMAC__disabled
1884 static void aty128_early_resume(void *data)
1885 {
1886         struct aty128fb_par *par = data;
1887 
1888 	if (!console_trylock())
1889 		return;
1890 	pci_restore_state(par->pdev);
1891 	aty128_do_resume(par->pdev);
1892 	console_unlock();
1893 }
1894 #endif /* CONFIG_PPC_PMAC */
1895 
1896 static int aty128_init(struct pci_dev *pdev, const struct pci_device_id *ent)
1897 {
1898 	struct fb_info *info = pci_get_drvdata(pdev);
1899 	struct aty128fb_par *par = info->par;
1900 	struct fb_var_screeninfo var;
1901 	char video_card[50];
1902 	u8 chip_rev;
1903 	u32 dac;
1904 
1905 	/* Get the chip revision */
1906 	chip_rev = (aty_ld_le32(CNFG_CNTL) >> 16) & 0x1F;
1907 
1908 	strcpy(video_card, "Rage128 XX ");
1909 	video_card[8] = ent->device >> 8;
1910 	video_card[9] = ent->device & 0xFF;
1911 
1912 	/* range check to make sure */
1913 	if (ent->driver_data < ARRAY_SIZE(r128_family))
1914 		strlcat(video_card, r128_family[ent->driver_data],
1915 			sizeof(video_card));
1916 
1917 	printk(KERN_INFO "aty128fb: %s [chip rev 0x%x] ", video_card, chip_rev);
1918 
1919 	if (par->vram_size % (1024 * 1024) == 0)
1920 		printk("%dM %s\n", par->vram_size / (1024*1024), par->mem->name);
1921 	else
1922 		printk("%dk %s\n", par->vram_size / 1024, par->mem->name);
1923 
1924 	par->chip_gen = ent->driver_data;
1925 
1926 	/* fill in info */
1927 	info->fbops = &aty128fb_ops;
1928 
1929 	par->lcd_on = default_lcd_on;
1930 	par->crt_on = default_crt_on;
1931 
1932 	var = default_var;
1933 #ifdef CONFIG_PPC_PMAC
1934 	if (machine_is(powermac)) {
1935 		/* Indicate sleep capability */
1936 		if (par->chip_gen == rage_M3) {
1937 			pmac_call_feature(PMAC_FTR_DEVICE_CAN_WAKE, NULL, 0, 1);
1938 #if 0 /* Disable the early video resume hack for now as it's causing problems,
1939        * among others we now rely on the PCI core restoring the config space
1940        * for us, which isn't the case with that hack, and that code path causes
1941        * various things to be called with interrupts off while they shouldn't.
1942        * I'm leaving the code in as it can be useful for debugging purposes
1943        */
1944 			pmac_set_early_video_resume(aty128_early_resume, par);
1945 #endif
1946 		}
1947 
1948 		/* Find default mode */
1949 		if (mode_option) {
1950 			if (!mac_find_mode(&var, info, mode_option, 8))
1951 				var = default_var;
1952 		} else {
1953 			if (default_vmode <= 0 || default_vmode > VMODE_MAX)
1954 				default_vmode = VMODE_1024_768_60;
1955 
1956 			/* iMacs need that resolution
1957 			 * PowerMac2,1 first r128 iMacs
1958 			 * PowerMac2,2 summer 2000 iMacs
1959 			 * PowerMac4,1 january 2001 iMacs "flower power"
1960 			 */
1961 			if (of_machine_is_compatible("PowerMac2,1") ||
1962 			    of_machine_is_compatible("PowerMac2,2") ||
1963 			    of_machine_is_compatible("PowerMac4,1"))
1964 				default_vmode = VMODE_1024_768_75;
1965 
1966 			/* iBook SE */
1967 			if (of_machine_is_compatible("PowerBook2,2"))
1968 				default_vmode = VMODE_800_600_60;
1969 
1970 			/* PowerBook Firewire (Pismo), iBook Dual USB */
1971 			if (of_machine_is_compatible("PowerBook3,1") ||
1972 			    of_machine_is_compatible("PowerBook4,1"))
1973 				default_vmode = VMODE_1024_768_60;
1974 
1975 			/* PowerBook Titanium */
1976 			if (of_machine_is_compatible("PowerBook3,2"))
1977 				default_vmode = VMODE_1152_768_60;
1978 
1979 			if (default_cmode > 16)
1980 				default_cmode = CMODE_32;
1981 			else if (default_cmode > 8)
1982 				default_cmode = CMODE_16;
1983 			else
1984 				default_cmode = CMODE_8;
1985 
1986 			if (mac_vmode_to_var(default_vmode, default_cmode, &var))
1987 				var = default_var;
1988 		}
1989 	} else
1990 #endif /* CONFIG_PPC_PMAC */
1991 	{
1992 		if (mode_option)
1993 			if (fb_find_mode(&var, info, mode_option, NULL,
1994 					 0, &defaultmode, 8) == 0)
1995 				var = default_var;
1996 	}
1997 
1998 	var.accel_flags &= ~FB_ACCELF_TEXT;
1999 //	var.accel_flags |= FB_ACCELF_TEXT;/* FIXME Will add accel later */
2000 
2001 	if (aty128fb_check_var(&var, info)) {
2002 		printk(KERN_ERR "aty128fb: Cannot set default mode.\n");
2003 		return 0;
2004 	}
2005 
2006 	/* setup the DAC the way we like it */
2007 	dac = aty_ld_le32(DAC_CNTL);
2008 	dac |= (DAC_8BIT_EN | DAC_RANGE_CNTL);
2009 	dac |= DAC_MASK;
2010 	if (par->chip_gen == rage_M3)
2011 		dac |= DAC_PALETTE2_SNOOP_EN;
2012 	aty_st_le32(DAC_CNTL, dac);
2013 
2014 	/* turn off bus mastering, just in case */
2015 	aty_st_le32(BUS_CNTL, aty_ld_le32(BUS_CNTL) | BUS_MASTER_DIS);
2016 
2017 	info->var = var;
2018 	fb_alloc_cmap(&info->cmap, 256, 0);
2019 
2020 	var.activate = FB_ACTIVATE_NOW;
2021 
2022 	aty128_init_engine(par);
2023 
2024 	par->pdev = pdev;
2025 	par->asleep = 0;
2026 	par->lock_blank = 0;
2027 
2028 	if (register_framebuffer(info) < 0)
2029 		return 0;
2030 
2031 #ifdef CONFIG_FB_ATY128_BACKLIGHT
2032 	if (backlight)
2033 		aty128_bl_init(par);
2034 #endif
2035 
2036 	fb_info(info, "%s frame buffer device on %s\n",
2037 		info->fix.id, video_card);
2038 
2039 	return 1;	/* success! */
2040 }
2041 
2042 #ifdef CONFIG_PCI
2043 /* register a card    ++ajoshi */
2044 static int aty128_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
2045 {
2046 	unsigned long fb_addr, reg_addr;
2047 	struct aty128fb_par *par;
2048 	struct fb_info *info;
2049 	int err;
2050 #ifndef __sparc__
2051 	void __iomem *bios = NULL;
2052 #endif
2053 
2054 	err = aperture_remove_conflicting_pci_devices(pdev, "aty128fb");
2055 	if (err)
2056 		return err;
2057 
2058 	/* Enable device in PCI config */
2059 	if ((err = pci_enable_device(pdev))) {
2060 		printk(KERN_ERR "aty128fb: Cannot enable PCI device: %d\n",
2061 				err);
2062 		return -ENODEV;
2063 	}
2064 
2065 	fb_addr = pci_resource_start(pdev, 0);
2066 	if (!request_mem_region(fb_addr, pci_resource_len(pdev, 0),
2067 				"aty128fb FB")) {
2068 		printk(KERN_ERR "aty128fb: cannot reserve frame "
2069 				"buffer memory\n");
2070 		return -ENODEV;
2071 	}
2072 
2073 	reg_addr = pci_resource_start(pdev, 2);
2074 	if (!request_mem_region(reg_addr, pci_resource_len(pdev, 2),
2075 				"aty128fb MMIO")) {
2076 		printk(KERN_ERR "aty128fb: cannot reserve MMIO region\n");
2077 		goto err_free_fb;
2078 	}
2079 
2080 	/* We have the resources. Now virtualize them */
2081 	info = framebuffer_alloc(sizeof(struct aty128fb_par), &pdev->dev);
2082 	if (!info)
2083 		goto err_free_mmio;
2084 
2085 	par = info->par;
2086 
2087 	info->pseudo_palette = par->pseudo_palette;
2088 
2089 	/* Virtualize mmio region */
2090 	info->fix.mmio_start = reg_addr;
2091 	par->regbase = pci_ioremap_bar(pdev, 2);
2092 	if (!par->regbase)
2093 		goto err_free_info;
2094 
2095 	/* Grab memory size from the card */
2096 	// How does this relate to the resource length from the PCI hardware?
2097 	par->vram_size = aty_ld_le32(CNFG_MEMSIZE) & 0x03FFFFFF;
2098 
2099 	/* Virtualize the framebuffer */
2100 	info->screen_base = ioremap_wc(fb_addr, par->vram_size);
2101 	if (!info->screen_base)
2102 		goto err_unmap_out;
2103 
2104 	/* Set up info->fix */
2105 	info->fix = aty128fb_fix;
2106 	info->fix.smem_start = fb_addr;
2107 	info->fix.smem_len = par->vram_size;
2108 	info->fix.mmio_start = reg_addr;
2109 
2110 	/* If we can't test scratch registers, something is seriously wrong */
2111 	if (!register_test(par)) {
2112 		printk(KERN_ERR "aty128fb: Can't write to video register!\n");
2113 		goto err_out;
2114 	}
2115 
2116 #ifndef __sparc__
2117 	bios = aty128_map_ROM(par, pdev);
2118 #ifdef CONFIG_X86
2119 	if (bios == NULL)
2120 		bios = aty128_find_mem_vbios(par);
2121 #endif
2122 	if (bios == NULL)
2123 		printk(KERN_INFO "aty128fb: BIOS not located, guessing timings.\n");
2124 	else {
2125 		printk(KERN_INFO "aty128fb: Rage128 BIOS located\n");
2126 		aty128_get_pllinfo(par, bios);
2127 		pci_unmap_rom(pdev, bios);
2128 	}
2129 #endif /* __sparc__ */
2130 
2131 	aty128_timings(par);
2132 	pci_set_drvdata(pdev, info);
2133 
2134 	if (!aty128_init(pdev, ent))
2135 		goto err_out;
2136 
2137 	if (mtrr)
2138 		par->wc_cookie = arch_phys_wc_add(info->fix.smem_start,
2139 						  par->vram_size);
2140 	return 0;
2141 
2142 err_out:
2143 	iounmap(info->screen_base);
2144 err_unmap_out:
2145 	iounmap(par->regbase);
2146 err_free_info:
2147 	framebuffer_release(info);
2148 err_free_mmio:
2149 	release_mem_region(pci_resource_start(pdev, 2),
2150 			pci_resource_len(pdev, 2));
2151 err_free_fb:
2152 	release_mem_region(pci_resource_start(pdev, 0),
2153 			pci_resource_len(pdev, 0));
2154 	return -ENODEV;
2155 }
2156 
2157 static void aty128_remove(struct pci_dev *pdev)
2158 {
2159 	struct fb_info *info = pci_get_drvdata(pdev);
2160 	struct aty128fb_par *par;
2161 
2162 	if (!info)
2163 		return;
2164 
2165 	par = info->par;
2166 
2167 #ifdef CONFIG_FB_ATY128_BACKLIGHT
2168 	aty128_bl_exit(info->bl_dev);
2169 #endif
2170 
2171 	unregister_framebuffer(info);
2172 
2173 	arch_phys_wc_del(par->wc_cookie);
2174 	iounmap(par->regbase);
2175 	iounmap(info->screen_base);
2176 
2177 	release_mem_region(pci_resource_start(pdev, 0),
2178 			   pci_resource_len(pdev, 0));
2179 	release_mem_region(pci_resource_start(pdev, 2),
2180 			   pci_resource_len(pdev, 2));
2181 	framebuffer_release(info);
2182 }
2183 #endif /* CONFIG_PCI */
2184 
2185 
2186 
2187     /*
2188      *  Blank the display.
2189      */
2190 static int aty128fb_blank(int blank, struct fb_info *fb)
2191 {
2192 	struct aty128fb_par *par = fb->par;
2193 	u8 state;
2194 
2195 	if (par->lock_blank || par->asleep)
2196 		return 0;
2197 
2198 	switch (blank) {
2199 	case FB_BLANK_NORMAL:
2200 		state = 4;
2201 		break;
2202 	case FB_BLANK_VSYNC_SUSPEND:
2203 		state = 6;
2204 		break;
2205 	case FB_BLANK_HSYNC_SUSPEND:
2206 		state = 5;
2207 		break;
2208 	case FB_BLANK_POWERDOWN:
2209 		state = 7;
2210 		break;
2211 	case FB_BLANK_UNBLANK:
2212 	default:
2213 		state = 0;
2214 		break;
2215 	}
2216 	aty_st_8(CRTC_EXT_CNTL+1, state);
2217 
2218 	if (par->chip_gen == rage_M3) {
2219 		aty128_set_crt_enable(par, par->crt_on && !blank);
2220 		aty128_set_lcd_enable(par, par->lcd_on && !blank);
2221 	}
2222 
2223 	return 0;
2224 }
2225 
2226 /*
2227  *  Set a single color register. The values supplied are already
2228  *  rounded down to the hardware's capabilities (according to the
2229  *  entries in the var structure). Return != 0 for invalid regno.
2230  */
2231 static int aty128fb_setcolreg(u_int regno, u_int red, u_int green, u_int blue,
2232 			      u_int transp, struct fb_info *info)
2233 {
2234 	struct aty128fb_par *par = info->par;
2235 
2236 	if (regno > 255
2237 	    || (par->crtc.depth == 16 && regno > 63)
2238 	    || (par->crtc.depth == 15 && regno > 31))
2239 		return 1;
2240 
2241 	red >>= 8;
2242 	green >>= 8;
2243 	blue >>= 8;
2244 
2245 	if (regno < 16) {
2246 		int i;
2247 		u32 *pal = info->pseudo_palette;
2248 
2249 		switch (par->crtc.depth) {
2250 		case 15:
2251 			pal[regno] = (regno << 10) | (regno << 5) | regno;
2252 			break;
2253 		case 16:
2254 			pal[regno] = (regno << 11) | (regno << 6) | regno;
2255 			break;
2256 		case 24:
2257 			pal[regno] = (regno << 16) | (regno << 8) | regno;
2258 			break;
2259 		case 32:
2260 			i = (regno << 8) | regno;
2261 			pal[regno] = (i << 16) | i;
2262 			break;
2263 		}
2264 	}
2265 
2266 	if (par->crtc.depth == 16 && regno > 0) {
2267 		/*
2268 		 * With the 5-6-5 split of bits for RGB at 16 bits/pixel, we
2269 		 * have 32 slots for R and B values but 64 slots for G values.
2270 		 * Thus the R and B values go in one slot but the G value
2271 		 * goes in a different slot, and we have to avoid disturbing
2272 		 * the other fields in the slots we touch.
2273 		 */
2274 		par->green[regno] = green;
2275 		if (regno < 32) {
2276 			par->red[regno] = red;
2277 			par->blue[regno] = blue;
2278 			aty128_st_pal(regno * 8, red, par->green[regno*2],
2279 				      blue, par);
2280 		}
2281 		red = par->red[regno/2];
2282 		blue = par->blue[regno/2];
2283 		regno <<= 2;
2284 	} else if (par->crtc.bpp == 16)
2285 		regno <<= 3;
2286 	aty128_st_pal(regno, red, green, blue, par);
2287 
2288 	return 0;
2289 }
2290 
2291 #define ATY_MIRROR_LCD_ON	0x00000001
2292 #define ATY_MIRROR_CRT_ON	0x00000002
2293 
2294 /* out param: u32*	backlight value: 0 to 15 */
2295 #define FBIO_ATY128_GET_MIRROR	_IOR('@', 1, __u32)
2296 /* in param: u32*	backlight value: 0 to 15 */
2297 #define FBIO_ATY128_SET_MIRROR	_IOW('@', 2, __u32)
2298 
2299 static int aty128fb_ioctl(struct fb_info *info, u_int cmd, u_long arg)
2300 {
2301 	struct aty128fb_par *par = info->par;
2302 	u32 value;
2303 	int rc;
2304 
2305 	switch (cmd) {
2306 	case FBIO_ATY128_SET_MIRROR:
2307 		if (par->chip_gen != rage_M3)
2308 			return -EINVAL;
2309 		rc = get_user(value, (__u32 __user *)arg);
2310 		if (rc)
2311 			return rc;
2312 		par->lcd_on = (value & 0x01) != 0;
2313 		par->crt_on = (value & 0x02) != 0;
2314 		if (!par->crt_on && !par->lcd_on)
2315 			par->lcd_on = 1;
2316 		aty128_set_crt_enable(par, par->crt_on);
2317 		aty128_set_lcd_enable(par, par->lcd_on);
2318 		return 0;
2319 	case FBIO_ATY128_GET_MIRROR:
2320 		if (par->chip_gen != rage_M3)
2321 			return -EINVAL;
2322 		value = (par->crt_on << 1) | par->lcd_on;
2323 		return put_user(value, (__u32 __user *)arg);
2324 	}
2325 	return -EINVAL;
2326 }
2327 
2328 static void aty128_set_suspend(struct aty128fb_par *par, int suspend)
2329 {
2330 	u32	pmgt;
2331 
2332 	if (!par->pdev->pm_cap)
2333 		return;
2334 
2335 	/* Set the chip into the appropriate suspend mode (we use D2,
2336 	 * D3 would require a complete re-initialisation of the chip,
2337 	 * including PCI config registers, clocks, AGP configuration, ...)
2338 	 *
2339 	 * For resume, the core will have already brought us back to D0
2340 	 */
2341 	if (suspend) {
2342 		/* Make sure CRTC2 is reset. Remove that the day we decide to
2343 		 * actually use CRTC2 and replace it with real code for disabling
2344 		 * the CRTC2 output during sleep
2345 		 */
2346 		aty_st_le32(CRTC2_GEN_CNTL, aty_ld_le32(CRTC2_GEN_CNTL) &
2347 			~(CRTC2_EN));
2348 
2349 		/* Set the power management mode to be PCI based */
2350 		/* Use this magic value for now */
2351 		pmgt = 0x0c005407;
2352 		aty_st_pll(POWER_MANAGEMENT, pmgt);
2353 		(void)aty_ld_pll(POWER_MANAGEMENT);
2354 		aty_st_le32(BUS_CNTL1, 0x00000010);
2355 		aty_st_le32(MEM_POWER_MISC, 0x0c830000);
2356 		msleep(100);
2357 	}
2358 }
2359 
2360 static int aty128_pci_suspend_late(struct device *dev, pm_message_t state)
2361 {
2362 	struct pci_dev *pdev = to_pci_dev(dev);
2363 	struct fb_info *info = pci_get_drvdata(pdev);
2364 	struct aty128fb_par *par = info->par;
2365 
2366 	/* We don't do anything but D2, for now we return 0, but
2367 	 * we may want to change that. How do we know if the BIOS
2368 	 * can properly take care of D3 ? Also, with swsusp, we
2369 	 * know we'll be rebooted, ...
2370 	 */
2371 #ifndef CONFIG_PPC_PMAC
2372 	/* HACK ALERT ! Once I find a proper way to say to each driver
2373 	 * individually what will happen with it's PCI slot, I'll change
2374 	 * that. On laptops, the AGP slot is just unclocked, so D2 is
2375 	 * expected, while on desktops, the card is powered off
2376 	 */
2377 	return 0;
2378 #endif /* CONFIG_PPC_PMAC */
2379 
2380 	if (state.event == pdev->dev.power.power_state.event)
2381 		return 0;
2382 
2383 	printk(KERN_DEBUG "aty128fb: suspending...\n");
2384 
2385 	console_lock();
2386 
2387 	fb_set_suspend(info, 1);
2388 
2389 	/* Make sure engine is reset */
2390 	wait_for_idle(par);
2391 	aty128_reset_engine(par);
2392 	wait_for_idle(par);
2393 
2394 	/* Blank display and LCD */
2395 	aty128fb_blank(FB_BLANK_POWERDOWN, info);
2396 
2397 	/* Sleep */
2398 	par->asleep = 1;
2399 	par->lock_blank = 1;
2400 
2401 #ifdef CONFIG_PPC_PMAC
2402 	/* On powermac, we have hooks to properly suspend/resume AGP now,
2403 	 * use them here. We'll ultimately need some generic support here,
2404 	 * but the generic code isn't quite ready for that yet
2405 	 */
2406 	pmac_suspend_agp_for_card(pdev);
2407 #endif /* CONFIG_PPC_PMAC */
2408 
2409 	/* We need a way to make sure the fbdev layer will _not_ touch the
2410 	 * framebuffer before we put the chip to suspend state. On 2.4, I
2411 	 * used dummy fb ops, 2.5 need proper support for this at the
2412 	 * fbdev level
2413 	 */
2414 	if (state.event != PM_EVENT_ON)
2415 		aty128_set_suspend(par, 1);
2416 
2417 	console_unlock();
2418 
2419 	pdev->dev.power.power_state = state;
2420 
2421 	return 0;
2422 }
2423 
2424 static int __maybe_unused aty128_pci_suspend(struct device *dev)
2425 {
2426 	return aty128_pci_suspend_late(dev, PMSG_SUSPEND);
2427 }
2428 
2429 static int __maybe_unused aty128_pci_hibernate(struct device *dev)
2430 {
2431 	return aty128_pci_suspend_late(dev, PMSG_HIBERNATE);
2432 }
2433 
2434 static int __maybe_unused aty128_pci_freeze(struct device *dev)
2435 {
2436 	return aty128_pci_suspend_late(dev, PMSG_FREEZE);
2437 }
2438 
2439 static int aty128_do_resume(struct pci_dev *pdev)
2440 {
2441 	struct fb_info *info = pci_get_drvdata(pdev);
2442 	struct aty128fb_par *par = info->par;
2443 
2444 	if (pdev->dev.power.power_state.event == PM_EVENT_ON)
2445 		return 0;
2446 
2447 	/* PCI state will have been restored by the core, so
2448 	 * we should be in D0 now with our config space fully
2449 	 * restored
2450 	 */
2451 
2452 	/* Wakeup chip */
2453 	aty128_set_suspend(par, 0);
2454 	par->asleep = 0;
2455 
2456 	/* Restore display & engine */
2457 	aty128_reset_engine(par);
2458 	wait_for_idle(par);
2459 	aty128fb_set_par(info);
2460 	fb_pan_display(info, &info->var);
2461 	fb_set_cmap(&info->cmap, info);
2462 
2463 	/* Refresh */
2464 	fb_set_suspend(info, 0);
2465 
2466 	/* Unblank */
2467 	par->lock_blank = 0;
2468 	aty128fb_blank(0, info);
2469 
2470 #ifdef CONFIG_PPC_PMAC
2471 	/* On powermac, we have hooks to properly suspend/resume AGP now,
2472 	 * use them here. We'll ultimately need some generic support here,
2473 	 * but the generic code isn't quite ready for that yet
2474 	 */
2475 	pmac_resume_agp_for_card(pdev);
2476 #endif /* CONFIG_PPC_PMAC */
2477 
2478 	pdev->dev.power.power_state = PMSG_ON;
2479 
2480 	printk(KERN_DEBUG "aty128fb: resumed !\n");
2481 
2482 	return 0;
2483 }
2484 
2485 static int __maybe_unused aty128_pci_resume(struct device *dev)
2486 {
2487 	int rc;
2488 
2489 	console_lock();
2490 	rc = aty128_do_resume(to_pci_dev(dev));
2491 	console_unlock();
2492 
2493 	return rc;
2494 }
2495 
2496 
2497 static int aty128fb_init(void)
2498 {
2499 #ifndef MODULE
2500 	char *option = NULL;
2501 #endif
2502 
2503 	if (fb_modesetting_disabled("aty128fb"))
2504 		return -ENODEV;
2505 
2506 #ifndef MODULE
2507 	if (fb_get_options("aty128fb", &option))
2508 		return -ENODEV;
2509 	aty128fb_setup(option);
2510 #endif
2511 
2512 	return pci_register_driver(&aty128fb_driver);
2513 }
2514 
2515 static void __exit aty128fb_exit(void)
2516 {
2517 	pci_unregister_driver(&aty128fb_driver);
2518 }
2519 
2520 module_init(aty128fb_init);
2521 
2522 module_exit(aty128fb_exit);
2523 
2524 MODULE_AUTHOR("(c)1999-2003 Brad Douglas <brad@neruo.com>");
2525 MODULE_DESCRIPTION("FBDev driver for ATI Rage128 / Pro cards");
2526 MODULE_LICENSE("GPL");
2527 module_param(mode_option, charp, 0);
2528 MODULE_PARM_DESC(mode_option, "Specify resolution as \"<xres>x<yres>[-<bpp>][@<refresh>]\" ");
2529 module_param_named(nomtrr, mtrr, invbool, 0);
2530 MODULE_PARM_DESC(nomtrr, "bool: Disable MTRR support (0 or 1=disabled) (default=0)");
2531