xref: /linux/drivers/video/fbdev/aty/aty128fb.c (revision 0883c2c06fb5bcf5b9e008270827e63c09a88c1e)
1 /* $Id: aty128fb.c,v 1.1.1.1.36.1 1999/12/11 09:03:05 Exp $
2  *  linux/drivers/video/aty128fb.c -- Frame buffer device for ATI Rage128
3  *
4  *  Copyright (C) 1999-2003, Brad Douglas <brad@neruo.com>
5  *  Copyright (C) 1999, Anthony Tong <atong@uiuc.edu>
6  *
7  *                Ani Joshi / Jeff Garzik
8  *                      - Code cleanup
9  *
10  *                Michel Danzer <michdaen@iiic.ethz.ch>
11  *                      - 15/16 bit cleanup
12  *                      - fix panning
13  *
14  *                Benjamin Herrenschmidt
15  *                      - pmac-specific PM stuff
16  *			- various fixes & cleanups
17  *
18  *                Andreas Hundt <andi@convergence.de>
19  *                      - FB_ACTIVATE fixes
20  *
21  *		  Paul Mackerras <paulus@samba.org>
22  *			- Convert to new framebuffer API,
23  *			  fix colormap setting at 16 bits/pixel (565)
24  *
25  *		  Paul Mundt
26  *		  	- PCI hotplug
27  *
28  *		  Jon Smirl <jonsmirl@yahoo.com>
29  * 			- PCI ID update
30  * 			- replace ROM BIOS search
31  *
32  *  Based off of Geert's atyfb.c and vfb.c.
33  *
34  *  TODO:
35  *		- monitor sensing (DDC)
36  *              - virtual display
37  *		- other platform support (only ppc/x86 supported)
38  *		- hardware cursor support
39  *
40  *    Please cc: your patches to brad@neruo.com.
41  */
42 
43 /*
44  * A special note of gratitude to ATI's devrel for providing documentation,
45  * example code and hardware. Thanks Nitya.	-atong and brad
46  */
47 
48 
49 #include <linux/module.h>
50 #include <linux/moduleparam.h>
51 #include <linux/kernel.h>
52 #include <linux/errno.h>
53 #include <linux/string.h>
54 #include <linux/mm.h>
55 #include <linux/vmalloc.h>
56 #include <linux/delay.h>
57 #include <linux/interrupt.h>
58 #include <linux/uaccess.h>
59 #include <linux/fb.h>
60 #include <linux/init.h>
61 #include <linux/pci.h>
62 #include <linux/ioport.h>
63 #include <linux/console.h>
64 #include <linux/backlight.h>
65 #include <asm/io.h>
66 
67 #ifdef CONFIG_PPC_PMAC
68 #include <asm/machdep.h>
69 #include <asm/pmac_feature.h>
70 #include <asm/prom.h>
71 #include "../macmodes.h"
72 #endif
73 
74 #ifdef CONFIG_PMAC_BACKLIGHT
75 #include <asm/backlight.h>
76 #endif
77 
78 #ifdef CONFIG_BOOTX_TEXT
79 #include <asm/btext.h>
80 #endif /* CONFIG_BOOTX_TEXT */
81 
82 #include <video/aty128.h>
83 
84 /* Debug flag */
85 #undef DEBUG
86 
87 #ifdef DEBUG
88 #define DBG(fmt, args...) \
89 	printk(KERN_DEBUG "aty128fb: %s " fmt, __func__, ##args);
90 #else
91 #define DBG(fmt, args...)
92 #endif
93 
94 #ifndef CONFIG_PPC_PMAC
95 /* default mode */
96 static struct fb_var_screeninfo default_var = {
97 	/* 640x480, 60 Hz, Non-Interlaced (25.175 MHz dotclock) */
98 	640, 480, 640, 480, 0, 0, 8, 0,
99 	{0, 8, 0}, {0, 8, 0}, {0, 8, 0}, {0, 0, 0},
100 	0, 0, -1, -1, 0, 39722, 48, 16, 33, 10, 96, 2,
101 	0, FB_VMODE_NONINTERLACED
102 };
103 
104 #else /* CONFIG_PPC_PMAC */
105 /* default to 1024x768 at 75Hz on PPC - this will work
106  * on the iMac, the usual 640x480 @ 60Hz doesn't. */
107 static struct fb_var_screeninfo default_var = {
108 	/* 1024x768, 75 Hz, Non-Interlaced (78.75 MHz dotclock) */
109 	1024, 768, 1024, 768, 0, 0, 8, 0,
110 	{0, 8, 0}, {0, 8, 0}, {0, 8, 0}, {0, 0, 0},
111 	0, 0, -1, -1, 0, 12699, 160, 32, 28, 1, 96, 3,
112 	FB_SYNC_HOR_HIGH_ACT | FB_SYNC_VERT_HIGH_ACT,
113 	FB_VMODE_NONINTERLACED
114 };
115 #endif /* CONFIG_PPC_PMAC */
116 
117 /* default modedb mode */
118 /* 640x480, 60 Hz, Non-Interlaced (25.172 MHz dotclock) */
119 static struct fb_videomode defaultmode = {
120 	.refresh =	60,
121 	.xres =		640,
122 	.yres =		480,
123 	.pixclock =	39722,
124 	.left_margin =	48,
125 	.right_margin =	16,
126 	.upper_margin =	33,
127 	.lower_margin =	10,
128 	.hsync_len =	96,
129 	.vsync_len =	2,
130 	.sync =		0,
131 	.vmode =	FB_VMODE_NONINTERLACED
132 };
133 
134 /* Chip generations */
135 enum {
136 	rage_128,
137 	rage_128_pci,
138 	rage_128_pro,
139 	rage_128_pro_pci,
140 	rage_M3,
141 	rage_M3_pci,
142 	rage_M4,
143 	rage_128_ultra,
144 };
145 
146 /* Must match above enum */
147 static char * const r128_family[] = {
148 	"AGP",
149 	"PCI",
150 	"PRO AGP",
151 	"PRO PCI",
152 	"M3 AGP",
153 	"M3 PCI",
154 	"M4 AGP",
155 	"Ultra AGP",
156 };
157 
158 /*
159  * PCI driver prototypes
160  */
161 static int aty128_probe(struct pci_dev *pdev,
162                                const struct pci_device_id *ent);
163 static void aty128_remove(struct pci_dev *pdev);
164 static int aty128_pci_suspend(struct pci_dev *pdev, pm_message_t state);
165 static int aty128_pci_resume(struct pci_dev *pdev);
166 static int aty128_do_resume(struct pci_dev *pdev);
167 
168 /* supported Rage128 chipsets */
169 static struct pci_device_id aty128_pci_tbl[] = {
170 	{ PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_LE,
171 	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_M3_pci },
172 	{ PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_LF,
173 	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_M3 },
174 	{ PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_MF,
175 	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_M4 },
176 	{ PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_ML,
177 	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_M4 },
178 	{ PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_PA,
179 	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_pro },
180 	{ PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_PB,
181 	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_pro },
182 	{ PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_PC,
183 	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_pro },
184 	{ PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_PD,
185 	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_pro_pci },
186 	{ PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_PE,
187 	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_pro },
188 	{ PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_PF,
189 	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_pro },
190 	{ PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_PG,
191 	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_pro },
192 	{ PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_PH,
193 	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_pro },
194 	{ PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_PI,
195 	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_pro },
196 	{ PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_PJ,
197 	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_pro },
198 	{ PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_PK,
199 	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_pro },
200 	{ PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_PL,
201 	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_pro },
202 	{ PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_PM,
203 	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_pro },
204 	{ PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_PN,
205 	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_pro },
206 	{ PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_PO,
207 	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_pro },
208 	{ PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_PP,
209 	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_pro_pci },
210 	{ PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_PQ,
211 	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_pro },
212 	{ PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_PR,
213 	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_pro_pci },
214 	{ PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_PS,
215 	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_pro },
216 	{ PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_PT,
217 	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_pro },
218 	{ PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_PU,
219 	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_pro },
220 	{ PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_PV,
221 	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_pro },
222 	{ PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_PW,
223 	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_pro },
224 	{ PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_PX,
225 	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_pro },
226 	{ PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_RE,
227 	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_pci },
228 	{ PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_RF,
229 	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128 },
230 	{ PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_RG,
231 	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128 },
232 	{ PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_RK,
233 	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_pci },
234 	{ PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_RL,
235 	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128 },
236 	{ PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_SE,
237 	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128 },
238 	{ PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_SF,
239 	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_pci },
240 	{ PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_SG,
241 	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128 },
242 	{ PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_SH,
243 	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128 },
244 	{ PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_SK,
245 	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128 },
246 	{ PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_SL,
247 	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128 },
248 	{ PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_SM,
249 	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128 },
250 	{ PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_SN,
251 	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128 },
252 	{ PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_TF,
253 	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_ultra },
254 	{ PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_TL,
255 	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_ultra },
256 	{ PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_TR,
257 	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_ultra },
258 	{ PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_TS,
259 	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_ultra },
260 	{ PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_TT,
261 	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_ultra },
262 	{ PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_TU,
263 	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_ultra },
264 	{ 0, }
265 };
266 
267 MODULE_DEVICE_TABLE(pci, aty128_pci_tbl);
268 
269 static struct pci_driver aty128fb_driver = {
270 	.name		= "aty128fb",
271 	.id_table	= aty128_pci_tbl,
272 	.probe		= aty128_probe,
273 	.remove		= aty128_remove,
274 	.suspend	= aty128_pci_suspend,
275 	.resume		= aty128_pci_resume,
276 };
277 
278 /* packed BIOS settings */
279 #ifndef CONFIG_PPC
280 typedef struct {
281 	u8 clock_chip_type;
282 	u8 struct_size;
283 	u8 accelerator_entry;
284 	u8 VGA_entry;
285 	u16 VGA_table_offset;
286 	u16 POST_table_offset;
287 	u16 XCLK;
288 	u16 MCLK;
289 	u8 num_PLL_blocks;
290 	u8 size_PLL_blocks;
291 	u16 PCLK_ref_freq;
292 	u16 PCLK_ref_divider;
293 	u32 PCLK_min_freq;
294 	u32 PCLK_max_freq;
295 	u16 MCLK_ref_freq;
296 	u16 MCLK_ref_divider;
297 	u32 MCLK_min_freq;
298 	u32 MCLK_max_freq;
299 	u16 XCLK_ref_freq;
300 	u16 XCLK_ref_divider;
301 	u32 XCLK_min_freq;
302 	u32 XCLK_max_freq;
303 } __attribute__ ((packed)) PLL_BLOCK;
304 #endif /* !CONFIG_PPC */
305 
306 /* onboard memory information */
307 struct aty128_meminfo {
308 	u8 ML;
309 	u8 MB;
310 	u8 Trcd;
311 	u8 Trp;
312 	u8 Twr;
313 	u8 CL;
314 	u8 Tr2w;
315 	u8 LoopLatency;
316 	u8 DspOn;
317 	u8 Rloop;
318 	const char *name;
319 };
320 
321 /* various memory configurations */
322 static const struct aty128_meminfo sdr_128 = {
323 	.ML = 4,
324 	.MB = 4,
325 	.Trcd = 3,
326 	.Trp = 3,
327 	.Twr = 1,
328 	.CL = 3,
329 	.Tr2w = 1,
330 	.LoopLatency = 16,
331 	.DspOn = 30,
332 	.Rloop = 16,
333 	.name = "128-bit SDR SGRAM (1:1)",
334 };
335 
336 static const struct aty128_meminfo sdr_64 = {
337 	.ML = 4,
338 	.MB = 8,
339 	.Trcd = 3,
340 	.Trp = 3,
341 	.Twr = 1,
342 	.CL = 3,
343 	.Tr2w = 1,
344 	.LoopLatency = 17,
345 	.DspOn = 46,
346 	.Rloop = 17,
347 	.name = "64-bit SDR SGRAM (1:1)",
348 };
349 
350 static const struct aty128_meminfo sdr_sgram = {
351 	.ML = 4,
352 	.MB = 4,
353 	.Trcd = 1,
354 	.Trp = 2,
355 	.Twr = 1,
356 	.CL = 2,
357 	.Tr2w = 1,
358 	.LoopLatency = 16,
359 	.DspOn = 24,
360 	.Rloop = 16,
361 	.name = "64-bit SDR SGRAM (2:1)",
362 };
363 
364 static const struct aty128_meminfo ddr_sgram = {
365 	.ML = 4,
366 	.MB = 4,
367 	.Trcd = 3,
368 	.Trp = 3,
369 	.Twr = 2,
370 	.CL = 3,
371 	.Tr2w = 1,
372 	.LoopLatency = 16,
373 	.DspOn = 31,
374 	.Rloop = 16,
375 	.name = "64-bit DDR SGRAM",
376 };
377 
378 static struct fb_fix_screeninfo aty128fb_fix = {
379 	.id		= "ATY Rage128",
380 	.type		= FB_TYPE_PACKED_PIXELS,
381 	.visual		= FB_VISUAL_PSEUDOCOLOR,
382 	.xpanstep	= 8,
383 	.ypanstep	= 1,
384 	.mmio_len	= 0x2000,
385 	.accel		= FB_ACCEL_ATI_RAGE128,
386 };
387 
388 static char *mode_option = NULL;
389 
390 #ifdef CONFIG_PPC_PMAC
391 static int default_vmode = VMODE_1024_768_60;
392 static int default_cmode = CMODE_8;
393 #endif
394 
395 static int default_crt_on = 0;
396 static int default_lcd_on = 1;
397 static bool mtrr = true;
398 
399 #ifdef CONFIG_FB_ATY128_BACKLIGHT
400 #ifdef CONFIG_PMAC_BACKLIGHT
401 static int backlight = 1;
402 #else
403 static int backlight = 0;
404 #endif
405 #endif
406 
407 /* PLL constants */
408 struct aty128_constants {
409 	u32 ref_clk;
410 	u32 ppll_min;
411 	u32 ppll_max;
412 	u32 ref_divider;
413 	u32 xclk;
414 	u32 fifo_width;
415 	u32 fifo_depth;
416 };
417 
418 struct aty128_crtc {
419 	u32 gen_cntl;
420 	u32 h_total, h_sync_strt_wid;
421 	u32 v_total, v_sync_strt_wid;
422 	u32 pitch;
423 	u32 offset, offset_cntl;
424 	u32 xoffset, yoffset;
425 	u32 vxres, vyres;
426 	u32 depth, bpp;
427 };
428 
429 struct aty128_pll {
430 	u32 post_divider;
431 	u32 feedback_divider;
432 	u32 vclk;
433 };
434 
435 struct aty128_ddafifo {
436 	u32 dda_config;
437 	u32 dda_on_off;
438 };
439 
440 /* register values for a specific mode */
441 struct aty128fb_par {
442 	struct aty128_crtc crtc;
443 	struct aty128_pll pll;
444 	struct aty128_ddafifo fifo_reg;
445 	u32 accel_flags;
446 	struct aty128_constants constants;  /* PLL and others      */
447 	void __iomem *regbase;              /* remapped mmio       */
448 	u32 vram_size;                      /* onboard video ram   */
449 	int chip_gen;
450 	const struct aty128_meminfo *mem;   /* onboard mem info    */
451 	int wc_cookie;
452 	int blitter_may_be_busy;
453 	int fifo_slots;                 /* free slots in FIFO (64 max) */
454 
455 	int crt_on, lcd_on;
456 	struct pci_dev *pdev;
457 	struct fb_info *next;
458 	int	asleep;
459 	int	lock_blank;
460 
461 	u8	red[32];		/* see aty128fb_setcolreg */
462 	u8	green[64];
463 	u8	blue[32];
464 	u32	pseudo_palette[16];	/* used for TRUECOLOR */
465 };
466 
467 
468 #define round_div(n, d) ((n+(d/2))/d)
469 
470 static int aty128fb_check_var(struct fb_var_screeninfo *var,
471 			      struct fb_info *info);
472 static int aty128fb_set_par(struct fb_info *info);
473 static int aty128fb_setcolreg(u_int regno, u_int red, u_int green, u_int blue,
474 			      u_int transp, struct fb_info *info);
475 static int aty128fb_pan_display(struct fb_var_screeninfo *var,
476 			   struct fb_info *fb);
477 static int aty128fb_blank(int blank, struct fb_info *fb);
478 static int aty128fb_ioctl(struct fb_info *info, u_int cmd, unsigned long arg);
479 static int aty128fb_sync(struct fb_info *info);
480 
481     /*
482      *  Internal routines
483      */
484 
485 static int aty128_encode_var(struct fb_var_screeninfo *var,
486                              const struct aty128fb_par *par);
487 static int aty128_decode_var(struct fb_var_screeninfo *var,
488                              struct aty128fb_par *par);
489 #if 0
490 static void aty128_get_pllinfo(struct aty128fb_par *par, void __iomem *bios);
491 static void __iomem *aty128_map_ROM(struct pci_dev *pdev,
492 				    const struct aty128fb_par *par);
493 #endif
494 static void aty128_timings(struct aty128fb_par *par);
495 static void aty128_init_engine(struct aty128fb_par *par);
496 static void aty128_reset_engine(const struct aty128fb_par *par);
497 static void aty128_flush_pixel_cache(const struct aty128fb_par *par);
498 static void do_wait_for_fifo(u16 entries, struct aty128fb_par *par);
499 static void wait_for_fifo(u16 entries, struct aty128fb_par *par);
500 static void wait_for_idle(struct aty128fb_par *par);
501 static u32 depth_to_dst(u32 depth);
502 
503 #ifdef CONFIG_FB_ATY128_BACKLIGHT
504 static void aty128_bl_set_power(struct fb_info *info, int power);
505 #endif
506 
507 #define BIOS_IN8(v)  	(readb(bios + (v)))
508 #define BIOS_IN16(v) 	(readb(bios + (v)) | \
509 			  (readb(bios + (v) + 1) << 8))
510 #define BIOS_IN32(v) 	(readb(bios + (v)) | \
511 			  (readb(bios + (v) + 1) << 8) | \
512 			  (readb(bios + (v) + 2) << 16) | \
513 			  (readb(bios + (v) + 3) << 24))
514 
515 
516 static struct fb_ops aty128fb_ops = {
517 	.owner		= THIS_MODULE,
518 	.fb_check_var	= aty128fb_check_var,
519 	.fb_set_par	= aty128fb_set_par,
520 	.fb_setcolreg	= aty128fb_setcolreg,
521 	.fb_pan_display = aty128fb_pan_display,
522 	.fb_blank	= aty128fb_blank,
523 	.fb_ioctl	= aty128fb_ioctl,
524 	.fb_sync	= aty128fb_sync,
525 	.fb_fillrect	= cfb_fillrect,
526 	.fb_copyarea	= cfb_copyarea,
527 	.fb_imageblit	= cfb_imageblit,
528 };
529 
530     /*
531      * Functions to read from/write to the mmio registers
532      *	- endian conversions may possibly be avoided by
533      *    using the other register aperture. TODO.
534      */
535 static inline u32 _aty_ld_le32(volatile unsigned int regindex,
536 			       const struct aty128fb_par *par)
537 {
538 	return readl (par->regbase + regindex);
539 }
540 
541 static inline void _aty_st_le32(volatile unsigned int regindex, u32 val,
542 				const struct aty128fb_par *par)
543 {
544 	writel (val, par->regbase + regindex);
545 }
546 
547 static inline u8 _aty_ld_8(unsigned int regindex,
548 			   const struct aty128fb_par *par)
549 {
550 	return readb (par->regbase + regindex);
551 }
552 
553 static inline void _aty_st_8(unsigned int regindex, u8 val,
554 			     const struct aty128fb_par *par)
555 {
556 	writeb (val, par->regbase + regindex);
557 }
558 
559 #define aty_ld_le32(regindex)		_aty_ld_le32(regindex, par)
560 #define aty_st_le32(regindex, val)	_aty_st_le32(regindex, val, par)
561 #define aty_ld_8(regindex)		_aty_ld_8(regindex, par)
562 #define aty_st_8(regindex, val)		_aty_st_8(regindex, val, par)
563 
564     /*
565      * Functions to read from/write to the pll registers
566      */
567 
568 #define aty_ld_pll(pll_index)		_aty_ld_pll(pll_index, par)
569 #define aty_st_pll(pll_index, val)	_aty_st_pll(pll_index, val, par)
570 
571 
572 static u32 _aty_ld_pll(unsigned int pll_index,
573 		       const struct aty128fb_par *par)
574 {
575 	aty_st_8(CLOCK_CNTL_INDEX, pll_index & 0x3F);
576 	return aty_ld_le32(CLOCK_CNTL_DATA);
577 }
578 
579 
580 static void _aty_st_pll(unsigned int pll_index, u32 val,
581 			const struct aty128fb_par *par)
582 {
583 	aty_st_8(CLOCK_CNTL_INDEX, (pll_index & 0x3F) | PLL_WR_EN);
584 	aty_st_le32(CLOCK_CNTL_DATA, val);
585 }
586 
587 
588 /* return true when the PLL has completed an atomic update */
589 static int aty_pll_readupdate(const struct aty128fb_par *par)
590 {
591 	return !(aty_ld_pll(PPLL_REF_DIV) & PPLL_ATOMIC_UPDATE_R);
592 }
593 
594 
595 static void aty_pll_wait_readupdate(const struct aty128fb_par *par)
596 {
597 	unsigned long timeout = jiffies + HZ/100; // should be more than enough
598 	int reset = 1;
599 
600 	while (time_before(jiffies, timeout))
601 		if (aty_pll_readupdate(par)) {
602 			reset = 0;
603 			break;
604 		}
605 
606 	if (reset)	/* reset engine?? */
607 		printk(KERN_DEBUG "aty128fb: PLL write timeout!\n");
608 }
609 
610 
611 /* tell PLL to update */
612 static void aty_pll_writeupdate(const struct aty128fb_par *par)
613 {
614 	aty_pll_wait_readupdate(par);
615 
616 	aty_st_pll(PPLL_REF_DIV,
617 		   aty_ld_pll(PPLL_REF_DIV) | PPLL_ATOMIC_UPDATE_W);
618 }
619 
620 
621 /* write to the scratch register to test r/w functionality */
622 static int register_test(const struct aty128fb_par *par)
623 {
624 	u32 val;
625 	int flag = 0;
626 
627 	val = aty_ld_le32(BIOS_0_SCRATCH);
628 
629 	aty_st_le32(BIOS_0_SCRATCH, 0x55555555);
630 	if (aty_ld_le32(BIOS_0_SCRATCH) == 0x55555555) {
631 		aty_st_le32(BIOS_0_SCRATCH, 0xAAAAAAAA);
632 
633 		if (aty_ld_le32(BIOS_0_SCRATCH) == 0xAAAAAAAA)
634 			flag = 1;
635 	}
636 
637 	aty_st_le32(BIOS_0_SCRATCH, val);	// restore value
638 	return flag;
639 }
640 
641 
642 /*
643  * Accelerator engine functions
644  */
645 static void do_wait_for_fifo(u16 entries, struct aty128fb_par *par)
646 {
647 	int i;
648 
649 	for (;;) {
650 		for (i = 0; i < 2000000; i++) {
651 			par->fifo_slots = aty_ld_le32(GUI_STAT) & 0x0fff;
652 			if (par->fifo_slots >= entries)
653 				return;
654 		}
655 		aty128_reset_engine(par);
656 	}
657 }
658 
659 
660 static void wait_for_idle(struct aty128fb_par *par)
661 {
662 	int i;
663 
664 	do_wait_for_fifo(64, par);
665 
666 	for (;;) {
667 		for (i = 0; i < 2000000; i++) {
668 			if (!(aty_ld_le32(GUI_STAT) & (1 << 31))) {
669 				aty128_flush_pixel_cache(par);
670 				par->blitter_may_be_busy = 0;
671 				return;
672 			}
673 		}
674 		aty128_reset_engine(par);
675 	}
676 }
677 
678 
679 static void wait_for_fifo(u16 entries, struct aty128fb_par *par)
680 {
681 	if (par->fifo_slots < entries)
682 		do_wait_for_fifo(64, par);
683 	par->fifo_slots -= entries;
684 }
685 
686 
687 static void aty128_flush_pixel_cache(const struct aty128fb_par *par)
688 {
689 	int i;
690 	u32 tmp;
691 
692 	tmp = aty_ld_le32(PC_NGUI_CTLSTAT);
693 	tmp &= ~(0x00ff);
694 	tmp |= 0x00ff;
695 	aty_st_le32(PC_NGUI_CTLSTAT, tmp);
696 
697 	for (i = 0; i < 2000000; i++)
698 		if (!(aty_ld_le32(PC_NGUI_CTLSTAT) & PC_BUSY))
699 			break;
700 }
701 
702 
703 static void aty128_reset_engine(const struct aty128fb_par *par)
704 {
705 	u32 gen_reset_cntl, clock_cntl_index, mclk_cntl;
706 
707 	aty128_flush_pixel_cache(par);
708 
709 	clock_cntl_index = aty_ld_le32(CLOCK_CNTL_INDEX);
710 	mclk_cntl = aty_ld_pll(MCLK_CNTL);
711 
712 	aty_st_pll(MCLK_CNTL, mclk_cntl | 0x00030000);
713 
714 	gen_reset_cntl = aty_ld_le32(GEN_RESET_CNTL);
715 	aty_st_le32(GEN_RESET_CNTL, gen_reset_cntl | SOFT_RESET_GUI);
716 	aty_ld_le32(GEN_RESET_CNTL);
717 	aty_st_le32(GEN_RESET_CNTL, gen_reset_cntl & ~(SOFT_RESET_GUI));
718 	aty_ld_le32(GEN_RESET_CNTL);
719 
720 	aty_st_pll(MCLK_CNTL, mclk_cntl);
721 	aty_st_le32(CLOCK_CNTL_INDEX, clock_cntl_index);
722 	aty_st_le32(GEN_RESET_CNTL, gen_reset_cntl);
723 
724 	/* use old pio mode */
725 	aty_st_le32(PM4_BUFFER_CNTL, PM4_BUFFER_CNTL_NONPM4);
726 
727 	DBG("engine reset");
728 }
729 
730 
731 static void aty128_init_engine(struct aty128fb_par *par)
732 {
733 	u32 pitch_value;
734 
735 	wait_for_idle(par);
736 
737 	/* 3D scaler not spoken here */
738 	wait_for_fifo(1, par);
739 	aty_st_le32(SCALE_3D_CNTL, 0x00000000);
740 
741 	aty128_reset_engine(par);
742 
743 	pitch_value = par->crtc.pitch;
744 	if (par->crtc.bpp == 24) {
745 		pitch_value = pitch_value * 3;
746 	}
747 
748 	wait_for_fifo(4, par);
749 	/* setup engine offset registers */
750 	aty_st_le32(DEFAULT_OFFSET, 0x00000000);
751 
752 	/* setup engine pitch registers */
753 	aty_st_le32(DEFAULT_PITCH, pitch_value);
754 
755 	/* set the default scissor register to max dimensions */
756 	aty_st_le32(DEFAULT_SC_BOTTOM_RIGHT, (0x1FFF << 16) | 0x1FFF);
757 
758 	/* set the drawing controls registers */
759 	aty_st_le32(DP_GUI_MASTER_CNTL,
760 		    GMC_SRC_PITCH_OFFSET_DEFAULT		|
761 		    GMC_DST_PITCH_OFFSET_DEFAULT		|
762 		    GMC_SRC_CLIP_DEFAULT			|
763 		    GMC_DST_CLIP_DEFAULT			|
764 		    GMC_BRUSH_SOLIDCOLOR			|
765 		    (depth_to_dst(par->crtc.depth) << 8)	|
766 		    GMC_SRC_DSTCOLOR			|
767 		    GMC_BYTE_ORDER_MSB_TO_LSB		|
768 		    GMC_DP_CONVERSION_TEMP_6500		|
769 		    ROP3_PATCOPY				|
770 		    GMC_DP_SRC_RECT				|
771 		    GMC_3D_FCN_EN_CLR			|
772 		    GMC_DST_CLR_CMP_FCN_CLEAR		|
773 		    GMC_AUX_CLIP_CLEAR			|
774 		    GMC_WRITE_MASK_SET);
775 
776 	wait_for_fifo(8, par);
777 	/* clear the line drawing registers */
778 	aty_st_le32(DST_BRES_ERR, 0);
779 	aty_st_le32(DST_BRES_INC, 0);
780 	aty_st_le32(DST_BRES_DEC, 0);
781 
782 	/* set brush color registers */
783 	aty_st_le32(DP_BRUSH_FRGD_CLR, 0xFFFFFFFF); /* white */
784 	aty_st_le32(DP_BRUSH_BKGD_CLR, 0x00000000); /* black */
785 
786 	/* set source color registers */
787 	aty_st_le32(DP_SRC_FRGD_CLR, 0xFFFFFFFF);   /* white */
788 	aty_st_le32(DP_SRC_BKGD_CLR, 0x00000000);   /* black */
789 
790 	/* default write mask */
791 	aty_st_le32(DP_WRITE_MASK, 0xFFFFFFFF);
792 
793 	/* Wait for all the writes to be completed before returning */
794 	wait_for_idle(par);
795 }
796 
797 
798 /* convert depth values to their register representation */
799 static u32 depth_to_dst(u32 depth)
800 {
801 	if (depth <= 8)
802 		return DST_8BPP;
803 	else if (depth <= 15)
804 		return DST_15BPP;
805 	else if (depth == 16)
806 		return DST_16BPP;
807 	else if (depth <= 24)
808 		return DST_24BPP;
809 	else if (depth <= 32)
810 		return DST_32BPP;
811 
812 	return -EINVAL;
813 }
814 
815 /*
816  * PLL informations retreival
817  */
818 
819 
820 #ifndef __sparc__
821 static void __iomem *aty128_map_ROM(const struct aty128fb_par *par,
822 				    struct pci_dev *dev)
823 {
824 	u16 dptr;
825 	u8 rom_type;
826 	void __iomem *bios;
827 	size_t rom_size;
828 
829     	/* Fix from ATI for problem with Rage128 hardware not leaving ROM enabled */
830     	unsigned int temp;
831 	temp = aty_ld_le32(RAGE128_MPP_TB_CONFIG);
832 	temp &= 0x00ffffffu;
833 	temp |= 0x04 << 24;
834 	aty_st_le32(RAGE128_MPP_TB_CONFIG, temp);
835 	temp = aty_ld_le32(RAGE128_MPP_TB_CONFIG);
836 
837 	bios = pci_map_rom(dev, &rom_size);
838 
839 	if (!bios) {
840 		printk(KERN_ERR "aty128fb: ROM failed to map\n");
841 		return NULL;
842 	}
843 
844 	/* Very simple test to make sure it appeared */
845 	if (BIOS_IN16(0) != 0xaa55) {
846 		printk(KERN_DEBUG "aty128fb: Invalid ROM signature %x should "
847 			" be 0xaa55\n", BIOS_IN16(0));
848 		goto failed;
849 	}
850 
851 	/* Look for the PCI data to check the ROM type */
852 	dptr = BIOS_IN16(0x18);
853 
854 	/* Check the PCI data signature. If it's wrong, we still assume a normal
855 	 * x86 ROM for now, until I've verified this works everywhere.
856 	 * The goal here is more to phase out Open Firmware images.
857 	 *
858 	 * Currently, we only look at the first PCI data, we could iteratre and
859 	 * deal with them all, and we should use fb_bios_start relative to start
860 	 * of image and not relative start of ROM, but so far, I never found a
861 	 * dual-image ATI card.
862 	 *
863 	 * typedef struct {
864 	 * 	u32	signature;	+ 0x00
865 	 * 	u16	vendor;		+ 0x04
866 	 * 	u16	device;		+ 0x06
867 	 * 	u16	reserved_1;	+ 0x08
868 	 * 	u16	dlen;		+ 0x0a
869 	 * 	u8	drevision;	+ 0x0c
870 	 * 	u8	class_hi;	+ 0x0d
871 	 * 	u16	class_lo;	+ 0x0e
872 	 * 	u16	ilen;		+ 0x10
873 	 * 	u16	irevision;	+ 0x12
874 	 * 	u8	type;		+ 0x14
875 	 * 	u8	indicator;	+ 0x15
876 	 * 	u16	reserved_2;	+ 0x16
877 	 * } pci_data_t;
878 	 */
879 	if (BIOS_IN32(dptr) !=  (('R' << 24) | ('I' << 16) | ('C' << 8) | 'P')) {
880 		printk(KERN_WARNING "aty128fb: PCI DATA signature in ROM incorrect: %08x\n",
881 		       BIOS_IN32(dptr));
882 		goto anyway;
883 	}
884 	rom_type = BIOS_IN8(dptr + 0x14);
885 	switch(rom_type) {
886 	case 0:
887 		printk(KERN_INFO "aty128fb: Found Intel x86 BIOS ROM Image\n");
888 		break;
889 	case 1:
890 		printk(KERN_INFO "aty128fb: Found Open Firmware ROM Image\n");
891 		goto failed;
892 	case 2:
893 		printk(KERN_INFO "aty128fb: Found HP PA-RISC ROM Image\n");
894 		goto failed;
895 	default:
896 		printk(KERN_INFO "aty128fb: Found unknown type %d ROM Image\n",
897 		       rom_type);
898 		goto failed;
899 	}
900  anyway:
901 	return bios;
902 
903  failed:
904 	pci_unmap_rom(dev, bios);
905 	return NULL;
906 }
907 
908 static void aty128_get_pllinfo(struct aty128fb_par *par,
909 			       unsigned char __iomem *bios)
910 {
911 	unsigned int bios_hdr;
912 	unsigned int bios_pll;
913 
914 	bios_hdr = BIOS_IN16(0x48);
915 	bios_pll = BIOS_IN16(bios_hdr + 0x30);
916 
917 	par->constants.ppll_max = BIOS_IN32(bios_pll + 0x16);
918 	par->constants.ppll_min = BIOS_IN32(bios_pll + 0x12);
919 	par->constants.xclk = BIOS_IN16(bios_pll + 0x08);
920 	par->constants.ref_divider = BIOS_IN16(bios_pll + 0x10);
921 	par->constants.ref_clk = BIOS_IN16(bios_pll + 0x0e);
922 
923 	DBG("ppll_max %d ppll_min %d xclk %d ref_divider %d ref clock %d\n",
924 			par->constants.ppll_max, par->constants.ppll_min,
925 			par->constants.xclk, par->constants.ref_divider,
926 			par->constants.ref_clk);
927 
928 }
929 
930 #ifdef CONFIG_X86
931 static void __iomem *aty128_find_mem_vbios(struct aty128fb_par *par)
932 {
933 	/* I simplified this code as we used to miss the signatures in
934 	 * a lot of case. It's now closer to XFree, we just don't check
935 	 * for signatures at all... Something better will have to be done
936 	 * if we end up having conflicts
937 	 */
938         u32  segstart;
939         unsigned char __iomem *rom_base = NULL;
940 
941         for (segstart=0x000c0000; segstart<0x000f0000; segstart+=0x00001000) {
942                 rom_base = ioremap(segstart, 0x10000);
943 		if (rom_base == NULL)
944 			return NULL;
945 		if (readb(rom_base) == 0x55 && readb(rom_base + 1) == 0xaa)
946 	                break;
947                 iounmap(rom_base);
948 		rom_base = NULL;
949         }
950 	return rom_base;
951 }
952 #endif
953 #endif /* ndef(__sparc__) */
954 
955 /* fill in known card constants if pll_block is not available */
956 static void aty128_timings(struct aty128fb_par *par)
957 {
958 #ifdef CONFIG_PPC
959 	/* instead of a table lookup, assume OF has properly
960 	 * setup the PLL registers and use their values
961 	 * to set the XCLK values and reference divider values */
962 
963 	u32 x_mpll_ref_fb_div;
964 	u32 xclk_cntl;
965 	u32 Nx, M;
966 	unsigned PostDivSet[] = { 0, 1, 2, 4, 8, 3, 6, 12 };
967 #endif
968 
969 	if (!par->constants.ref_clk)
970 		par->constants.ref_clk = 2950;
971 
972 #ifdef CONFIG_PPC
973 	x_mpll_ref_fb_div = aty_ld_pll(X_MPLL_REF_FB_DIV);
974 	xclk_cntl = aty_ld_pll(XCLK_CNTL) & 0x7;
975 	Nx = (x_mpll_ref_fb_div & 0x00ff00) >> 8;
976 	M  = x_mpll_ref_fb_div & 0x0000ff;
977 
978 	par->constants.xclk = round_div((2 * Nx * par->constants.ref_clk),
979 					(M * PostDivSet[xclk_cntl]));
980 
981 	par->constants.ref_divider =
982 		aty_ld_pll(PPLL_REF_DIV) & PPLL_REF_DIV_MASK;
983 #endif
984 
985 	if (!par->constants.ref_divider) {
986 		par->constants.ref_divider = 0x3b;
987 
988 		aty_st_pll(X_MPLL_REF_FB_DIV, 0x004c4c1e);
989 		aty_pll_writeupdate(par);
990 	}
991 	aty_st_pll(PPLL_REF_DIV, par->constants.ref_divider);
992 	aty_pll_writeupdate(par);
993 
994 	/* from documentation */
995 	if (!par->constants.ppll_min)
996 		par->constants.ppll_min = 12500;
997 	if (!par->constants.ppll_max)
998 		par->constants.ppll_max = 25000;    /* 23000 on some cards? */
999 	if (!par->constants.xclk)
1000 		par->constants.xclk = 0x1d4d;	     /* same as mclk */
1001 
1002 	par->constants.fifo_width = 128;
1003 	par->constants.fifo_depth = 32;
1004 
1005 	switch (aty_ld_le32(MEM_CNTL) & 0x3) {
1006 	case 0:
1007 		par->mem = &sdr_128;
1008 		break;
1009 	case 1:
1010 		par->mem = &sdr_sgram;
1011 		break;
1012 	case 2:
1013 		par->mem = &ddr_sgram;
1014 		break;
1015 	default:
1016 		par->mem = &sdr_sgram;
1017 	}
1018 }
1019 
1020 
1021 
1022 /*
1023  * CRTC programming
1024  */
1025 
1026 /* Program the CRTC registers */
1027 static void aty128_set_crtc(const struct aty128_crtc *crtc,
1028 			    const struct aty128fb_par *par)
1029 {
1030 	aty_st_le32(CRTC_GEN_CNTL, crtc->gen_cntl);
1031 	aty_st_le32(CRTC_H_TOTAL_DISP, crtc->h_total);
1032 	aty_st_le32(CRTC_H_SYNC_STRT_WID, crtc->h_sync_strt_wid);
1033 	aty_st_le32(CRTC_V_TOTAL_DISP, crtc->v_total);
1034 	aty_st_le32(CRTC_V_SYNC_STRT_WID, crtc->v_sync_strt_wid);
1035 	aty_st_le32(CRTC_PITCH, crtc->pitch);
1036 	aty_st_le32(CRTC_OFFSET, crtc->offset);
1037 	aty_st_le32(CRTC_OFFSET_CNTL, crtc->offset_cntl);
1038 	/* Disable ATOMIC updating.  Is this the right place? */
1039 	aty_st_pll(PPLL_CNTL, aty_ld_pll(PPLL_CNTL) & ~(0x00030000));
1040 }
1041 
1042 
1043 static int aty128_var_to_crtc(const struct fb_var_screeninfo *var,
1044 			      struct aty128_crtc *crtc,
1045 			      const struct aty128fb_par *par)
1046 {
1047 	u32 xres, yres, vxres, vyres, xoffset, yoffset, bpp, dst;
1048 	u32 left, right, upper, lower, hslen, vslen, sync, vmode;
1049 	u32 h_total, h_disp, h_sync_strt, h_sync_wid, h_sync_pol;
1050 	u32 v_total, v_disp, v_sync_strt, v_sync_wid, v_sync_pol, c_sync;
1051 	u32 depth, bytpp;
1052 	u8 mode_bytpp[7] = { 0, 0, 1, 2, 2, 3, 4 };
1053 
1054 	/* input */
1055 	xres = var->xres;
1056 	yres = var->yres;
1057 	vxres   = var->xres_virtual;
1058 	vyres   = var->yres_virtual;
1059 	xoffset = var->xoffset;
1060 	yoffset = var->yoffset;
1061 	bpp   = var->bits_per_pixel;
1062 	left  = var->left_margin;
1063 	right = var->right_margin;
1064 	upper = var->upper_margin;
1065 	lower = var->lower_margin;
1066 	hslen = var->hsync_len;
1067 	vslen = var->vsync_len;
1068 	sync  = var->sync;
1069 	vmode = var->vmode;
1070 
1071 	if (bpp != 16)
1072 		depth = bpp;
1073 	else
1074 		depth = (var->green.length == 6) ? 16 : 15;
1075 
1076 	/* check for mode eligibility
1077 	 * accept only non interlaced modes */
1078 	if ((vmode & FB_VMODE_MASK) != FB_VMODE_NONINTERLACED)
1079 		return -EINVAL;
1080 
1081 	/* convert (and round up) and validate */
1082 	xres = (xres + 7) & ~7;
1083 	xoffset = (xoffset + 7) & ~7;
1084 
1085 	if (vxres < xres + xoffset)
1086 		vxres = xres + xoffset;
1087 
1088 	if (vyres < yres + yoffset)
1089 		vyres = yres + yoffset;
1090 
1091 	/* convert depth into ATI register depth */
1092 	dst = depth_to_dst(depth);
1093 
1094 	if (dst == -EINVAL) {
1095 		printk(KERN_ERR "aty128fb: Invalid depth or RGBA\n");
1096 		return -EINVAL;
1097 	}
1098 
1099 	/* convert register depth to bytes per pixel */
1100 	bytpp = mode_bytpp[dst];
1101 
1102 	/* make sure there is enough video ram for the mode */
1103 	if ((u32)(vxres * vyres * bytpp) > par->vram_size) {
1104 		printk(KERN_ERR "aty128fb: Not enough memory for mode\n");
1105 		return -EINVAL;
1106 	}
1107 
1108 	h_disp = (xres >> 3) - 1;
1109 	h_total = (((xres + right + hslen + left) >> 3) - 1) & 0xFFFFL;
1110 
1111 	v_disp = yres - 1;
1112 	v_total = (yres + upper + vslen + lower - 1) & 0xFFFFL;
1113 
1114 	/* check to make sure h_total and v_total are in range */
1115 	if (((h_total >> 3) - 1) > 0x1ff || (v_total - 1) > 0x7FF) {
1116 		printk(KERN_ERR "aty128fb: invalid width ranges\n");
1117 		return -EINVAL;
1118 	}
1119 
1120 	h_sync_wid = (hslen + 7) >> 3;
1121 	if (h_sync_wid == 0)
1122 		h_sync_wid = 1;
1123 	else if (h_sync_wid > 0x3f)        /* 0x3f = max hwidth */
1124 		h_sync_wid = 0x3f;
1125 
1126 	h_sync_strt = (h_disp << 3) + right;
1127 
1128 	v_sync_wid = vslen;
1129 	if (v_sync_wid == 0)
1130 		v_sync_wid = 1;
1131 	else if (v_sync_wid > 0x1f)        /* 0x1f = max vwidth */
1132 		v_sync_wid = 0x1f;
1133 
1134 	v_sync_strt = v_disp + lower;
1135 
1136 	h_sync_pol = sync & FB_SYNC_HOR_HIGH_ACT ? 0 : 1;
1137 	v_sync_pol = sync & FB_SYNC_VERT_HIGH_ACT ? 0 : 1;
1138 
1139 	c_sync = sync & FB_SYNC_COMP_HIGH_ACT ? (1 << 4) : 0;
1140 
1141 	crtc->gen_cntl = 0x3000000L | c_sync | (dst << 8);
1142 
1143 	crtc->h_total = h_total | (h_disp << 16);
1144 	crtc->v_total = v_total | (v_disp << 16);
1145 
1146 	crtc->h_sync_strt_wid = h_sync_strt | (h_sync_wid << 16) |
1147 	        (h_sync_pol << 23);
1148 	crtc->v_sync_strt_wid = v_sync_strt | (v_sync_wid << 16) |
1149                 (v_sync_pol << 23);
1150 
1151 	crtc->pitch = vxres >> 3;
1152 
1153 	crtc->offset = 0;
1154 
1155 	if ((var->activate & FB_ACTIVATE_MASK) == FB_ACTIVATE_NOW)
1156 		crtc->offset_cntl = 0x00010000;
1157 	else
1158 		crtc->offset_cntl = 0;
1159 
1160 	crtc->vxres = vxres;
1161 	crtc->vyres = vyres;
1162 	crtc->xoffset = xoffset;
1163 	crtc->yoffset = yoffset;
1164 	crtc->depth = depth;
1165 	crtc->bpp = bpp;
1166 
1167 	return 0;
1168 }
1169 
1170 
1171 static int aty128_pix_width_to_var(int pix_width, struct fb_var_screeninfo *var)
1172 {
1173 
1174 	/* fill in pixel info */
1175 	var->red.msb_right = 0;
1176 	var->green.msb_right = 0;
1177 	var->blue.offset = 0;
1178 	var->blue.msb_right = 0;
1179 	var->transp.offset = 0;
1180 	var->transp.length = 0;
1181 	var->transp.msb_right = 0;
1182 	switch (pix_width) {
1183 	case CRTC_PIX_WIDTH_8BPP:
1184 		var->bits_per_pixel = 8;
1185 		var->red.offset = 0;
1186 		var->red.length = 8;
1187 		var->green.offset = 0;
1188 		var->green.length = 8;
1189 		var->blue.length = 8;
1190 		break;
1191 	case CRTC_PIX_WIDTH_15BPP:
1192 		var->bits_per_pixel = 16;
1193 		var->red.offset = 10;
1194 		var->red.length = 5;
1195 		var->green.offset = 5;
1196 		var->green.length = 5;
1197 		var->blue.length = 5;
1198 		break;
1199 	case CRTC_PIX_WIDTH_16BPP:
1200 		var->bits_per_pixel = 16;
1201 		var->red.offset = 11;
1202 		var->red.length = 5;
1203 		var->green.offset = 5;
1204 		var->green.length = 6;
1205 		var->blue.length = 5;
1206 		break;
1207 	case CRTC_PIX_WIDTH_24BPP:
1208 		var->bits_per_pixel = 24;
1209 		var->red.offset = 16;
1210 		var->red.length = 8;
1211 		var->green.offset = 8;
1212 		var->green.length = 8;
1213 		var->blue.length = 8;
1214 		break;
1215 	case CRTC_PIX_WIDTH_32BPP:
1216 		var->bits_per_pixel = 32;
1217 		var->red.offset = 16;
1218 		var->red.length = 8;
1219 		var->green.offset = 8;
1220 		var->green.length = 8;
1221 		var->blue.length = 8;
1222 		var->transp.offset = 24;
1223 		var->transp.length = 8;
1224 		break;
1225 	default:
1226 		printk(KERN_ERR "aty128fb: Invalid pixel width\n");
1227 		return -EINVAL;
1228 	}
1229 
1230 	return 0;
1231 }
1232 
1233 
1234 static int aty128_crtc_to_var(const struct aty128_crtc *crtc,
1235 			      struct fb_var_screeninfo *var)
1236 {
1237 	u32 xres, yres, left, right, upper, lower, hslen, vslen, sync;
1238 	u32 h_total, h_disp, h_sync_strt, h_sync_dly, h_sync_wid, h_sync_pol;
1239 	u32 v_total, v_disp, v_sync_strt, v_sync_wid, v_sync_pol, c_sync;
1240 	u32 pix_width;
1241 
1242 	/* fun with masking */
1243 	h_total     = crtc->h_total & 0x1ff;
1244 	h_disp      = (crtc->h_total >> 16) & 0xff;
1245 	h_sync_strt = (crtc->h_sync_strt_wid >> 3) & 0x1ff;
1246 	h_sync_dly  = crtc->h_sync_strt_wid & 0x7;
1247 	h_sync_wid  = (crtc->h_sync_strt_wid >> 16) & 0x3f;
1248 	h_sync_pol  = (crtc->h_sync_strt_wid >> 23) & 0x1;
1249 	v_total     = crtc->v_total & 0x7ff;
1250 	v_disp      = (crtc->v_total >> 16) & 0x7ff;
1251 	v_sync_strt = crtc->v_sync_strt_wid & 0x7ff;
1252 	v_sync_wid  = (crtc->v_sync_strt_wid >> 16) & 0x1f;
1253 	v_sync_pol  = (crtc->v_sync_strt_wid >> 23) & 0x1;
1254 	c_sync      = crtc->gen_cntl & CRTC_CSYNC_EN ? 1 : 0;
1255 	pix_width   = crtc->gen_cntl & CRTC_PIX_WIDTH_MASK;
1256 
1257 	/* do conversions */
1258 	xres  = (h_disp + 1) << 3;
1259 	yres  = v_disp + 1;
1260 	left  = ((h_total - h_sync_strt - h_sync_wid) << 3) - h_sync_dly;
1261 	right = ((h_sync_strt - h_disp) << 3) + h_sync_dly;
1262 	hslen = h_sync_wid << 3;
1263 	upper = v_total - v_sync_strt - v_sync_wid;
1264 	lower = v_sync_strt - v_disp;
1265 	vslen = v_sync_wid;
1266 	sync  = (h_sync_pol ? 0 : FB_SYNC_HOR_HIGH_ACT) |
1267 		(v_sync_pol ? 0 : FB_SYNC_VERT_HIGH_ACT) |
1268 		(c_sync ? FB_SYNC_COMP_HIGH_ACT : 0);
1269 
1270 	aty128_pix_width_to_var(pix_width, var);
1271 
1272 	var->xres = xres;
1273 	var->yres = yres;
1274 	var->xres_virtual = crtc->vxres;
1275 	var->yres_virtual = crtc->vyres;
1276 	var->xoffset = crtc->xoffset;
1277 	var->yoffset = crtc->yoffset;
1278 	var->left_margin  = left;
1279 	var->right_margin = right;
1280 	var->upper_margin = upper;
1281 	var->lower_margin = lower;
1282 	var->hsync_len = hslen;
1283 	var->vsync_len = vslen;
1284 	var->sync  = sync;
1285 	var->vmode = FB_VMODE_NONINTERLACED;
1286 
1287 	return 0;
1288 }
1289 
1290 static void aty128_set_crt_enable(struct aty128fb_par *par, int on)
1291 {
1292 	if (on) {
1293 		aty_st_le32(CRTC_EXT_CNTL, aty_ld_le32(CRTC_EXT_CNTL) |
1294 			    CRT_CRTC_ON);
1295 		aty_st_le32(DAC_CNTL, (aty_ld_le32(DAC_CNTL) |
1296 			    DAC_PALETTE2_SNOOP_EN));
1297 	} else
1298 		aty_st_le32(CRTC_EXT_CNTL, aty_ld_le32(CRTC_EXT_CNTL) &
1299 			    ~CRT_CRTC_ON);
1300 }
1301 
1302 static void aty128_set_lcd_enable(struct aty128fb_par *par, int on)
1303 {
1304 	u32 reg;
1305 #ifdef CONFIG_FB_ATY128_BACKLIGHT
1306 	struct fb_info *info = pci_get_drvdata(par->pdev);
1307 #endif
1308 
1309 	if (on) {
1310 		reg = aty_ld_le32(LVDS_GEN_CNTL);
1311 		reg |= LVDS_ON | LVDS_EN | LVDS_BLON | LVDS_DIGION;
1312 		reg &= ~LVDS_DISPLAY_DIS;
1313 		aty_st_le32(LVDS_GEN_CNTL, reg);
1314 #ifdef CONFIG_FB_ATY128_BACKLIGHT
1315 		aty128_bl_set_power(info, FB_BLANK_UNBLANK);
1316 #endif
1317 	} else {
1318 #ifdef CONFIG_FB_ATY128_BACKLIGHT
1319 		aty128_bl_set_power(info, FB_BLANK_POWERDOWN);
1320 #endif
1321 		reg = aty_ld_le32(LVDS_GEN_CNTL);
1322 		reg |= LVDS_DISPLAY_DIS;
1323 		aty_st_le32(LVDS_GEN_CNTL, reg);
1324 		mdelay(100);
1325 		reg &= ~(LVDS_ON /*| LVDS_EN*/);
1326 		aty_st_le32(LVDS_GEN_CNTL, reg);
1327 	}
1328 }
1329 
1330 static void aty128_set_pll(struct aty128_pll *pll,
1331 			   const struct aty128fb_par *par)
1332 {
1333 	u32 div3;
1334 
1335 	unsigned char post_conv[] =	/* register values for post dividers */
1336         { 2, 0, 1, 4, 2, 2, 6, 2, 3, 2, 2, 2, 7 };
1337 
1338 	/* select PPLL_DIV_3 */
1339 	aty_st_le32(CLOCK_CNTL_INDEX, aty_ld_le32(CLOCK_CNTL_INDEX) | (3 << 8));
1340 
1341 	/* reset PLL */
1342 	aty_st_pll(PPLL_CNTL,
1343 		   aty_ld_pll(PPLL_CNTL) | PPLL_RESET | PPLL_ATOMIC_UPDATE_EN);
1344 
1345 	/* write the reference divider */
1346 	aty_pll_wait_readupdate(par);
1347 	aty_st_pll(PPLL_REF_DIV, par->constants.ref_divider & 0x3ff);
1348 	aty_pll_writeupdate(par);
1349 
1350 	div3 = aty_ld_pll(PPLL_DIV_3);
1351 	div3 &= ~PPLL_FB3_DIV_MASK;
1352 	div3 |= pll->feedback_divider;
1353 	div3 &= ~PPLL_POST3_DIV_MASK;
1354 	div3 |= post_conv[pll->post_divider] << 16;
1355 
1356 	/* write feedback and post dividers */
1357 	aty_pll_wait_readupdate(par);
1358 	aty_st_pll(PPLL_DIV_3, div3);
1359 	aty_pll_writeupdate(par);
1360 
1361 	aty_pll_wait_readupdate(par);
1362 	aty_st_pll(HTOTAL_CNTL, 0);	/* no horiz crtc adjustment */
1363 	aty_pll_writeupdate(par);
1364 
1365 	/* clear the reset, just in case */
1366 	aty_st_pll(PPLL_CNTL, aty_ld_pll(PPLL_CNTL) & ~PPLL_RESET);
1367 }
1368 
1369 
1370 static int aty128_var_to_pll(u32 period_in_ps, struct aty128_pll *pll,
1371 			     const struct aty128fb_par *par)
1372 {
1373 	const struct aty128_constants c = par->constants;
1374 	unsigned char post_dividers[] = {1,2,4,8,3,6,12};
1375 	u32 output_freq;
1376 	u32 vclk;        /* in .01 MHz */
1377 	int i = 0;
1378 	u32 n, d;
1379 
1380 	vclk = 100000000 / period_in_ps;	/* convert units to 10 kHz */
1381 
1382 	/* adjust pixel clock if necessary */
1383 	if (vclk > c.ppll_max)
1384 		vclk = c.ppll_max;
1385 	if (vclk * 12 < c.ppll_min)
1386 		vclk = c.ppll_min/12;
1387 
1388 	/* now, find an acceptable divider */
1389 	for (i = 0; i < ARRAY_SIZE(post_dividers); i++) {
1390 		output_freq = post_dividers[i] * vclk;
1391 		if (output_freq >= c.ppll_min && output_freq <= c.ppll_max) {
1392 			pll->post_divider = post_dividers[i];
1393 			break;
1394 		}
1395 	}
1396 
1397 	if (i == ARRAY_SIZE(post_dividers))
1398 		return -EINVAL;
1399 
1400 	/* calculate feedback divider */
1401 	n = c.ref_divider * output_freq;
1402 	d = c.ref_clk;
1403 
1404 	pll->feedback_divider = round_div(n, d);
1405 	pll->vclk = vclk;
1406 
1407 	DBG("post %d feedback %d vlck %d output %d ref_divider %d "
1408 	    "vclk_per: %d\n", pll->post_divider,
1409 	    pll->feedback_divider, vclk, output_freq,
1410 	    c.ref_divider, period_in_ps);
1411 
1412 	return 0;
1413 }
1414 
1415 
1416 static int aty128_pll_to_var(const struct aty128_pll *pll,
1417 			     struct fb_var_screeninfo *var)
1418 {
1419 	var->pixclock = 100000000 / pll->vclk;
1420 
1421 	return 0;
1422 }
1423 
1424 
1425 static void aty128_set_fifo(const struct aty128_ddafifo *dsp,
1426 			    const struct aty128fb_par *par)
1427 {
1428 	aty_st_le32(DDA_CONFIG, dsp->dda_config);
1429 	aty_st_le32(DDA_ON_OFF, dsp->dda_on_off);
1430 }
1431 
1432 
1433 static int aty128_ddafifo(struct aty128_ddafifo *dsp,
1434 			  const struct aty128_pll *pll,
1435 			  u32 depth,
1436 			  const struct aty128fb_par *par)
1437 {
1438 	const struct aty128_meminfo *m = par->mem;
1439 	u32 xclk = par->constants.xclk;
1440 	u32 fifo_width = par->constants.fifo_width;
1441 	u32 fifo_depth = par->constants.fifo_depth;
1442 	s32 x, b, p, ron, roff;
1443 	u32 n, d, bpp;
1444 
1445 	/* round up to multiple of 8 */
1446 	bpp = (depth+7) & ~7;
1447 
1448 	n = xclk * fifo_width;
1449 	d = pll->vclk * bpp;
1450 	x = round_div(n, d);
1451 
1452 	ron = 4 * m->MB +
1453 		3 * ((m->Trcd - 2 > 0) ? m->Trcd - 2 : 0) +
1454 		2 * m->Trp +
1455 		m->Twr +
1456 		m->CL +
1457 		m->Tr2w +
1458 		x;
1459 
1460 	DBG("x %x\n", x);
1461 
1462 	b = 0;
1463 	while (x) {
1464 		x >>= 1;
1465 		b++;
1466 	}
1467 	p = b + 1;
1468 
1469 	ron <<= (11 - p);
1470 
1471 	n <<= (11 - p);
1472 	x = round_div(n, d);
1473 	roff = x * (fifo_depth - 4);
1474 
1475 	if ((ron + m->Rloop) >= roff) {
1476 		printk(KERN_ERR "aty128fb: Mode out of range!\n");
1477 		return -EINVAL;
1478 	}
1479 
1480 	DBG("p: %x rloop: %x x: %x ron: %x roff: %x\n",
1481 	    p, m->Rloop, x, ron, roff);
1482 
1483 	dsp->dda_config = p << 16 | m->Rloop << 20 | x;
1484 	dsp->dda_on_off = ron << 16 | roff;
1485 
1486 	return 0;
1487 }
1488 
1489 
1490 /*
1491  * This actually sets the video mode.
1492  */
1493 static int aty128fb_set_par(struct fb_info *info)
1494 {
1495 	struct aty128fb_par *par = info->par;
1496 	u32 config;
1497 	int err;
1498 
1499 	if ((err = aty128_decode_var(&info->var, par)) != 0)
1500 		return err;
1501 
1502 	if (par->blitter_may_be_busy)
1503 		wait_for_idle(par);
1504 
1505 	/* clear all registers that may interfere with mode setting */
1506 	aty_st_le32(OVR_CLR, 0);
1507 	aty_st_le32(OVR_WID_LEFT_RIGHT, 0);
1508 	aty_st_le32(OVR_WID_TOP_BOTTOM, 0);
1509 	aty_st_le32(OV0_SCALE_CNTL, 0);
1510 	aty_st_le32(MPP_TB_CONFIG, 0);
1511 	aty_st_le32(MPP_GP_CONFIG, 0);
1512 	aty_st_le32(SUBPIC_CNTL, 0);
1513 	aty_st_le32(VIPH_CONTROL, 0);
1514 	aty_st_le32(I2C_CNTL_1, 0);         /* turn off i2c */
1515 	aty_st_le32(GEN_INT_CNTL, 0);	/* turn off interrupts */
1516 	aty_st_le32(CAP0_TRIG_CNTL, 0);
1517 	aty_st_le32(CAP1_TRIG_CNTL, 0);
1518 
1519 	aty_st_8(CRTC_EXT_CNTL + 1, 4);	/* turn video off */
1520 
1521 	aty128_set_crtc(&par->crtc, par);
1522 	aty128_set_pll(&par->pll, par);
1523 	aty128_set_fifo(&par->fifo_reg, par);
1524 
1525 	config = aty_ld_le32(CNFG_CNTL) & ~3;
1526 
1527 #if defined(__BIG_ENDIAN)
1528 	if (par->crtc.bpp == 32)
1529 		config |= 2;	/* make aperture do 32 bit swapping */
1530 	else if (par->crtc.bpp == 16)
1531 		config |= 1;	/* make aperture do 16 bit swapping */
1532 #endif
1533 
1534 	aty_st_le32(CNFG_CNTL, config);
1535 	aty_st_8(CRTC_EXT_CNTL + 1, 0);	/* turn the video back on */
1536 
1537 	info->fix.line_length = (par->crtc.vxres * par->crtc.bpp) >> 3;
1538 	info->fix.visual = par->crtc.bpp == 8 ? FB_VISUAL_PSEUDOCOLOR
1539 		: FB_VISUAL_DIRECTCOLOR;
1540 
1541 	if (par->chip_gen == rage_M3) {
1542 		aty128_set_crt_enable(par, par->crt_on);
1543 		aty128_set_lcd_enable(par, par->lcd_on);
1544 	}
1545 	if (par->accel_flags & FB_ACCELF_TEXT)
1546 		aty128_init_engine(par);
1547 
1548 #ifdef CONFIG_BOOTX_TEXT
1549 	btext_update_display(info->fix.smem_start,
1550 			     (((par->crtc.h_total>>16) & 0xff)+1)*8,
1551 			     ((par->crtc.v_total>>16) & 0x7ff)+1,
1552 			     par->crtc.bpp,
1553 			     par->crtc.vxres*par->crtc.bpp/8);
1554 #endif /* CONFIG_BOOTX_TEXT */
1555 
1556 	return 0;
1557 }
1558 
1559 /*
1560  *  encode/decode the User Defined Part of the Display
1561  */
1562 
1563 static int aty128_decode_var(struct fb_var_screeninfo *var,
1564 			     struct aty128fb_par *par)
1565 {
1566 	int err;
1567 	struct aty128_crtc crtc;
1568 	struct aty128_pll pll;
1569 	struct aty128_ddafifo fifo_reg;
1570 
1571 	if ((err = aty128_var_to_crtc(var, &crtc, par)))
1572 		return err;
1573 
1574 	if ((err = aty128_var_to_pll(var->pixclock, &pll, par)))
1575 		return err;
1576 
1577 	if ((err = aty128_ddafifo(&fifo_reg, &pll, crtc.depth, par)))
1578 		return err;
1579 
1580 	par->crtc = crtc;
1581 	par->pll = pll;
1582 	par->fifo_reg = fifo_reg;
1583 	par->accel_flags = var->accel_flags;
1584 
1585 	return 0;
1586 }
1587 
1588 
1589 static int aty128_encode_var(struct fb_var_screeninfo *var,
1590 			     const struct aty128fb_par *par)
1591 {
1592 	int err;
1593 
1594 	if ((err = aty128_crtc_to_var(&par->crtc, var)))
1595 		return err;
1596 
1597 	if ((err = aty128_pll_to_var(&par->pll, var)))
1598 		return err;
1599 
1600 	var->nonstd = 0;
1601 	var->activate = 0;
1602 
1603 	var->height = -1;
1604 	var->width = -1;
1605 	var->accel_flags = par->accel_flags;
1606 
1607 	return 0;
1608 }
1609 
1610 
1611 static int aty128fb_check_var(struct fb_var_screeninfo *var,
1612 			      struct fb_info *info)
1613 {
1614 	struct aty128fb_par par;
1615 	int err;
1616 
1617 	par = *(struct aty128fb_par *)info->par;
1618 	if ((err = aty128_decode_var(var, &par)) != 0)
1619 		return err;
1620 	aty128_encode_var(var, &par);
1621 	return 0;
1622 }
1623 
1624 
1625 /*
1626  *  Pan or Wrap the Display
1627  */
1628 static int aty128fb_pan_display(struct fb_var_screeninfo *var,
1629 				struct fb_info *fb)
1630 {
1631 	struct aty128fb_par *par = fb->par;
1632 	u32 xoffset, yoffset;
1633 	u32 offset;
1634 	u32 xres, yres;
1635 
1636 	xres = (((par->crtc.h_total >> 16) & 0xff) + 1) << 3;
1637 	yres = ((par->crtc.v_total >> 16) & 0x7ff) + 1;
1638 
1639 	xoffset = (var->xoffset +7) & ~7;
1640 	yoffset = var->yoffset;
1641 
1642 	if (xoffset+xres > par->crtc.vxres || yoffset+yres > par->crtc.vyres)
1643 		return -EINVAL;
1644 
1645 	par->crtc.xoffset = xoffset;
1646 	par->crtc.yoffset = yoffset;
1647 
1648 	offset = ((yoffset * par->crtc.vxres + xoffset) * (par->crtc.bpp >> 3))
1649 									  & ~7;
1650 
1651 	if (par->crtc.bpp == 24)
1652 		offset += 8 * (offset % 3); /* Must be multiple of 8 and 3 */
1653 
1654 	aty_st_le32(CRTC_OFFSET, offset);
1655 
1656 	return 0;
1657 }
1658 
1659 
1660 /*
1661  *  Helper function to store a single palette register
1662  */
1663 static void aty128_st_pal(u_int regno, u_int red, u_int green, u_int blue,
1664 			  struct aty128fb_par *par)
1665 {
1666 	if (par->chip_gen == rage_M3) {
1667 #if 0
1668 		/* Note: For now, on M3, we set palette on both heads, which may
1669 		 * be useless. Can someone with a M3 check this ?
1670 		 *
1671 		 * This code would still be useful if using the second CRTC to
1672 		 * do mirroring
1673 		 */
1674 
1675 		aty_st_le32(DAC_CNTL, aty_ld_le32(DAC_CNTL) |
1676 			    DAC_PALETTE_ACCESS_CNTL);
1677 		aty_st_8(PALETTE_INDEX, regno);
1678 		aty_st_le32(PALETTE_DATA, (red<<16)|(green<<8)|blue);
1679 #endif
1680 		aty_st_le32(DAC_CNTL, aty_ld_le32(DAC_CNTL) &
1681 			    ~DAC_PALETTE_ACCESS_CNTL);
1682 	}
1683 
1684 	aty_st_8(PALETTE_INDEX, regno);
1685 	aty_st_le32(PALETTE_DATA, (red<<16)|(green<<8)|blue);
1686 }
1687 
1688 static int aty128fb_sync(struct fb_info *info)
1689 {
1690 	struct aty128fb_par *par = info->par;
1691 
1692 	if (par->blitter_may_be_busy)
1693 		wait_for_idle(par);
1694 	return 0;
1695 }
1696 
1697 #ifndef MODULE
1698 static int aty128fb_setup(char *options)
1699 {
1700 	char *this_opt;
1701 
1702 	if (!options || !*options)
1703 		return 0;
1704 
1705 	while ((this_opt = strsep(&options, ",")) != NULL) {
1706 		if (!strncmp(this_opt, "lcd:", 4)) {
1707 			default_lcd_on = simple_strtoul(this_opt+4, NULL, 0);
1708 			continue;
1709 		} else if (!strncmp(this_opt, "crt:", 4)) {
1710 			default_crt_on = simple_strtoul(this_opt+4, NULL, 0);
1711 			continue;
1712 		} else if (!strncmp(this_opt, "backlight:", 10)) {
1713 #ifdef CONFIG_FB_ATY128_BACKLIGHT
1714 			backlight = simple_strtoul(this_opt+10, NULL, 0);
1715 #endif
1716 			continue;
1717 		}
1718 		if(!strncmp(this_opt, "nomtrr", 6)) {
1719 			mtrr = 0;
1720 			continue;
1721 		}
1722 #ifdef CONFIG_PPC_PMAC
1723 		/* vmode and cmode deprecated */
1724 		if (!strncmp(this_opt, "vmode:", 6)) {
1725 			unsigned int vmode = simple_strtoul(this_opt+6, NULL, 0);
1726 			if (vmode > 0 && vmode <= VMODE_MAX)
1727 				default_vmode = vmode;
1728 			continue;
1729 		} else if (!strncmp(this_opt, "cmode:", 6)) {
1730 			unsigned int cmode = simple_strtoul(this_opt+6, NULL, 0);
1731 			switch (cmode) {
1732 			case 0:
1733 			case 8:
1734 				default_cmode = CMODE_8;
1735 				break;
1736 			case 15:
1737 			case 16:
1738 				default_cmode = CMODE_16;
1739 				break;
1740 			case 24:
1741 			case 32:
1742 				default_cmode = CMODE_32;
1743 				break;
1744 			}
1745 			continue;
1746 		}
1747 #endif /* CONFIG_PPC_PMAC */
1748 		mode_option = this_opt;
1749 	}
1750 	return 0;
1751 }
1752 #endif  /*  MODULE  */
1753 
1754 /* Backlight */
1755 #ifdef CONFIG_FB_ATY128_BACKLIGHT
1756 #define MAX_LEVEL 0xFF
1757 
1758 static int aty128_bl_get_level_brightness(struct aty128fb_par *par,
1759 		int level)
1760 {
1761 	struct fb_info *info = pci_get_drvdata(par->pdev);
1762 	int atylevel;
1763 
1764 	/* Get and convert the value */
1765 	/* No locking of bl_curve since we read a single value */
1766 	atylevel = MAX_LEVEL -
1767 		(info->bl_curve[level] * FB_BACKLIGHT_MAX / MAX_LEVEL);
1768 
1769 	if (atylevel < 0)
1770 		atylevel = 0;
1771 	else if (atylevel > MAX_LEVEL)
1772 		atylevel = MAX_LEVEL;
1773 
1774 	return atylevel;
1775 }
1776 
1777 /* We turn off the LCD completely instead of just dimming the backlight.
1778  * This provides greater power saving and the display is useless without
1779  * backlight anyway
1780  */
1781 #define BACKLIGHT_LVDS_OFF
1782 /* That one prevents proper CRT output with LCD off */
1783 #undef BACKLIGHT_DAC_OFF
1784 
1785 static int aty128_bl_update_status(struct backlight_device *bd)
1786 {
1787 	struct aty128fb_par *par = bl_get_data(bd);
1788 	unsigned int reg = aty_ld_le32(LVDS_GEN_CNTL);
1789 	int level;
1790 
1791 	if (bd->props.power != FB_BLANK_UNBLANK ||
1792 	    bd->props.fb_blank != FB_BLANK_UNBLANK ||
1793 	    !par->lcd_on)
1794 		level = 0;
1795 	else
1796 		level = bd->props.brightness;
1797 
1798 	reg |= LVDS_BL_MOD_EN | LVDS_BLON;
1799 	if (level > 0) {
1800 		reg |= LVDS_DIGION;
1801 		if (!(reg & LVDS_ON)) {
1802 			reg &= ~LVDS_BLON;
1803 			aty_st_le32(LVDS_GEN_CNTL, reg);
1804 			aty_ld_le32(LVDS_GEN_CNTL);
1805 			mdelay(10);
1806 			reg |= LVDS_BLON;
1807 			aty_st_le32(LVDS_GEN_CNTL, reg);
1808 		}
1809 		reg &= ~LVDS_BL_MOD_LEVEL_MASK;
1810 		reg |= (aty128_bl_get_level_brightness(par, level) <<
1811 			LVDS_BL_MOD_LEVEL_SHIFT);
1812 #ifdef BACKLIGHT_LVDS_OFF
1813 		reg |= LVDS_ON | LVDS_EN;
1814 		reg &= ~LVDS_DISPLAY_DIS;
1815 #endif
1816 		aty_st_le32(LVDS_GEN_CNTL, reg);
1817 #ifdef BACKLIGHT_DAC_OFF
1818 		aty_st_le32(DAC_CNTL, aty_ld_le32(DAC_CNTL) & (~DAC_PDWN));
1819 #endif
1820 	} else {
1821 		reg &= ~LVDS_BL_MOD_LEVEL_MASK;
1822 		reg |= (aty128_bl_get_level_brightness(par, 0) <<
1823 			LVDS_BL_MOD_LEVEL_SHIFT);
1824 #ifdef BACKLIGHT_LVDS_OFF
1825 		reg |= LVDS_DISPLAY_DIS;
1826 		aty_st_le32(LVDS_GEN_CNTL, reg);
1827 		aty_ld_le32(LVDS_GEN_CNTL);
1828 		udelay(10);
1829 		reg &= ~(LVDS_ON | LVDS_EN | LVDS_BLON | LVDS_DIGION);
1830 #endif
1831 		aty_st_le32(LVDS_GEN_CNTL, reg);
1832 #ifdef BACKLIGHT_DAC_OFF
1833 		aty_st_le32(DAC_CNTL, aty_ld_le32(DAC_CNTL) | DAC_PDWN);
1834 #endif
1835 	}
1836 
1837 	return 0;
1838 }
1839 
1840 static const struct backlight_ops aty128_bl_data = {
1841 	.update_status	= aty128_bl_update_status,
1842 };
1843 
1844 static void aty128_bl_set_power(struct fb_info *info, int power)
1845 {
1846 	if (info->bl_dev) {
1847 		info->bl_dev->props.power = power;
1848 		backlight_update_status(info->bl_dev);
1849 	}
1850 }
1851 
1852 static void aty128_bl_init(struct aty128fb_par *par)
1853 {
1854 	struct backlight_properties props;
1855 	struct fb_info *info = pci_get_drvdata(par->pdev);
1856 	struct backlight_device *bd;
1857 	char name[12];
1858 
1859 	/* Could be extended to Rage128Pro LVDS output too */
1860 	if (par->chip_gen != rage_M3)
1861 		return;
1862 
1863 #ifdef CONFIG_PMAC_BACKLIGHT
1864 	if (!pmac_has_backlight_type("ati"))
1865 		return;
1866 #endif
1867 
1868 	snprintf(name, sizeof(name), "aty128bl%d", info->node);
1869 
1870 	memset(&props, 0, sizeof(struct backlight_properties));
1871 	props.type = BACKLIGHT_RAW;
1872 	props.max_brightness = FB_BACKLIGHT_LEVELS - 1;
1873 	bd = backlight_device_register(name, info->dev, par, &aty128_bl_data,
1874 				       &props);
1875 	if (IS_ERR(bd)) {
1876 		info->bl_dev = NULL;
1877 		printk(KERN_WARNING "aty128: Backlight registration failed\n");
1878 		goto error;
1879 	}
1880 
1881 	info->bl_dev = bd;
1882 	fb_bl_default_curve(info, 0,
1883 		 63 * FB_BACKLIGHT_MAX / MAX_LEVEL,
1884 		219 * FB_BACKLIGHT_MAX / MAX_LEVEL);
1885 
1886 	bd->props.brightness = bd->props.max_brightness;
1887 	bd->props.power = FB_BLANK_UNBLANK;
1888 	backlight_update_status(bd);
1889 
1890 	printk("aty128: Backlight initialized (%s)\n", name);
1891 
1892 	return;
1893 
1894 error:
1895 	return;
1896 }
1897 
1898 static void aty128_bl_exit(struct backlight_device *bd)
1899 {
1900 	backlight_device_unregister(bd);
1901 	printk("aty128: Backlight unloaded\n");
1902 }
1903 #endif /* CONFIG_FB_ATY128_BACKLIGHT */
1904 
1905 /*
1906  *  Initialisation
1907  */
1908 
1909 #ifdef CONFIG_PPC_PMAC__disabled
1910 static void aty128_early_resume(void *data)
1911 {
1912         struct aty128fb_par *par = data;
1913 
1914 	if (!console_trylock())
1915 		return;
1916 	pci_restore_state(par->pdev);
1917 	aty128_do_resume(par->pdev);
1918 	console_unlock();
1919 }
1920 #endif /* CONFIG_PPC_PMAC */
1921 
1922 static int aty128_init(struct pci_dev *pdev, const struct pci_device_id *ent)
1923 {
1924 	struct fb_info *info = pci_get_drvdata(pdev);
1925 	struct aty128fb_par *par = info->par;
1926 	struct fb_var_screeninfo var;
1927 	char video_card[50];
1928 	u8 chip_rev;
1929 	u32 dac;
1930 
1931 	/* Get the chip revision */
1932 	chip_rev = (aty_ld_le32(CNFG_CNTL) >> 16) & 0x1F;
1933 
1934 	strcpy(video_card, "Rage128 XX ");
1935 	video_card[8] = ent->device >> 8;
1936 	video_card[9] = ent->device & 0xFF;
1937 
1938 	/* range check to make sure */
1939 	if (ent->driver_data < ARRAY_SIZE(r128_family))
1940 		strlcat(video_card, r128_family[ent->driver_data],
1941 			sizeof(video_card));
1942 
1943 	printk(KERN_INFO "aty128fb: %s [chip rev 0x%x] ", video_card, chip_rev);
1944 
1945 	if (par->vram_size % (1024 * 1024) == 0)
1946 		printk("%dM %s\n", par->vram_size / (1024*1024), par->mem->name);
1947 	else
1948 		printk("%dk %s\n", par->vram_size / 1024, par->mem->name);
1949 
1950 	par->chip_gen = ent->driver_data;
1951 
1952 	/* fill in info */
1953 	info->fbops = &aty128fb_ops;
1954 	info->flags = FBINFO_FLAG_DEFAULT;
1955 
1956 	par->lcd_on = default_lcd_on;
1957 	par->crt_on = default_crt_on;
1958 
1959 	var = default_var;
1960 #ifdef CONFIG_PPC_PMAC
1961 	if (machine_is(powermac)) {
1962 		/* Indicate sleep capability */
1963 		if (par->chip_gen == rage_M3) {
1964 			pmac_call_feature(PMAC_FTR_DEVICE_CAN_WAKE, NULL, 0, 1);
1965 #if 0 /* Disable the early video resume hack for now as it's causing problems,
1966        * among others we now rely on the PCI core restoring the config space
1967        * for us, which isn't the case with that hack, and that code path causes
1968        * various things to be called with interrupts off while they shouldn't.
1969        * I'm leaving the code in as it can be useful for debugging purposes
1970        */
1971 			pmac_set_early_video_resume(aty128_early_resume, par);
1972 #endif
1973 		}
1974 
1975 		/* Find default mode */
1976 		if (mode_option) {
1977 			if (!mac_find_mode(&var, info, mode_option, 8))
1978 				var = default_var;
1979 		} else {
1980 			if (default_vmode <= 0 || default_vmode > VMODE_MAX)
1981 				default_vmode = VMODE_1024_768_60;
1982 
1983 			/* iMacs need that resolution
1984 			 * PowerMac2,1 first r128 iMacs
1985 			 * PowerMac2,2 summer 2000 iMacs
1986 			 * PowerMac4,1 january 2001 iMacs "flower power"
1987 			 */
1988 			if (of_machine_is_compatible("PowerMac2,1") ||
1989 			    of_machine_is_compatible("PowerMac2,2") ||
1990 			    of_machine_is_compatible("PowerMac4,1"))
1991 				default_vmode = VMODE_1024_768_75;
1992 
1993 			/* iBook SE */
1994 			if (of_machine_is_compatible("PowerBook2,2"))
1995 				default_vmode = VMODE_800_600_60;
1996 
1997 			/* PowerBook Firewire (Pismo), iBook Dual USB */
1998 			if (of_machine_is_compatible("PowerBook3,1") ||
1999 			    of_machine_is_compatible("PowerBook4,1"))
2000 				default_vmode = VMODE_1024_768_60;
2001 
2002 			/* PowerBook Titanium */
2003 			if (of_machine_is_compatible("PowerBook3,2"))
2004 				default_vmode = VMODE_1152_768_60;
2005 
2006 			if (default_cmode > 16)
2007 				default_cmode = CMODE_32;
2008 			else if (default_cmode > 8)
2009 				default_cmode = CMODE_16;
2010 			else
2011 				default_cmode = CMODE_8;
2012 
2013 			if (mac_vmode_to_var(default_vmode, default_cmode, &var))
2014 				var = default_var;
2015 		}
2016 	} else
2017 #endif /* CONFIG_PPC_PMAC */
2018 	{
2019 		if (mode_option)
2020 			if (fb_find_mode(&var, info, mode_option, NULL,
2021 					 0, &defaultmode, 8) == 0)
2022 				var = default_var;
2023 	}
2024 
2025 	var.accel_flags &= ~FB_ACCELF_TEXT;
2026 //	var.accel_flags |= FB_ACCELF_TEXT;/* FIXME Will add accel later */
2027 
2028 	if (aty128fb_check_var(&var, info)) {
2029 		printk(KERN_ERR "aty128fb: Cannot set default mode.\n");
2030 		return 0;
2031 	}
2032 
2033 	/* setup the DAC the way we like it */
2034 	dac = aty_ld_le32(DAC_CNTL);
2035 	dac |= (DAC_8BIT_EN | DAC_RANGE_CNTL);
2036 	dac |= DAC_MASK;
2037 	if (par->chip_gen == rage_M3)
2038 		dac |= DAC_PALETTE2_SNOOP_EN;
2039 	aty_st_le32(DAC_CNTL, dac);
2040 
2041 	/* turn off bus mastering, just in case */
2042 	aty_st_le32(BUS_CNTL, aty_ld_le32(BUS_CNTL) | BUS_MASTER_DIS);
2043 
2044 	info->var = var;
2045 	fb_alloc_cmap(&info->cmap, 256, 0);
2046 
2047 	var.activate = FB_ACTIVATE_NOW;
2048 
2049 	aty128_init_engine(par);
2050 
2051 	par->pdev = pdev;
2052 	par->asleep = 0;
2053 	par->lock_blank = 0;
2054 
2055 #ifdef CONFIG_FB_ATY128_BACKLIGHT
2056 	if (backlight)
2057 		aty128_bl_init(par);
2058 #endif
2059 
2060 	if (register_framebuffer(info) < 0)
2061 		return 0;
2062 
2063 	fb_info(info, "%s frame buffer device on %s\n",
2064 		info->fix.id, video_card);
2065 
2066 	return 1;	/* success! */
2067 }
2068 
2069 #ifdef CONFIG_PCI
2070 /* register a card    ++ajoshi */
2071 static int aty128_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
2072 {
2073 	unsigned long fb_addr, reg_addr;
2074 	struct aty128fb_par *par;
2075 	struct fb_info *info;
2076 	int err;
2077 #ifndef __sparc__
2078 	void __iomem *bios = NULL;
2079 #endif
2080 
2081 	/* Enable device in PCI config */
2082 	if ((err = pci_enable_device(pdev))) {
2083 		printk(KERN_ERR "aty128fb: Cannot enable PCI device: %d\n",
2084 				err);
2085 		return -ENODEV;
2086 	}
2087 
2088 	fb_addr = pci_resource_start(pdev, 0);
2089 	if (!request_mem_region(fb_addr, pci_resource_len(pdev, 0),
2090 				"aty128fb FB")) {
2091 		printk(KERN_ERR "aty128fb: cannot reserve frame "
2092 				"buffer memory\n");
2093 		return -ENODEV;
2094 	}
2095 
2096 	reg_addr = pci_resource_start(pdev, 2);
2097 	if (!request_mem_region(reg_addr, pci_resource_len(pdev, 2),
2098 				"aty128fb MMIO")) {
2099 		printk(KERN_ERR "aty128fb: cannot reserve MMIO region\n");
2100 		goto err_free_fb;
2101 	}
2102 
2103 	/* We have the resources. Now virtualize them */
2104 	info = framebuffer_alloc(sizeof(struct aty128fb_par), &pdev->dev);
2105 	if (info == NULL) {
2106 		printk(KERN_ERR "aty128fb: can't alloc fb_info_aty128\n");
2107 		goto err_free_mmio;
2108 	}
2109 	par = info->par;
2110 
2111 	info->pseudo_palette = par->pseudo_palette;
2112 
2113 	/* Virtualize mmio region */
2114 	info->fix.mmio_start = reg_addr;
2115 	par->regbase = pci_ioremap_bar(pdev, 2);
2116 	if (!par->regbase)
2117 		goto err_free_info;
2118 
2119 	/* Grab memory size from the card */
2120 	// How does this relate to the resource length from the PCI hardware?
2121 	par->vram_size = aty_ld_le32(CNFG_MEMSIZE) & 0x03FFFFFF;
2122 
2123 	/* Virtualize the framebuffer */
2124 	info->screen_base = ioremap_wc(fb_addr, par->vram_size);
2125 	if (!info->screen_base)
2126 		goto err_unmap_out;
2127 
2128 	/* Set up info->fix */
2129 	info->fix = aty128fb_fix;
2130 	info->fix.smem_start = fb_addr;
2131 	info->fix.smem_len = par->vram_size;
2132 	info->fix.mmio_start = reg_addr;
2133 
2134 	/* If we can't test scratch registers, something is seriously wrong */
2135 	if (!register_test(par)) {
2136 		printk(KERN_ERR "aty128fb: Can't write to video register!\n");
2137 		goto err_out;
2138 	}
2139 
2140 #ifndef __sparc__
2141 	bios = aty128_map_ROM(par, pdev);
2142 #ifdef CONFIG_X86
2143 	if (bios == NULL)
2144 		bios = aty128_find_mem_vbios(par);
2145 #endif
2146 	if (bios == NULL)
2147 		printk(KERN_INFO "aty128fb: BIOS not located, guessing timings.\n");
2148 	else {
2149 		printk(KERN_INFO "aty128fb: Rage128 BIOS located\n");
2150 		aty128_get_pllinfo(par, bios);
2151 		pci_unmap_rom(pdev, bios);
2152 	}
2153 #endif /* __sparc__ */
2154 
2155 	aty128_timings(par);
2156 	pci_set_drvdata(pdev, info);
2157 
2158 	if (!aty128_init(pdev, ent))
2159 		goto err_out;
2160 
2161 	if (mtrr)
2162 		par->wc_cookie = arch_phys_wc_add(info->fix.smem_start,
2163 						  par->vram_size);
2164 	return 0;
2165 
2166 err_out:
2167 	iounmap(info->screen_base);
2168 err_unmap_out:
2169 	iounmap(par->regbase);
2170 err_free_info:
2171 	framebuffer_release(info);
2172 err_free_mmio:
2173 	release_mem_region(pci_resource_start(pdev, 2),
2174 			pci_resource_len(pdev, 2));
2175 err_free_fb:
2176 	release_mem_region(pci_resource_start(pdev, 0),
2177 			pci_resource_len(pdev, 0));
2178 	return -ENODEV;
2179 }
2180 
2181 static void aty128_remove(struct pci_dev *pdev)
2182 {
2183 	struct fb_info *info = pci_get_drvdata(pdev);
2184 	struct aty128fb_par *par;
2185 
2186 	if (!info)
2187 		return;
2188 
2189 	par = info->par;
2190 
2191 	unregister_framebuffer(info);
2192 
2193 #ifdef CONFIG_FB_ATY128_BACKLIGHT
2194 	aty128_bl_exit(info->bl_dev);
2195 #endif
2196 
2197 	arch_phys_wc_del(par->wc_cookie);
2198 	iounmap(par->regbase);
2199 	iounmap(info->screen_base);
2200 
2201 	release_mem_region(pci_resource_start(pdev, 0),
2202 			   pci_resource_len(pdev, 0));
2203 	release_mem_region(pci_resource_start(pdev, 2),
2204 			   pci_resource_len(pdev, 2));
2205 	framebuffer_release(info);
2206 }
2207 #endif /* CONFIG_PCI */
2208 
2209 
2210 
2211     /*
2212      *  Blank the display.
2213      */
2214 static int aty128fb_blank(int blank, struct fb_info *fb)
2215 {
2216 	struct aty128fb_par *par = fb->par;
2217 	u8 state;
2218 
2219 	if (par->lock_blank || par->asleep)
2220 		return 0;
2221 
2222 	switch (blank) {
2223 	case FB_BLANK_NORMAL:
2224 		state = 4;
2225 		break;
2226 	case FB_BLANK_VSYNC_SUSPEND:
2227 		state = 6;
2228 		break;
2229 	case FB_BLANK_HSYNC_SUSPEND:
2230 		state = 5;
2231 		break;
2232 	case FB_BLANK_POWERDOWN:
2233 		state = 7;
2234 		break;
2235 	case FB_BLANK_UNBLANK:
2236 	default:
2237 		state = 0;
2238 		break;
2239 	}
2240 	aty_st_8(CRTC_EXT_CNTL+1, state);
2241 
2242 	if (par->chip_gen == rage_M3) {
2243 		aty128_set_crt_enable(par, par->crt_on && !blank);
2244 		aty128_set_lcd_enable(par, par->lcd_on && !blank);
2245 	}
2246 
2247 	return 0;
2248 }
2249 
2250 /*
2251  *  Set a single color register. The values supplied are already
2252  *  rounded down to the hardware's capabilities (according to the
2253  *  entries in the var structure). Return != 0 for invalid regno.
2254  */
2255 static int aty128fb_setcolreg(u_int regno, u_int red, u_int green, u_int blue,
2256 			      u_int transp, struct fb_info *info)
2257 {
2258 	struct aty128fb_par *par = info->par;
2259 
2260 	if (regno > 255
2261 	    || (par->crtc.depth == 16 && regno > 63)
2262 	    || (par->crtc.depth == 15 && regno > 31))
2263 		return 1;
2264 
2265 	red >>= 8;
2266 	green >>= 8;
2267 	blue >>= 8;
2268 
2269 	if (regno < 16) {
2270 		int i;
2271 		u32 *pal = info->pseudo_palette;
2272 
2273 		switch (par->crtc.depth) {
2274 		case 15:
2275 			pal[regno] = (regno << 10) | (regno << 5) | regno;
2276 			break;
2277 		case 16:
2278 			pal[regno] = (regno << 11) | (regno << 6) | regno;
2279 			break;
2280 		case 24:
2281 			pal[regno] = (regno << 16) | (regno << 8) | regno;
2282 			break;
2283 		case 32:
2284 			i = (regno << 8) | regno;
2285 			pal[regno] = (i << 16) | i;
2286 			break;
2287 		}
2288 	}
2289 
2290 	if (par->crtc.depth == 16 && regno > 0) {
2291 		/*
2292 		 * With the 5-6-5 split of bits for RGB at 16 bits/pixel, we
2293 		 * have 32 slots for R and B values but 64 slots for G values.
2294 		 * Thus the R and B values go in one slot but the G value
2295 		 * goes in a different slot, and we have to avoid disturbing
2296 		 * the other fields in the slots we touch.
2297 		 */
2298 		par->green[regno] = green;
2299 		if (regno < 32) {
2300 			par->red[regno] = red;
2301 			par->blue[regno] = blue;
2302 			aty128_st_pal(regno * 8, red, par->green[regno*2],
2303 				      blue, par);
2304 		}
2305 		red = par->red[regno/2];
2306 		blue = par->blue[regno/2];
2307 		regno <<= 2;
2308 	} else if (par->crtc.bpp == 16)
2309 		regno <<= 3;
2310 	aty128_st_pal(regno, red, green, blue, par);
2311 
2312 	return 0;
2313 }
2314 
2315 #define ATY_MIRROR_LCD_ON	0x00000001
2316 #define ATY_MIRROR_CRT_ON	0x00000002
2317 
2318 /* out param: u32*	backlight value: 0 to 15 */
2319 #define FBIO_ATY128_GET_MIRROR	_IOR('@', 1, __u32)
2320 /* in param: u32*	backlight value: 0 to 15 */
2321 #define FBIO_ATY128_SET_MIRROR	_IOW('@', 2, __u32)
2322 
2323 static int aty128fb_ioctl(struct fb_info *info, u_int cmd, u_long arg)
2324 {
2325 	struct aty128fb_par *par = info->par;
2326 	u32 value;
2327 	int rc;
2328 
2329 	switch (cmd) {
2330 	case FBIO_ATY128_SET_MIRROR:
2331 		if (par->chip_gen != rage_M3)
2332 			return -EINVAL;
2333 		rc = get_user(value, (__u32 __user *)arg);
2334 		if (rc)
2335 			return rc;
2336 		par->lcd_on = (value & 0x01) != 0;
2337 		par->crt_on = (value & 0x02) != 0;
2338 		if (!par->crt_on && !par->lcd_on)
2339 			par->lcd_on = 1;
2340 		aty128_set_crt_enable(par, par->crt_on);
2341 		aty128_set_lcd_enable(par, par->lcd_on);
2342 		return 0;
2343 	case FBIO_ATY128_GET_MIRROR:
2344 		if (par->chip_gen != rage_M3)
2345 			return -EINVAL;
2346 		value = (par->crt_on << 1) | par->lcd_on;
2347 		return put_user(value, (__u32 __user *)arg);
2348 	}
2349 	return -EINVAL;
2350 }
2351 
2352 #if 0
2353     /*
2354      *  Accelerated functions
2355      */
2356 
2357 static inline void aty128_rectcopy(int srcx, int srcy, int dstx, int dsty,
2358 				   u_int width, u_int height,
2359 				   struct fb_info_aty128 *par)
2360 {
2361 	u32 save_dp_datatype, save_dp_cntl, dstval;
2362 
2363 	if (!width || !height)
2364 		return;
2365 
2366 	dstval = depth_to_dst(par->current_par.crtc.depth);
2367 	if (dstval == DST_24BPP) {
2368 		srcx *= 3;
2369 		dstx *= 3;
2370 		width *= 3;
2371 	} else if (dstval == -EINVAL) {
2372 		printk("aty128fb: invalid depth or RGBA\n");
2373 		return;
2374 	}
2375 
2376 	wait_for_fifo(2, par);
2377 	save_dp_datatype = aty_ld_le32(DP_DATATYPE);
2378 	save_dp_cntl     = aty_ld_le32(DP_CNTL);
2379 
2380 	wait_for_fifo(6, par);
2381 	aty_st_le32(SRC_Y_X, (srcy << 16) | srcx);
2382 	aty_st_le32(DP_MIX, ROP3_SRCCOPY | DP_SRC_RECT);
2383 	aty_st_le32(DP_CNTL, DST_X_LEFT_TO_RIGHT | DST_Y_TOP_TO_BOTTOM);
2384 	aty_st_le32(DP_DATATYPE, save_dp_datatype | dstval | SRC_DSTCOLOR);
2385 
2386 	aty_st_le32(DST_Y_X, (dsty << 16) | dstx);
2387 	aty_st_le32(DST_HEIGHT_WIDTH, (height << 16) | width);
2388 
2389 	par->blitter_may_be_busy = 1;
2390 
2391 	wait_for_fifo(2, par);
2392 	aty_st_le32(DP_DATATYPE, save_dp_datatype);
2393 	aty_st_le32(DP_CNTL, save_dp_cntl);
2394 }
2395 
2396 
2397     /*
2398      * Text mode accelerated functions
2399      */
2400 
2401 static void fbcon_aty128_bmove(struct display *p, int sy, int sx, int dy,
2402 			       int dx, int height, int width)
2403 {
2404 	sx     *= fontwidth(p);
2405 	sy     *= fontheight(p);
2406 	dx     *= fontwidth(p);
2407 	dy     *= fontheight(p);
2408 	width  *= fontwidth(p);
2409 	height *= fontheight(p);
2410 
2411 	aty128_rectcopy(sx, sy, dx, dy, width, height,
2412 			(struct fb_info_aty128 *)p->fb_info);
2413 }
2414 #endif /* 0 */
2415 
2416 static void aty128_set_suspend(struct aty128fb_par *par, int suspend)
2417 {
2418 	u32	pmgt;
2419 	struct pci_dev *pdev = par->pdev;
2420 
2421 	if (!par->pdev->pm_cap)
2422 		return;
2423 
2424 	/* Set the chip into the appropriate suspend mode (we use D2,
2425 	 * D3 would require a complete re-initialisation of the chip,
2426 	 * including PCI config registers, clocks, AGP configuration, ...)
2427 	 *
2428 	 * For resume, the core will have already brought us back to D0
2429 	 */
2430 	if (suspend) {
2431 		/* Make sure CRTC2 is reset. Remove that the day we decide to
2432 		 * actually use CRTC2 and replace it with real code for disabling
2433 		 * the CRTC2 output during sleep
2434 		 */
2435 		aty_st_le32(CRTC2_GEN_CNTL, aty_ld_le32(CRTC2_GEN_CNTL) &
2436 			~(CRTC2_EN));
2437 
2438 		/* Set the power management mode to be PCI based */
2439 		/* Use this magic value for now */
2440 		pmgt = 0x0c005407;
2441 		aty_st_pll(POWER_MANAGEMENT, pmgt);
2442 		(void)aty_ld_pll(POWER_MANAGEMENT);
2443 		aty_st_le32(BUS_CNTL1, 0x00000010);
2444 		aty_st_le32(MEM_POWER_MISC, 0x0c830000);
2445 		mdelay(100);
2446 
2447 		/* Switch PCI power management to D2 */
2448 		pci_set_power_state(pdev, PCI_D2);
2449 	}
2450 }
2451 
2452 static int aty128_pci_suspend(struct pci_dev *pdev, pm_message_t state)
2453 {
2454 	struct fb_info *info = pci_get_drvdata(pdev);
2455 	struct aty128fb_par *par = info->par;
2456 
2457 	/* Because we may change PCI D state ourselves, we need to
2458 	 * first save the config space content so the core can
2459 	 * restore it properly on resume.
2460 	 */
2461 	pci_save_state(pdev);
2462 
2463 	/* We don't do anything but D2, for now we return 0, but
2464 	 * we may want to change that. How do we know if the BIOS
2465 	 * can properly take care of D3 ? Also, with swsusp, we
2466 	 * know we'll be rebooted, ...
2467 	 */
2468 #ifndef CONFIG_PPC_PMAC
2469 	/* HACK ALERT ! Once I find a proper way to say to each driver
2470 	 * individually what will happen with it's PCI slot, I'll change
2471 	 * that. On laptops, the AGP slot is just unclocked, so D2 is
2472 	 * expected, while on desktops, the card is powered off
2473 	 */
2474 	return 0;
2475 #endif /* CONFIG_PPC_PMAC */
2476 
2477 	if (state.event == pdev->dev.power.power_state.event)
2478 		return 0;
2479 
2480 	printk(KERN_DEBUG "aty128fb: suspending...\n");
2481 
2482 	console_lock();
2483 
2484 	fb_set_suspend(info, 1);
2485 
2486 	/* Make sure engine is reset */
2487 	wait_for_idle(par);
2488 	aty128_reset_engine(par);
2489 	wait_for_idle(par);
2490 
2491 	/* Blank display and LCD */
2492 	aty128fb_blank(FB_BLANK_POWERDOWN, info);
2493 
2494 	/* Sleep */
2495 	par->asleep = 1;
2496 	par->lock_blank = 1;
2497 
2498 #ifdef CONFIG_PPC_PMAC
2499 	/* On powermac, we have hooks to properly suspend/resume AGP now,
2500 	 * use them here. We'll ultimately need some generic support here,
2501 	 * but the generic code isn't quite ready for that yet
2502 	 */
2503 	pmac_suspend_agp_for_card(pdev);
2504 #endif /* CONFIG_PPC_PMAC */
2505 
2506 	/* We need a way to make sure the fbdev layer will _not_ touch the
2507 	 * framebuffer before we put the chip to suspend state. On 2.4, I
2508 	 * used dummy fb ops, 2.5 need proper support for this at the
2509 	 * fbdev level
2510 	 */
2511 	if (state.event != PM_EVENT_ON)
2512 		aty128_set_suspend(par, 1);
2513 
2514 	console_unlock();
2515 
2516 	pdev->dev.power.power_state = state;
2517 
2518 	return 0;
2519 }
2520 
2521 static int aty128_do_resume(struct pci_dev *pdev)
2522 {
2523 	struct fb_info *info = pci_get_drvdata(pdev);
2524 	struct aty128fb_par *par = info->par;
2525 
2526 	if (pdev->dev.power.power_state.event == PM_EVENT_ON)
2527 		return 0;
2528 
2529 	/* PCI state will have been restored by the core, so
2530 	 * we should be in D0 now with our config space fully
2531 	 * restored
2532 	 */
2533 
2534 	/* Wakeup chip */
2535 	aty128_set_suspend(par, 0);
2536 	par->asleep = 0;
2537 
2538 	/* Restore display & engine */
2539 	aty128_reset_engine(par);
2540 	wait_for_idle(par);
2541 	aty128fb_set_par(info);
2542 	fb_pan_display(info, &info->var);
2543 	fb_set_cmap(&info->cmap, info);
2544 
2545 	/* Refresh */
2546 	fb_set_suspend(info, 0);
2547 
2548 	/* Unblank */
2549 	par->lock_blank = 0;
2550 	aty128fb_blank(0, info);
2551 
2552 #ifdef CONFIG_PPC_PMAC
2553 	/* On powermac, we have hooks to properly suspend/resume AGP now,
2554 	 * use them here. We'll ultimately need some generic support here,
2555 	 * but the generic code isn't quite ready for that yet
2556 	 */
2557 	pmac_resume_agp_for_card(pdev);
2558 #endif /* CONFIG_PPC_PMAC */
2559 
2560 	pdev->dev.power.power_state = PMSG_ON;
2561 
2562 	printk(KERN_DEBUG "aty128fb: resumed !\n");
2563 
2564 	return 0;
2565 }
2566 
2567 static int aty128_pci_resume(struct pci_dev *pdev)
2568 {
2569 	int rc;
2570 
2571 	console_lock();
2572 	rc = aty128_do_resume(pdev);
2573 	console_unlock();
2574 
2575 	return rc;
2576 }
2577 
2578 
2579 static int aty128fb_init(void)
2580 {
2581 #ifndef MODULE
2582 	char *option = NULL;
2583 
2584 	if (fb_get_options("aty128fb", &option))
2585 		return -ENODEV;
2586 	aty128fb_setup(option);
2587 #endif
2588 
2589 	return pci_register_driver(&aty128fb_driver);
2590 }
2591 
2592 static void __exit aty128fb_exit(void)
2593 {
2594 	pci_unregister_driver(&aty128fb_driver);
2595 }
2596 
2597 module_init(aty128fb_init);
2598 
2599 module_exit(aty128fb_exit);
2600 
2601 MODULE_AUTHOR("(c)1999-2003 Brad Douglas <brad@neruo.com>");
2602 MODULE_DESCRIPTION("FBDev driver for ATI Rage128 / Pro cards");
2603 MODULE_LICENSE("GPL");
2604 module_param(mode_option, charp, 0);
2605 MODULE_PARM_DESC(mode_option, "Specify resolution as \"<xres>x<yres>[-<bpp>][@<refresh>]\" ");
2606 module_param_named(nomtrr, mtrr, invbool, 0);
2607 MODULE_PARM_DESC(nomtrr, "bool: Disable MTRR support (0 or 1=disabled) (default=0)");
2608