1 /* Copyright (C) 2009 Red Hat, Inc. 2 * Copyright (C) 2006 Rusty Russell IBM Corporation 3 * 4 * Author: Michael S. Tsirkin <mst@redhat.com> 5 * 6 * Inspiration, some code, and most witty comments come from 7 * Documentation/virtual/lguest/lguest.c, by Rusty Russell 8 * 9 * This work is licensed under the terms of the GNU GPL, version 2. 10 * 11 * Generic code for virtio server in host kernel. 12 */ 13 14 #include <linux/eventfd.h> 15 #include <linux/vhost.h> 16 #include <linux/uio.h> 17 #include <linux/mm.h> 18 #include <linux/mmu_context.h> 19 #include <linux/miscdevice.h> 20 #include <linux/mutex.h> 21 #include <linux/poll.h> 22 #include <linux/file.h> 23 #include <linux/highmem.h> 24 #include <linux/slab.h> 25 #include <linux/vmalloc.h> 26 #include <linux/kthread.h> 27 #include <linux/cgroup.h> 28 #include <linux/module.h> 29 #include <linux/sort.h> 30 #include <linux/sched/mm.h> 31 #include <linux/sched/signal.h> 32 #include <linux/interval_tree_generic.h> 33 34 #include "vhost.h" 35 36 static ushort max_mem_regions = 64; 37 module_param(max_mem_regions, ushort, 0444); 38 MODULE_PARM_DESC(max_mem_regions, 39 "Maximum number of memory regions in memory map. (default: 64)"); 40 static int max_iotlb_entries = 2048; 41 module_param(max_iotlb_entries, int, 0444); 42 MODULE_PARM_DESC(max_iotlb_entries, 43 "Maximum number of iotlb entries. (default: 2048)"); 44 45 enum { 46 VHOST_MEMORY_F_LOG = 0x1, 47 }; 48 49 #define vhost_used_event(vq) ((__virtio16 __user *)&vq->avail->ring[vq->num]) 50 #define vhost_avail_event(vq) ((__virtio16 __user *)&vq->used->ring[vq->num]) 51 52 INTERVAL_TREE_DEFINE(struct vhost_umem_node, 53 rb, __u64, __subtree_last, 54 START, LAST, static inline, vhost_umem_interval_tree); 55 56 #ifdef CONFIG_VHOST_CROSS_ENDIAN_LEGACY 57 static void vhost_disable_cross_endian(struct vhost_virtqueue *vq) 58 { 59 vq->user_be = !virtio_legacy_is_little_endian(); 60 } 61 62 static void vhost_enable_cross_endian_big(struct vhost_virtqueue *vq) 63 { 64 vq->user_be = true; 65 } 66 67 static void vhost_enable_cross_endian_little(struct vhost_virtqueue *vq) 68 { 69 vq->user_be = false; 70 } 71 72 static long vhost_set_vring_endian(struct vhost_virtqueue *vq, int __user *argp) 73 { 74 struct vhost_vring_state s; 75 76 if (vq->private_data) 77 return -EBUSY; 78 79 if (copy_from_user(&s, argp, sizeof(s))) 80 return -EFAULT; 81 82 if (s.num != VHOST_VRING_LITTLE_ENDIAN && 83 s.num != VHOST_VRING_BIG_ENDIAN) 84 return -EINVAL; 85 86 if (s.num == VHOST_VRING_BIG_ENDIAN) 87 vhost_enable_cross_endian_big(vq); 88 else 89 vhost_enable_cross_endian_little(vq); 90 91 return 0; 92 } 93 94 static long vhost_get_vring_endian(struct vhost_virtqueue *vq, u32 idx, 95 int __user *argp) 96 { 97 struct vhost_vring_state s = { 98 .index = idx, 99 .num = vq->user_be 100 }; 101 102 if (copy_to_user(argp, &s, sizeof(s))) 103 return -EFAULT; 104 105 return 0; 106 } 107 108 static void vhost_init_is_le(struct vhost_virtqueue *vq) 109 { 110 /* Note for legacy virtio: user_be is initialized at reset time 111 * according to the host endianness. If userspace does not set an 112 * explicit endianness, the default behavior is native endian, as 113 * expected by legacy virtio. 114 */ 115 vq->is_le = vhost_has_feature(vq, VIRTIO_F_VERSION_1) || !vq->user_be; 116 } 117 #else 118 static void vhost_disable_cross_endian(struct vhost_virtqueue *vq) 119 { 120 } 121 122 static long vhost_set_vring_endian(struct vhost_virtqueue *vq, int __user *argp) 123 { 124 return -ENOIOCTLCMD; 125 } 126 127 static long vhost_get_vring_endian(struct vhost_virtqueue *vq, u32 idx, 128 int __user *argp) 129 { 130 return -ENOIOCTLCMD; 131 } 132 133 static void vhost_init_is_le(struct vhost_virtqueue *vq) 134 { 135 vq->is_le = vhost_has_feature(vq, VIRTIO_F_VERSION_1) 136 || virtio_legacy_is_little_endian(); 137 } 138 #endif /* CONFIG_VHOST_CROSS_ENDIAN_LEGACY */ 139 140 static void vhost_reset_is_le(struct vhost_virtqueue *vq) 141 { 142 vhost_init_is_le(vq); 143 } 144 145 struct vhost_flush_struct { 146 struct vhost_work work; 147 struct completion wait_event; 148 }; 149 150 static void vhost_flush_work(struct vhost_work *work) 151 { 152 struct vhost_flush_struct *s; 153 154 s = container_of(work, struct vhost_flush_struct, work); 155 complete(&s->wait_event); 156 } 157 158 static void vhost_poll_func(struct file *file, wait_queue_head_t *wqh, 159 poll_table *pt) 160 { 161 struct vhost_poll *poll; 162 163 poll = container_of(pt, struct vhost_poll, table); 164 poll->wqh = wqh; 165 add_wait_queue(wqh, &poll->wait); 166 } 167 168 static int vhost_poll_wakeup(wait_queue_entry_t *wait, unsigned mode, int sync, 169 void *key) 170 { 171 struct vhost_poll *poll = container_of(wait, struct vhost_poll, wait); 172 173 if (!(key_to_poll(key) & poll->mask)) 174 return 0; 175 176 vhost_poll_queue(poll); 177 return 0; 178 } 179 180 void vhost_work_init(struct vhost_work *work, vhost_work_fn_t fn) 181 { 182 clear_bit(VHOST_WORK_QUEUED, &work->flags); 183 work->fn = fn; 184 } 185 EXPORT_SYMBOL_GPL(vhost_work_init); 186 187 /* Init poll structure */ 188 void vhost_poll_init(struct vhost_poll *poll, vhost_work_fn_t fn, 189 __poll_t mask, struct vhost_dev *dev) 190 { 191 init_waitqueue_func_entry(&poll->wait, vhost_poll_wakeup); 192 init_poll_funcptr(&poll->table, vhost_poll_func); 193 poll->mask = mask; 194 poll->dev = dev; 195 poll->wqh = NULL; 196 197 vhost_work_init(&poll->work, fn); 198 } 199 EXPORT_SYMBOL_GPL(vhost_poll_init); 200 201 /* Start polling a file. We add ourselves to file's wait queue. The caller must 202 * keep a reference to a file until after vhost_poll_stop is called. */ 203 int vhost_poll_start(struct vhost_poll *poll, struct file *file) 204 { 205 __poll_t mask; 206 int ret = 0; 207 208 if (poll->wqh) 209 return 0; 210 211 mask = vfs_poll(file, &poll->table); 212 if (mask) 213 vhost_poll_wakeup(&poll->wait, 0, 0, poll_to_key(mask)); 214 if (mask & EPOLLERR) { 215 vhost_poll_stop(poll); 216 ret = -EINVAL; 217 } 218 219 return ret; 220 } 221 EXPORT_SYMBOL_GPL(vhost_poll_start); 222 223 /* Stop polling a file. After this function returns, it becomes safe to drop the 224 * file reference. You must also flush afterwards. */ 225 void vhost_poll_stop(struct vhost_poll *poll) 226 { 227 if (poll->wqh) { 228 remove_wait_queue(poll->wqh, &poll->wait); 229 poll->wqh = NULL; 230 } 231 } 232 EXPORT_SYMBOL_GPL(vhost_poll_stop); 233 234 void vhost_work_flush(struct vhost_dev *dev, struct vhost_work *work) 235 { 236 struct vhost_flush_struct flush; 237 238 if (dev->worker) { 239 init_completion(&flush.wait_event); 240 vhost_work_init(&flush.work, vhost_flush_work); 241 242 vhost_work_queue(dev, &flush.work); 243 wait_for_completion(&flush.wait_event); 244 } 245 } 246 EXPORT_SYMBOL_GPL(vhost_work_flush); 247 248 /* Flush any work that has been scheduled. When calling this, don't hold any 249 * locks that are also used by the callback. */ 250 void vhost_poll_flush(struct vhost_poll *poll) 251 { 252 vhost_work_flush(poll->dev, &poll->work); 253 } 254 EXPORT_SYMBOL_GPL(vhost_poll_flush); 255 256 void vhost_work_queue(struct vhost_dev *dev, struct vhost_work *work) 257 { 258 if (!dev->worker) 259 return; 260 261 if (!test_and_set_bit(VHOST_WORK_QUEUED, &work->flags)) { 262 /* We can only add the work to the list after we're 263 * sure it was not in the list. 264 * test_and_set_bit() implies a memory barrier. 265 */ 266 llist_add(&work->node, &dev->work_list); 267 wake_up_process(dev->worker); 268 } 269 } 270 EXPORT_SYMBOL_GPL(vhost_work_queue); 271 272 /* A lockless hint for busy polling code to exit the loop */ 273 bool vhost_has_work(struct vhost_dev *dev) 274 { 275 return !llist_empty(&dev->work_list); 276 } 277 EXPORT_SYMBOL_GPL(vhost_has_work); 278 279 void vhost_poll_queue(struct vhost_poll *poll) 280 { 281 vhost_work_queue(poll->dev, &poll->work); 282 } 283 EXPORT_SYMBOL_GPL(vhost_poll_queue); 284 285 static void __vhost_vq_meta_reset(struct vhost_virtqueue *vq) 286 { 287 int j; 288 289 for (j = 0; j < VHOST_NUM_ADDRS; j++) 290 vq->meta_iotlb[j] = NULL; 291 } 292 293 static void vhost_vq_meta_reset(struct vhost_dev *d) 294 { 295 int i; 296 297 for (i = 0; i < d->nvqs; ++i) 298 __vhost_vq_meta_reset(d->vqs[i]); 299 } 300 301 static void vhost_vq_reset(struct vhost_dev *dev, 302 struct vhost_virtqueue *vq) 303 { 304 vq->num = 1; 305 vq->desc = NULL; 306 vq->avail = NULL; 307 vq->used = NULL; 308 vq->last_avail_idx = 0; 309 vq->avail_idx = 0; 310 vq->last_used_idx = 0; 311 vq->signalled_used = 0; 312 vq->signalled_used_valid = false; 313 vq->used_flags = 0; 314 vq->log_used = false; 315 vq->log_addr = -1ull; 316 vq->private_data = NULL; 317 vq->acked_features = 0; 318 vq->log_base = NULL; 319 vq->error_ctx = NULL; 320 vq->kick = NULL; 321 vq->call_ctx = NULL; 322 vq->log_ctx = NULL; 323 vhost_reset_is_le(vq); 324 vhost_disable_cross_endian(vq); 325 vq->busyloop_timeout = 0; 326 vq->umem = NULL; 327 vq->iotlb = NULL; 328 __vhost_vq_meta_reset(vq); 329 } 330 331 static int vhost_worker(void *data) 332 { 333 struct vhost_dev *dev = data; 334 struct vhost_work *work, *work_next; 335 struct llist_node *node; 336 mm_segment_t oldfs = get_fs(); 337 338 set_fs(USER_DS); 339 use_mm(dev->mm); 340 341 for (;;) { 342 /* mb paired w/ kthread_stop */ 343 set_current_state(TASK_INTERRUPTIBLE); 344 345 if (kthread_should_stop()) { 346 __set_current_state(TASK_RUNNING); 347 break; 348 } 349 350 node = llist_del_all(&dev->work_list); 351 if (!node) 352 schedule(); 353 354 node = llist_reverse_order(node); 355 /* make sure flag is seen after deletion */ 356 smp_wmb(); 357 llist_for_each_entry_safe(work, work_next, node, node) { 358 clear_bit(VHOST_WORK_QUEUED, &work->flags); 359 __set_current_state(TASK_RUNNING); 360 work->fn(work); 361 if (need_resched()) 362 schedule(); 363 } 364 } 365 unuse_mm(dev->mm); 366 set_fs(oldfs); 367 return 0; 368 } 369 370 static void vhost_vq_free_iovecs(struct vhost_virtqueue *vq) 371 { 372 kfree(vq->indirect); 373 vq->indirect = NULL; 374 kfree(vq->log); 375 vq->log = NULL; 376 kfree(vq->heads); 377 vq->heads = NULL; 378 } 379 380 /* Helper to allocate iovec buffers for all vqs. */ 381 static long vhost_dev_alloc_iovecs(struct vhost_dev *dev) 382 { 383 struct vhost_virtqueue *vq; 384 int i; 385 386 for (i = 0; i < dev->nvqs; ++i) { 387 vq = dev->vqs[i]; 388 vq->indirect = kmalloc_array(UIO_MAXIOV, 389 sizeof(*vq->indirect), 390 GFP_KERNEL); 391 vq->log = kmalloc_array(UIO_MAXIOV, sizeof(*vq->log), 392 GFP_KERNEL); 393 vq->heads = kmalloc_array(UIO_MAXIOV, sizeof(*vq->heads), 394 GFP_KERNEL); 395 if (!vq->indirect || !vq->log || !vq->heads) 396 goto err_nomem; 397 } 398 return 0; 399 400 err_nomem: 401 for (; i >= 0; --i) 402 vhost_vq_free_iovecs(dev->vqs[i]); 403 return -ENOMEM; 404 } 405 406 static void vhost_dev_free_iovecs(struct vhost_dev *dev) 407 { 408 int i; 409 410 for (i = 0; i < dev->nvqs; ++i) 411 vhost_vq_free_iovecs(dev->vqs[i]); 412 } 413 414 void vhost_dev_init(struct vhost_dev *dev, 415 struct vhost_virtqueue **vqs, int nvqs) 416 { 417 struct vhost_virtqueue *vq; 418 int i; 419 420 dev->vqs = vqs; 421 dev->nvqs = nvqs; 422 mutex_init(&dev->mutex); 423 dev->log_ctx = NULL; 424 dev->umem = NULL; 425 dev->iotlb = NULL; 426 dev->mm = NULL; 427 dev->worker = NULL; 428 init_llist_head(&dev->work_list); 429 init_waitqueue_head(&dev->wait); 430 INIT_LIST_HEAD(&dev->read_list); 431 INIT_LIST_HEAD(&dev->pending_list); 432 spin_lock_init(&dev->iotlb_lock); 433 434 435 for (i = 0; i < dev->nvqs; ++i) { 436 vq = dev->vqs[i]; 437 vq->log = NULL; 438 vq->indirect = NULL; 439 vq->heads = NULL; 440 vq->dev = dev; 441 mutex_init(&vq->mutex); 442 vhost_vq_reset(dev, vq); 443 if (vq->handle_kick) 444 vhost_poll_init(&vq->poll, vq->handle_kick, 445 EPOLLIN, dev); 446 } 447 } 448 EXPORT_SYMBOL_GPL(vhost_dev_init); 449 450 /* Caller should have device mutex */ 451 long vhost_dev_check_owner(struct vhost_dev *dev) 452 { 453 /* Are you the owner? If not, I don't think you mean to do that */ 454 return dev->mm == current->mm ? 0 : -EPERM; 455 } 456 EXPORT_SYMBOL_GPL(vhost_dev_check_owner); 457 458 struct vhost_attach_cgroups_struct { 459 struct vhost_work work; 460 struct task_struct *owner; 461 int ret; 462 }; 463 464 static void vhost_attach_cgroups_work(struct vhost_work *work) 465 { 466 struct vhost_attach_cgroups_struct *s; 467 468 s = container_of(work, struct vhost_attach_cgroups_struct, work); 469 s->ret = cgroup_attach_task_all(s->owner, current); 470 } 471 472 static int vhost_attach_cgroups(struct vhost_dev *dev) 473 { 474 struct vhost_attach_cgroups_struct attach; 475 476 attach.owner = current; 477 vhost_work_init(&attach.work, vhost_attach_cgroups_work); 478 vhost_work_queue(dev, &attach.work); 479 vhost_work_flush(dev, &attach.work); 480 return attach.ret; 481 } 482 483 /* Caller should have device mutex */ 484 bool vhost_dev_has_owner(struct vhost_dev *dev) 485 { 486 return dev->mm; 487 } 488 EXPORT_SYMBOL_GPL(vhost_dev_has_owner); 489 490 /* Caller should have device mutex */ 491 long vhost_dev_set_owner(struct vhost_dev *dev) 492 { 493 struct task_struct *worker; 494 int err; 495 496 /* Is there an owner already? */ 497 if (vhost_dev_has_owner(dev)) { 498 err = -EBUSY; 499 goto err_mm; 500 } 501 502 /* No owner, become one */ 503 dev->mm = get_task_mm(current); 504 worker = kthread_create(vhost_worker, dev, "vhost-%d", current->pid); 505 if (IS_ERR(worker)) { 506 err = PTR_ERR(worker); 507 goto err_worker; 508 } 509 510 dev->worker = worker; 511 wake_up_process(worker); /* avoid contributing to loadavg */ 512 513 err = vhost_attach_cgroups(dev); 514 if (err) 515 goto err_cgroup; 516 517 err = vhost_dev_alloc_iovecs(dev); 518 if (err) 519 goto err_cgroup; 520 521 return 0; 522 err_cgroup: 523 kthread_stop(worker); 524 dev->worker = NULL; 525 err_worker: 526 if (dev->mm) 527 mmput(dev->mm); 528 dev->mm = NULL; 529 err_mm: 530 return err; 531 } 532 EXPORT_SYMBOL_GPL(vhost_dev_set_owner); 533 534 struct vhost_umem *vhost_dev_reset_owner_prepare(void) 535 { 536 return kvzalloc(sizeof(struct vhost_umem), GFP_KERNEL); 537 } 538 EXPORT_SYMBOL_GPL(vhost_dev_reset_owner_prepare); 539 540 /* Caller should have device mutex */ 541 void vhost_dev_reset_owner(struct vhost_dev *dev, struct vhost_umem *umem) 542 { 543 int i; 544 545 vhost_dev_cleanup(dev); 546 547 /* Restore memory to default empty mapping. */ 548 INIT_LIST_HEAD(&umem->umem_list); 549 dev->umem = umem; 550 /* We don't need VQ locks below since vhost_dev_cleanup makes sure 551 * VQs aren't running. 552 */ 553 for (i = 0; i < dev->nvqs; ++i) 554 dev->vqs[i]->umem = umem; 555 } 556 EXPORT_SYMBOL_GPL(vhost_dev_reset_owner); 557 558 void vhost_dev_stop(struct vhost_dev *dev) 559 { 560 int i; 561 562 for (i = 0; i < dev->nvqs; ++i) { 563 if (dev->vqs[i]->kick && dev->vqs[i]->handle_kick) { 564 vhost_poll_stop(&dev->vqs[i]->poll); 565 vhost_poll_flush(&dev->vqs[i]->poll); 566 } 567 } 568 } 569 EXPORT_SYMBOL_GPL(vhost_dev_stop); 570 571 static void vhost_umem_free(struct vhost_umem *umem, 572 struct vhost_umem_node *node) 573 { 574 vhost_umem_interval_tree_remove(node, &umem->umem_tree); 575 list_del(&node->link); 576 kfree(node); 577 umem->numem--; 578 } 579 580 static void vhost_umem_clean(struct vhost_umem *umem) 581 { 582 struct vhost_umem_node *node, *tmp; 583 584 if (!umem) 585 return; 586 587 list_for_each_entry_safe(node, tmp, &umem->umem_list, link) 588 vhost_umem_free(umem, node); 589 590 kvfree(umem); 591 } 592 593 static void vhost_clear_msg(struct vhost_dev *dev) 594 { 595 struct vhost_msg_node *node, *n; 596 597 spin_lock(&dev->iotlb_lock); 598 599 list_for_each_entry_safe(node, n, &dev->read_list, node) { 600 list_del(&node->node); 601 kfree(node); 602 } 603 604 list_for_each_entry_safe(node, n, &dev->pending_list, node) { 605 list_del(&node->node); 606 kfree(node); 607 } 608 609 spin_unlock(&dev->iotlb_lock); 610 } 611 612 void vhost_dev_cleanup(struct vhost_dev *dev) 613 { 614 int i; 615 616 for (i = 0; i < dev->nvqs; ++i) { 617 if (dev->vqs[i]->error_ctx) 618 eventfd_ctx_put(dev->vqs[i]->error_ctx); 619 if (dev->vqs[i]->kick) 620 fput(dev->vqs[i]->kick); 621 if (dev->vqs[i]->call_ctx) 622 eventfd_ctx_put(dev->vqs[i]->call_ctx); 623 vhost_vq_reset(dev, dev->vqs[i]); 624 } 625 vhost_dev_free_iovecs(dev); 626 if (dev->log_ctx) 627 eventfd_ctx_put(dev->log_ctx); 628 dev->log_ctx = NULL; 629 /* No one will access memory at this point */ 630 vhost_umem_clean(dev->umem); 631 dev->umem = NULL; 632 vhost_umem_clean(dev->iotlb); 633 dev->iotlb = NULL; 634 vhost_clear_msg(dev); 635 wake_up_interruptible_poll(&dev->wait, EPOLLIN | EPOLLRDNORM); 636 WARN_ON(!llist_empty(&dev->work_list)); 637 if (dev->worker) { 638 kthread_stop(dev->worker); 639 dev->worker = NULL; 640 } 641 if (dev->mm) 642 mmput(dev->mm); 643 dev->mm = NULL; 644 } 645 EXPORT_SYMBOL_GPL(vhost_dev_cleanup); 646 647 static bool log_access_ok(void __user *log_base, u64 addr, unsigned long sz) 648 { 649 u64 a = addr / VHOST_PAGE_SIZE / 8; 650 651 /* Make sure 64 bit math will not overflow. */ 652 if (a > ULONG_MAX - (unsigned long)log_base || 653 a + (unsigned long)log_base > ULONG_MAX) 654 return false; 655 656 return access_ok(VERIFY_WRITE, log_base + a, 657 (sz + VHOST_PAGE_SIZE * 8 - 1) / VHOST_PAGE_SIZE / 8); 658 } 659 660 static bool vhost_overflow(u64 uaddr, u64 size) 661 { 662 /* Make sure 64 bit math will not overflow. */ 663 return uaddr > ULONG_MAX || size > ULONG_MAX || uaddr > ULONG_MAX - size; 664 } 665 666 /* Caller should have vq mutex and device mutex. */ 667 static bool vq_memory_access_ok(void __user *log_base, struct vhost_umem *umem, 668 int log_all) 669 { 670 struct vhost_umem_node *node; 671 672 if (!umem) 673 return false; 674 675 list_for_each_entry(node, &umem->umem_list, link) { 676 unsigned long a = node->userspace_addr; 677 678 if (vhost_overflow(node->userspace_addr, node->size)) 679 return false; 680 681 682 if (!access_ok(VERIFY_WRITE, (void __user *)a, 683 node->size)) 684 return false; 685 else if (log_all && !log_access_ok(log_base, 686 node->start, 687 node->size)) 688 return false; 689 } 690 return true; 691 } 692 693 static inline void __user *vhost_vq_meta_fetch(struct vhost_virtqueue *vq, 694 u64 addr, unsigned int size, 695 int type) 696 { 697 const struct vhost_umem_node *node = vq->meta_iotlb[type]; 698 699 if (!node) 700 return NULL; 701 702 return (void *)(uintptr_t)(node->userspace_addr + addr - node->start); 703 } 704 705 /* Can we switch to this memory table? */ 706 /* Caller should have device mutex but not vq mutex */ 707 static bool memory_access_ok(struct vhost_dev *d, struct vhost_umem *umem, 708 int log_all) 709 { 710 int i; 711 712 for (i = 0; i < d->nvqs; ++i) { 713 bool ok; 714 bool log; 715 716 mutex_lock(&d->vqs[i]->mutex); 717 log = log_all || vhost_has_feature(d->vqs[i], VHOST_F_LOG_ALL); 718 /* If ring is inactive, will check when it's enabled. */ 719 if (d->vqs[i]->private_data) 720 ok = vq_memory_access_ok(d->vqs[i]->log_base, 721 umem, log); 722 else 723 ok = true; 724 mutex_unlock(&d->vqs[i]->mutex); 725 if (!ok) 726 return false; 727 } 728 return true; 729 } 730 731 static int translate_desc(struct vhost_virtqueue *vq, u64 addr, u32 len, 732 struct iovec iov[], int iov_size, int access); 733 734 static int vhost_copy_to_user(struct vhost_virtqueue *vq, void __user *to, 735 const void *from, unsigned size) 736 { 737 int ret; 738 739 if (!vq->iotlb) 740 return __copy_to_user(to, from, size); 741 else { 742 /* This function should be called after iotlb 743 * prefetch, which means we're sure that all vq 744 * could be access through iotlb. So -EAGAIN should 745 * not happen in this case. 746 */ 747 struct iov_iter t; 748 void __user *uaddr = vhost_vq_meta_fetch(vq, 749 (u64)(uintptr_t)to, size, 750 VHOST_ADDR_USED); 751 752 if (uaddr) 753 return __copy_to_user(uaddr, from, size); 754 755 ret = translate_desc(vq, (u64)(uintptr_t)to, size, vq->iotlb_iov, 756 ARRAY_SIZE(vq->iotlb_iov), 757 VHOST_ACCESS_WO); 758 if (ret < 0) 759 goto out; 760 iov_iter_init(&t, WRITE, vq->iotlb_iov, ret, size); 761 ret = copy_to_iter(from, size, &t); 762 if (ret == size) 763 ret = 0; 764 } 765 out: 766 return ret; 767 } 768 769 static int vhost_copy_from_user(struct vhost_virtqueue *vq, void *to, 770 void __user *from, unsigned size) 771 { 772 int ret; 773 774 if (!vq->iotlb) 775 return __copy_from_user(to, from, size); 776 else { 777 /* This function should be called after iotlb 778 * prefetch, which means we're sure that vq 779 * could be access through iotlb. So -EAGAIN should 780 * not happen in this case. 781 */ 782 void __user *uaddr = vhost_vq_meta_fetch(vq, 783 (u64)(uintptr_t)from, size, 784 VHOST_ADDR_DESC); 785 struct iov_iter f; 786 787 if (uaddr) 788 return __copy_from_user(to, uaddr, size); 789 790 ret = translate_desc(vq, (u64)(uintptr_t)from, size, vq->iotlb_iov, 791 ARRAY_SIZE(vq->iotlb_iov), 792 VHOST_ACCESS_RO); 793 if (ret < 0) { 794 vq_err(vq, "IOTLB translation failure: uaddr " 795 "%p size 0x%llx\n", from, 796 (unsigned long long) size); 797 goto out; 798 } 799 iov_iter_init(&f, READ, vq->iotlb_iov, ret, size); 800 ret = copy_from_iter(to, size, &f); 801 if (ret == size) 802 ret = 0; 803 } 804 805 out: 806 return ret; 807 } 808 809 static void __user *__vhost_get_user_slow(struct vhost_virtqueue *vq, 810 void __user *addr, unsigned int size, 811 int type) 812 { 813 int ret; 814 815 ret = translate_desc(vq, (u64)(uintptr_t)addr, size, vq->iotlb_iov, 816 ARRAY_SIZE(vq->iotlb_iov), 817 VHOST_ACCESS_RO); 818 if (ret < 0) { 819 vq_err(vq, "IOTLB translation failure: uaddr " 820 "%p size 0x%llx\n", addr, 821 (unsigned long long) size); 822 return NULL; 823 } 824 825 if (ret != 1 || vq->iotlb_iov[0].iov_len != size) { 826 vq_err(vq, "Non atomic userspace memory access: uaddr " 827 "%p size 0x%llx\n", addr, 828 (unsigned long long) size); 829 return NULL; 830 } 831 832 return vq->iotlb_iov[0].iov_base; 833 } 834 835 /* This function should be called after iotlb 836 * prefetch, which means we're sure that vq 837 * could be access through iotlb. So -EAGAIN should 838 * not happen in this case. 839 */ 840 static inline void __user *__vhost_get_user(struct vhost_virtqueue *vq, 841 void *addr, unsigned int size, 842 int type) 843 { 844 void __user *uaddr = vhost_vq_meta_fetch(vq, 845 (u64)(uintptr_t)addr, size, type); 846 if (uaddr) 847 return uaddr; 848 849 return __vhost_get_user_slow(vq, addr, size, type); 850 } 851 852 #define vhost_put_user(vq, x, ptr) \ 853 ({ \ 854 int ret = -EFAULT; \ 855 if (!vq->iotlb) { \ 856 ret = __put_user(x, ptr); \ 857 } else { \ 858 __typeof__(ptr) to = \ 859 (__typeof__(ptr)) __vhost_get_user(vq, ptr, \ 860 sizeof(*ptr), VHOST_ADDR_USED); \ 861 if (to != NULL) \ 862 ret = __put_user(x, to); \ 863 else \ 864 ret = -EFAULT; \ 865 } \ 866 ret; \ 867 }) 868 869 #define vhost_get_user(vq, x, ptr, type) \ 870 ({ \ 871 int ret; \ 872 if (!vq->iotlb) { \ 873 ret = __get_user(x, ptr); \ 874 } else { \ 875 __typeof__(ptr) from = \ 876 (__typeof__(ptr)) __vhost_get_user(vq, ptr, \ 877 sizeof(*ptr), \ 878 type); \ 879 if (from != NULL) \ 880 ret = __get_user(x, from); \ 881 else \ 882 ret = -EFAULT; \ 883 } \ 884 ret; \ 885 }) 886 887 #define vhost_get_avail(vq, x, ptr) \ 888 vhost_get_user(vq, x, ptr, VHOST_ADDR_AVAIL) 889 890 #define vhost_get_used(vq, x, ptr) \ 891 vhost_get_user(vq, x, ptr, VHOST_ADDR_USED) 892 893 static void vhost_dev_lock_vqs(struct vhost_dev *d) 894 { 895 int i = 0; 896 for (i = 0; i < d->nvqs; ++i) 897 mutex_lock_nested(&d->vqs[i]->mutex, i); 898 } 899 900 static void vhost_dev_unlock_vqs(struct vhost_dev *d) 901 { 902 int i = 0; 903 for (i = 0; i < d->nvqs; ++i) 904 mutex_unlock(&d->vqs[i]->mutex); 905 } 906 907 static int vhost_new_umem_range(struct vhost_umem *umem, 908 u64 start, u64 size, u64 end, 909 u64 userspace_addr, int perm) 910 { 911 struct vhost_umem_node *tmp, *node = kmalloc(sizeof(*node), GFP_ATOMIC); 912 913 if (!node) 914 return -ENOMEM; 915 916 if (umem->numem == max_iotlb_entries) { 917 tmp = list_first_entry(&umem->umem_list, typeof(*tmp), link); 918 vhost_umem_free(umem, tmp); 919 } 920 921 node->start = start; 922 node->size = size; 923 node->last = end; 924 node->userspace_addr = userspace_addr; 925 node->perm = perm; 926 INIT_LIST_HEAD(&node->link); 927 list_add_tail(&node->link, &umem->umem_list); 928 vhost_umem_interval_tree_insert(node, &umem->umem_tree); 929 umem->numem++; 930 931 return 0; 932 } 933 934 static void vhost_del_umem_range(struct vhost_umem *umem, 935 u64 start, u64 end) 936 { 937 struct vhost_umem_node *node; 938 939 while ((node = vhost_umem_interval_tree_iter_first(&umem->umem_tree, 940 start, end))) 941 vhost_umem_free(umem, node); 942 } 943 944 static void vhost_iotlb_notify_vq(struct vhost_dev *d, 945 struct vhost_iotlb_msg *msg) 946 { 947 struct vhost_msg_node *node, *n; 948 949 spin_lock(&d->iotlb_lock); 950 951 list_for_each_entry_safe(node, n, &d->pending_list, node) { 952 struct vhost_iotlb_msg *vq_msg = &node->msg.iotlb; 953 if (msg->iova <= vq_msg->iova && 954 msg->iova + msg->size - 1 > vq_msg->iova && 955 vq_msg->type == VHOST_IOTLB_MISS) { 956 vhost_poll_queue(&node->vq->poll); 957 list_del(&node->node); 958 kfree(node); 959 } 960 } 961 962 spin_unlock(&d->iotlb_lock); 963 } 964 965 static bool umem_access_ok(u64 uaddr, u64 size, int access) 966 { 967 unsigned long a = uaddr; 968 969 /* Make sure 64 bit math will not overflow. */ 970 if (vhost_overflow(uaddr, size)) 971 return false; 972 973 if ((access & VHOST_ACCESS_RO) && 974 !access_ok(VERIFY_READ, (void __user *)a, size)) 975 return false; 976 if ((access & VHOST_ACCESS_WO) && 977 !access_ok(VERIFY_WRITE, (void __user *)a, size)) 978 return false; 979 return true; 980 } 981 982 static int vhost_process_iotlb_msg(struct vhost_dev *dev, 983 struct vhost_iotlb_msg *msg) 984 { 985 int ret = 0; 986 987 mutex_lock(&dev->mutex); 988 vhost_dev_lock_vqs(dev); 989 switch (msg->type) { 990 case VHOST_IOTLB_UPDATE: 991 if (!dev->iotlb) { 992 ret = -EFAULT; 993 break; 994 } 995 if (!umem_access_ok(msg->uaddr, msg->size, msg->perm)) { 996 ret = -EFAULT; 997 break; 998 } 999 vhost_vq_meta_reset(dev); 1000 if (vhost_new_umem_range(dev->iotlb, msg->iova, msg->size, 1001 msg->iova + msg->size - 1, 1002 msg->uaddr, msg->perm)) { 1003 ret = -ENOMEM; 1004 break; 1005 } 1006 vhost_iotlb_notify_vq(dev, msg); 1007 break; 1008 case VHOST_IOTLB_INVALIDATE: 1009 if (!dev->iotlb) { 1010 ret = -EFAULT; 1011 break; 1012 } 1013 vhost_vq_meta_reset(dev); 1014 vhost_del_umem_range(dev->iotlb, msg->iova, 1015 msg->iova + msg->size - 1); 1016 break; 1017 default: 1018 ret = -EINVAL; 1019 break; 1020 } 1021 1022 vhost_dev_unlock_vqs(dev); 1023 mutex_unlock(&dev->mutex); 1024 1025 return ret; 1026 } 1027 ssize_t vhost_chr_write_iter(struct vhost_dev *dev, 1028 struct iov_iter *from) 1029 { 1030 struct vhost_msg_node node; 1031 unsigned size = sizeof(struct vhost_msg); 1032 size_t ret; 1033 int err; 1034 1035 if (iov_iter_count(from) < size) 1036 return 0; 1037 ret = copy_from_iter(&node.msg, size, from); 1038 if (ret != size) 1039 goto done; 1040 1041 switch (node.msg.type) { 1042 case VHOST_IOTLB_MSG: 1043 err = vhost_process_iotlb_msg(dev, &node.msg.iotlb); 1044 if (err) 1045 ret = err; 1046 break; 1047 default: 1048 ret = -EINVAL; 1049 break; 1050 } 1051 1052 done: 1053 return ret; 1054 } 1055 EXPORT_SYMBOL(vhost_chr_write_iter); 1056 1057 __poll_t vhost_chr_poll(struct file *file, struct vhost_dev *dev, 1058 poll_table *wait) 1059 { 1060 __poll_t mask = 0; 1061 1062 poll_wait(file, &dev->wait, wait); 1063 1064 if (!list_empty(&dev->read_list)) 1065 mask |= EPOLLIN | EPOLLRDNORM; 1066 1067 return mask; 1068 } 1069 EXPORT_SYMBOL(vhost_chr_poll); 1070 1071 ssize_t vhost_chr_read_iter(struct vhost_dev *dev, struct iov_iter *to, 1072 int noblock) 1073 { 1074 DEFINE_WAIT(wait); 1075 struct vhost_msg_node *node; 1076 ssize_t ret = 0; 1077 unsigned size = sizeof(struct vhost_msg); 1078 1079 if (iov_iter_count(to) < size) 1080 return 0; 1081 1082 while (1) { 1083 if (!noblock) 1084 prepare_to_wait(&dev->wait, &wait, 1085 TASK_INTERRUPTIBLE); 1086 1087 node = vhost_dequeue_msg(dev, &dev->read_list); 1088 if (node) 1089 break; 1090 if (noblock) { 1091 ret = -EAGAIN; 1092 break; 1093 } 1094 if (signal_pending(current)) { 1095 ret = -ERESTARTSYS; 1096 break; 1097 } 1098 if (!dev->iotlb) { 1099 ret = -EBADFD; 1100 break; 1101 } 1102 1103 schedule(); 1104 } 1105 1106 if (!noblock) 1107 finish_wait(&dev->wait, &wait); 1108 1109 if (node) { 1110 ret = copy_to_iter(&node->msg, size, to); 1111 1112 if (ret != size || node->msg.type != VHOST_IOTLB_MISS) { 1113 kfree(node); 1114 return ret; 1115 } 1116 1117 vhost_enqueue_msg(dev, &dev->pending_list, node); 1118 } 1119 1120 return ret; 1121 } 1122 EXPORT_SYMBOL_GPL(vhost_chr_read_iter); 1123 1124 static int vhost_iotlb_miss(struct vhost_virtqueue *vq, u64 iova, int access) 1125 { 1126 struct vhost_dev *dev = vq->dev; 1127 struct vhost_msg_node *node; 1128 struct vhost_iotlb_msg *msg; 1129 1130 node = vhost_new_msg(vq, VHOST_IOTLB_MISS); 1131 if (!node) 1132 return -ENOMEM; 1133 1134 msg = &node->msg.iotlb; 1135 msg->type = VHOST_IOTLB_MISS; 1136 msg->iova = iova; 1137 msg->perm = access; 1138 1139 vhost_enqueue_msg(dev, &dev->read_list, node); 1140 1141 return 0; 1142 } 1143 1144 static bool vq_access_ok(struct vhost_virtqueue *vq, unsigned int num, 1145 struct vring_desc __user *desc, 1146 struct vring_avail __user *avail, 1147 struct vring_used __user *used) 1148 1149 { 1150 size_t s = vhost_has_feature(vq, VIRTIO_RING_F_EVENT_IDX) ? 2 : 0; 1151 1152 return access_ok(VERIFY_READ, desc, num * sizeof *desc) && 1153 access_ok(VERIFY_READ, avail, 1154 sizeof *avail + num * sizeof *avail->ring + s) && 1155 access_ok(VERIFY_WRITE, used, 1156 sizeof *used + num * sizeof *used->ring + s); 1157 } 1158 1159 static void vhost_vq_meta_update(struct vhost_virtqueue *vq, 1160 const struct vhost_umem_node *node, 1161 int type) 1162 { 1163 int access = (type == VHOST_ADDR_USED) ? 1164 VHOST_ACCESS_WO : VHOST_ACCESS_RO; 1165 1166 if (likely(node->perm & access)) 1167 vq->meta_iotlb[type] = node; 1168 } 1169 1170 static bool iotlb_access_ok(struct vhost_virtqueue *vq, 1171 int access, u64 addr, u64 len, int type) 1172 { 1173 const struct vhost_umem_node *node; 1174 struct vhost_umem *umem = vq->iotlb; 1175 u64 s = 0, size, orig_addr = addr, last = addr + len - 1; 1176 1177 if (vhost_vq_meta_fetch(vq, addr, len, type)) 1178 return true; 1179 1180 while (len > s) { 1181 node = vhost_umem_interval_tree_iter_first(&umem->umem_tree, 1182 addr, 1183 last); 1184 if (node == NULL || node->start > addr) { 1185 vhost_iotlb_miss(vq, addr, access); 1186 return false; 1187 } else if (!(node->perm & access)) { 1188 /* Report the possible access violation by 1189 * request another translation from userspace. 1190 */ 1191 return false; 1192 } 1193 1194 size = node->size - addr + node->start; 1195 1196 if (orig_addr == addr && size >= len) 1197 vhost_vq_meta_update(vq, node, type); 1198 1199 s += size; 1200 addr += size; 1201 } 1202 1203 return true; 1204 } 1205 1206 int vq_iotlb_prefetch(struct vhost_virtqueue *vq) 1207 { 1208 size_t s = vhost_has_feature(vq, VIRTIO_RING_F_EVENT_IDX) ? 2 : 0; 1209 unsigned int num = vq->num; 1210 1211 if (!vq->iotlb) 1212 return 1; 1213 1214 return iotlb_access_ok(vq, VHOST_ACCESS_RO, (u64)(uintptr_t)vq->desc, 1215 num * sizeof(*vq->desc), VHOST_ADDR_DESC) && 1216 iotlb_access_ok(vq, VHOST_ACCESS_RO, (u64)(uintptr_t)vq->avail, 1217 sizeof *vq->avail + 1218 num * sizeof(*vq->avail->ring) + s, 1219 VHOST_ADDR_AVAIL) && 1220 iotlb_access_ok(vq, VHOST_ACCESS_WO, (u64)(uintptr_t)vq->used, 1221 sizeof *vq->used + 1222 num * sizeof(*vq->used->ring) + s, 1223 VHOST_ADDR_USED); 1224 } 1225 EXPORT_SYMBOL_GPL(vq_iotlb_prefetch); 1226 1227 /* Can we log writes? */ 1228 /* Caller should have device mutex but not vq mutex */ 1229 bool vhost_log_access_ok(struct vhost_dev *dev) 1230 { 1231 return memory_access_ok(dev, dev->umem, 1); 1232 } 1233 EXPORT_SYMBOL_GPL(vhost_log_access_ok); 1234 1235 /* Verify access for write logging. */ 1236 /* Caller should have vq mutex and device mutex */ 1237 static bool vq_log_access_ok(struct vhost_virtqueue *vq, 1238 void __user *log_base) 1239 { 1240 size_t s = vhost_has_feature(vq, VIRTIO_RING_F_EVENT_IDX) ? 2 : 0; 1241 1242 return vq_memory_access_ok(log_base, vq->umem, 1243 vhost_has_feature(vq, VHOST_F_LOG_ALL)) && 1244 (!vq->log_used || log_access_ok(log_base, vq->log_addr, 1245 sizeof *vq->used + 1246 vq->num * sizeof *vq->used->ring + s)); 1247 } 1248 1249 /* Can we start vq? */ 1250 /* Caller should have vq mutex and device mutex */ 1251 bool vhost_vq_access_ok(struct vhost_virtqueue *vq) 1252 { 1253 if (!vq_log_access_ok(vq, vq->log_base)) 1254 return false; 1255 1256 /* Access validation occurs at prefetch time with IOTLB */ 1257 if (vq->iotlb) 1258 return true; 1259 1260 return vq_access_ok(vq, vq->num, vq->desc, vq->avail, vq->used); 1261 } 1262 EXPORT_SYMBOL_GPL(vhost_vq_access_ok); 1263 1264 static struct vhost_umem *vhost_umem_alloc(void) 1265 { 1266 struct vhost_umem *umem = kvzalloc(sizeof(*umem), GFP_KERNEL); 1267 1268 if (!umem) 1269 return NULL; 1270 1271 umem->umem_tree = RB_ROOT_CACHED; 1272 umem->numem = 0; 1273 INIT_LIST_HEAD(&umem->umem_list); 1274 1275 return umem; 1276 } 1277 1278 static long vhost_set_memory(struct vhost_dev *d, struct vhost_memory __user *m) 1279 { 1280 struct vhost_memory mem, *newmem; 1281 struct vhost_memory_region *region; 1282 struct vhost_umem *newumem, *oldumem; 1283 unsigned long size = offsetof(struct vhost_memory, regions); 1284 int i; 1285 1286 if (copy_from_user(&mem, m, size)) 1287 return -EFAULT; 1288 if (mem.padding) 1289 return -EOPNOTSUPP; 1290 if (mem.nregions > max_mem_regions) 1291 return -E2BIG; 1292 newmem = kvzalloc(struct_size(newmem, regions, mem.nregions), 1293 GFP_KERNEL); 1294 if (!newmem) 1295 return -ENOMEM; 1296 1297 memcpy(newmem, &mem, size); 1298 if (copy_from_user(newmem->regions, m->regions, 1299 mem.nregions * sizeof *m->regions)) { 1300 kvfree(newmem); 1301 return -EFAULT; 1302 } 1303 1304 newumem = vhost_umem_alloc(); 1305 if (!newumem) { 1306 kvfree(newmem); 1307 return -ENOMEM; 1308 } 1309 1310 for (region = newmem->regions; 1311 region < newmem->regions + mem.nregions; 1312 region++) { 1313 if (vhost_new_umem_range(newumem, 1314 region->guest_phys_addr, 1315 region->memory_size, 1316 region->guest_phys_addr + 1317 region->memory_size - 1, 1318 region->userspace_addr, 1319 VHOST_ACCESS_RW)) 1320 goto err; 1321 } 1322 1323 if (!memory_access_ok(d, newumem, 0)) 1324 goto err; 1325 1326 oldumem = d->umem; 1327 d->umem = newumem; 1328 1329 /* All memory accesses are done under some VQ mutex. */ 1330 for (i = 0; i < d->nvqs; ++i) { 1331 mutex_lock(&d->vqs[i]->mutex); 1332 d->vqs[i]->umem = newumem; 1333 mutex_unlock(&d->vqs[i]->mutex); 1334 } 1335 1336 kvfree(newmem); 1337 vhost_umem_clean(oldumem); 1338 return 0; 1339 1340 err: 1341 vhost_umem_clean(newumem); 1342 kvfree(newmem); 1343 return -EFAULT; 1344 } 1345 1346 long vhost_vring_ioctl(struct vhost_dev *d, unsigned int ioctl, void __user *argp) 1347 { 1348 struct file *eventfp, *filep = NULL; 1349 bool pollstart = false, pollstop = false; 1350 struct eventfd_ctx *ctx = NULL; 1351 u32 __user *idxp = argp; 1352 struct vhost_virtqueue *vq; 1353 struct vhost_vring_state s; 1354 struct vhost_vring_file f; 1355 struct vhost_vring_addr a; 1356 u32 idx; 1357 long r; 1358 1359 r = get_user(idx, idxp); 1360 if (r < 0) 1361 return r; 1362 if (idx >= d->nvqs) 1363 return -ENOBUFS; 1364 1365 vq = d->vqs[idx]; 1366 1367 mutex_lock(&vq->mutex); 1368 1369 switch (ioctl) { 1370 case VHOST_SET_VRING_NUM: 1371 /* Resizing ring with an active backend? 1372 * You don't want to do that. */ 1373 if (vq->private_data) { 1374 r = -EBUSY; 1375 break; 1376 } 1377 if (copy_from_user(&s, argp, sizeof s)) { 1378 r = -EFAULT; 1379 break; 1380 } 1381 if (!s.num || s.num > 0xffff || (s.num & (s.num - 1))) { 1382 r = -EINVAL; 1383 break; 1384 } 1385 vq->num = s.num; 1386 break; 1387 case VHOST_SET_VRING_BASE: 1388 /* Moving base with an active backend? 1389 * You don't want to do that. */ 1390 if (vq->private_data) { 1391 r = -EBUSY; 1392 break; 1393 } 1394 if (copy_from_user(&s, argp, sizeof s)) { 1395 r = -EFAULT; 1396 break; 1397 } 1398 if (s.num > 0xffff) { 1399 r = -EINVAL; 1400 break; 1401 } 1402 vq->last_avail_idx = s.num; 1403 /* Forget the cached index value. */ 1404 vq->avail_idx = vq->last_avail_idx; 1405 break; 1406 case VHOST_GET_VRING_BASE: 1407 s.index = idx; 1408 s.num = vq->last_avail_idx; 1409 if (copy_to_user(argp, &s, sizeof s)) 1410 r = -EFAULT; 1411 break; 1412 case VHOST_SET_VRING_ADDR: 1413 if (copy_from_user(&a, argp, sizeof a)) { 1414 r = -EFAULT; 1415 break; 1416 } 1417 if (a.flags & ~(0x1 << VHOST_VRING_F_LOG)) { 1418 r = -EOPNOTSUPP; 1419 break; 1420 } 1421 /* For 32bit, verify that the top 32bits of the user 1422 data are set to zero. */ 1423 if ((u64)(unsigned long)a.desc_user_addr != a.desc_user_addr || 1424 (u64)(unsigned long)a.used_user_addr != a.used_user_addr || 1425 (u64)(unsigned long)a.avail_user_addr != a.avail_user_addr) { 1426 r = -EFAULT; 1427 break; 1428 } 1429 1430 /* Make sure it's safe to cast pointers to vring types. */ 1431 BUILD_BUG_ON(__alignof__ *vq->avail > VRING_AVAIL_ALIGN_SIZE); 1432 BUILD_BUG_ON(__alignof__ *vq->used > VRING_USED_ALIGN_SIZE); 1433 if ((a.avail_user_addr & (VRING_AVAIL_ALIGN_SIZE - 1)) || 1434 (a.used_user_addr & (VRING_USED_ALIGN_SIZE - 1)) || 1435 (a.log_guest_addr & (VRING_USED_ALIGN_SIZE - 1))) { 1436 r = -EINVAL; 1437 break; 1438 } 1439 1440 /* We only verify access here if backend is configured. 1441 * If it is not, we don't as size might not have been setup. 1442 * We will verify when backend is configured. */ 1443 if (vq->private_data) { 1444 if (!vq_access_ok(vq, vq->num, 1445 (void __user *)(unsigned long)a.desc_user_addr, 1446 (void __user *)(unsigned long)a.avail_user_addr, 1447 (void __user *)(unsigned long)a.used_user_addr)) { 1448 r = -EINVAL; 1449 break; 1450 } 1451 1452 /* Also validate log access for used ring if enabled. */ 1453 if ((a.flags & (0x1 << VHOST_VRING_F_LOG)) && 1454 !log_access_ok(vq->log_base, a.log_guest_addr, 1455 sizeof *vq->used + 1456 vq->num * sizeof *vq->used->ring)) { 1457 r = -EINVAL; 1458 break; 1459 } 1460 } 1461 1462 vq->log_used = !!(a.flags & (0x1 << VHOST_VRING_F_LOG)); 1463 vq->desc = (void __user *)(unsigned long)a.desc_user_addr; 1464 vq->avail = (void __user *)(unsigned long)a.avail_user_addr; 1465 vq->log_addr = a.log_guest_addr; 1466 vq->used = (void __user *)(unsigned long)a.used_user_addr; 1467 break; 1468 case VHOST_SET_VRING_KICK: 1469 if (copy_from_user(&f, argp, sizeof f)) { 1470 r = -EFAULT; 1471 break; 1472 } 1473 eventfp = f.fd == -1 ? NULL : eventfd_fget(f.fd); 1474 if (IS_ERR(eventfp)) { 1475 r = PTR_ERR(eventfp); 1476 break; 1477 } 1478 if (eventfp != vq->kick) { 1479 pollstop = (filep = vq->kick) != NULL; 1480 pollstart = (vq->kick = eventfp) != NULL; 1481 } else 1482 filep = eventfp; 1483 break; 1484 case VHOST_SET_VRING_CALL: 1485 if (copy_from_user(&f, argp, sizeof f)) { 1486 r = -EFAULT; 1487 break; 1488 } 1489 ctx = f.fd == -1 ? NULL : eventfd_ctx_fdget(f.fd); 1490 if (IS_ERR(ctx)) { 1491 r = PTR_ERR(ctx); 1492 break; 1493 } 1494 swap(ctx, vq->call_ctx); 1495 break; 1496 case VHOST_SET_VRING_ERR: 1497 if (copy_from_user(&f, argp, sizeof f)) { 1498 r = -EFAULT; 1499 break; 1500 } 1501 ctx = f.fd == -1 ? NULL : eventfd_ctx_fdget(f.fd); 1502 if (IS_ERR(ctx)) { 1503 r = PTR_ERR(ctx); 1504 break; 1505 } 1506 swap(ctx, vq->error_ctx); 1507 break; 1508 case VHOST_SET_VRING_ENDIAN: 1509 r = vhost_set_vring_endian(vq, argp); 1510 break; 1511 case VHOST_GET_VRING_ENDIAN: 1512 r = vhost_get_vring_endian(vq, idx, argp); 1513 break; 1514 case VHOST_SET_VRING_BUSYLOOP_TIMEOUT: 1515 if (copy_from_user(&s, argp, sizeof(s))) { 1516 r = -EFAULT; 1517 break; 1518 } 1519 vq->busyloop_timeout = s.num; 1520 break; 1521 case VHOST_GET_VRING_BUSYLOOP_TIMEOUT: 1522 s.index = idx; 1523 s.num = vq->busyloop_timeout; 1524 if (copy_to_user(argp, &s, sizeof(s))) 1525 r = -EFAULT; 1526 break; 1527 default: 1528 r = -ENOIOCTLCMD; 1529 } 1530 1531 if (pollstop && vq->handle_kick) 1532 vhost_poll_stop(&vq->poll); 1533 1534 if (!IS_ERR_OR_NULL(ctx)) 1535 eventfd_ctx_put(ctx); 1536 if (filep) 1537 fput(filep); 1538 1539 if (pollstart && vq->handle_kick) 1540 r = vhost_poll_start(&vq->poll, vq->kick); 1541 1542 mutex_unlock(&vq->mutex); 1543 1544 if (pollstop && vq->handle_kick) 1545 vhost_poll_flush(&vq->poll); 1546 return r; 1547 } 1548 EXPORT_SYMBOL_GPL(vhost_vring_ioctl); 1549 1550 int vhost_init_device_iotlb(struct vhost_dev *d, bool enabled) 1551 { 1552 struct vhost_umem *niotlb, *oiotlb; 1553 int i; 1554 1555 niotlb = vhost_umem_alloc(); 1556 if (!niotlb) 1557 return -ENOMEM; 1558 1559 oiotlb = d->iotlb; 1560 d->iotlb = niotlb; 1561 1562 for (i = 0; i < d->nvqs; ++i) { 1563 struct vhost_virtqueue *vq = d->vqs[i]; 1564 1565 mutex_lock(&vq->mutex); 1566 vq->iotlb = niotlb; 1567 __vhost_vq_meta_reset(vq); 1568 mutex_unlock(&vq->mutex); 1569 } 1570 1571 vhost_umem_clean(oiotlb); 1572 1573 return 0; 1574 } 1575 EXPORT_SYMBOL_GPL(vhost_init_device_iotlb); 1576 1577 /* Caller must have device mutex */ 1578 long vhost_dev_ioctl(struct vhost_dev *d, unsigned int ioctl, void __user *argp) 1579 { 1580 struct eventfd_ctx *ctx; 1581 u64 p; 1582 long r; 1583 int i, fd; 1584 1585 /* If you are not the owner, you can become one */ 1586 if (ioctl == VHOST_SET_OWNER) { 1587 r = vhost_dev_set_owner(d); 1588 goto done; 1589 } 1590 1591 /* You must be the owner to do anything else */ 1592 r = vhost_dev_check_owner(d); 1593 if (r) 1594 goto done; 1595 1596 switch (ioctl) { 1597 case VHOST_SET_MEM_TABLE: 1598 r = vhost_set_memory(d, argp); 1599 break; 1600 case VHOST_SET_LOG_BASE: 1601 if (copy_from_user(&p, argp, sizeof p)) { 1602 r = -EFAULT; 1603 break; 1604 } 1605 if ((u64)(unsigned long)p != p) { 1606 r = -EFAULT; 1607 break; 1608 } 1609 for (i = 0; i < d->nvqs; ++i) { 1610 struct vhost_virtqueue *vq; 1611 void __user *base = (void __user *)(unsigned long)p; 1612 vq = d->vqs[i]; 1613 mutex_lock(&vq->mutex); 1614 /* If ring is inactive, will check when it's enabled. */ 1615 if (vq->private_data && !vq_log_access_ok(vq, base)) 1616 r = -EFAULT; 1617 else 1618 vq->log_base = base; 1619 mutex_unlock(&vq->mutex); 1620 } 1621 break; 1622 case VHOST_SET_LOG_FD: 1623 r = get_user(fd, (int __user *)argp); 1624 if (r < 0) 1625 break; 1626 ctx = fd == -1 ? NULL : eventfd_ctx_fdget(fd); 1627 if (IS_ERR(ctx)) { 1628 r = PTR_ERR(ctx); 1629 break; 1630 } 1631 swap(ctx, d->log_ctx); 1632 for (i = 0; i < d->nvqs; ++i) { 1633 mutex_lock(&d->vqs[i]->mutex); 1634 d->vqs[i]->log_ctx = d->log_ctx; 1635 mutex_unlock(&d->vqs[i]->mutex); 1636 } 1637 if (ctx) 1638 eventfd_ctx_put(ctx); 1639 break; 1640 default: 1641 r = -ENOIOCTLCMD; 1642 break; 1643 } 1644 done: 1645 return r; 1646 } 1647 EXPORT_SYMBOL_GPL(vhost_dev_ioctl); 1648 1649 /* TODO: This is really inefficient. We need something like get_user() 1650 * (instruction directly accesses the data, with an exception table entry 1651 * returning -EFAULT). See Documentation/x86/exception-tables.txt. 1652 */ 1653 static int set_bit_to_user(int nr, void __user *addr) 1654 { 1655 unsigned long log = (unsigned long)addr; 1656 struct page *page; 1657 void *base; 1658 int bit = nr + (log % PAGE_SIZE) * 8; 1659 int r; 1660 1661 r = get_user_pages_fast(log, 1, 1, &page); 1662 if (r < 0) 1663 return r; 1664 BUG_ON(r != 1); 1665 base = kmap_atomic(page); 1666 set_bit(bit, base); 1667 kunmap_atomic(base); 1668 set_page_dirty_lock(page); 1669 put_page(page); 1670 return 0; 1671 } 1672 1673 static int log_write(void __user *log_base, 1674 u64 write_address, u64 write_length) 1675 { 1676 u64 write_page = write_address / VHOST_PAGE_SIZE; 1677 int r; 1678 1679 if (!write_length) 1680 return 0; 1681 write_length += write_address % VHOST_PAGE_SIZE; 1682 for (;;) { 1683 u64 base = (u64)(unsigned long)log_base; 1684 u64 log = base + write_page / 8; 1685 int bit = write_page % 8; 1686 if ((u64)(unsigned long)log != log) 1687 return -EFAULT; 1688 r = set_bit_to_user(bit, (void __user *)(unsigned long)log); 1689 if (r < 0) 1690 return r; 1691 if (write_length <= VHOST_PAGE_SIZE) 1692 break; 1693 write_length -= VHOST_PAGE_SIZE; 1694 write_page += 1; 1695 } 1696 return r; 1697 } 1698 1699 int vhost_log_write(struct vhost_virtqueue *vq, struct vhost_log *log, 1700 unsigned int log_num, u64 len) 1701 { 1702 int i, r; 1703 1704 /* Make sure data written is seen before log. */ 1705 smp_wmb(); 1706 for (i = 0; i < log_num; ++i) { 1707 u64 l = min(log[i].len, len); 1708 r = log_write(vq->log_base, log[i].addr, l); 1709 if (r < 0) 1710 return r; 1711 len -= l; 1712 if (!len) { 1713 if (vq->log_ctx) 1714 eventfd_signal(vq->log_ctx, 1); 1715 return 0; 1716 } 1717 } 1718 /* Length written exceeds what we have stored. This is a bug. */ 1719 BUG(); 1720 return 0; 1721 } 1722 EXPORT_SYMBOL_GPL(vhost_log_write); 1723 1724 static int vhost_update_used_flags(struct vhost_virtqueue *vq) 1725 { 1726 void __user *used; 1727 if (vhost_put_user(vq, cpu_to_vhost16(vq, vq->used_flags), 1728 &vq->used->flags) < 0) 1729 return -EFAULT; 1730 if (unlikely(vq->log_used)) { 1731 /* Make sure the flag is seen before log. */ 1732 smp_wmb(); 1733 /* Log used flag write. */ 1734 used = &vq->used->flags; 1735 log_write(vq->log_base, vq->log_addr + 1736 (used - (void __user *)vq->used), 1737 sizeof vq->used->flags); 1738 if (vq->log_ctx) 1739 eventfd_signal(vq->log_ctx, 1); 1740 } 1741 return 0; 1742 } 1743 1744 static int vhost_update_avail_event(struct vhost_virtqueue *vq, u16 avail_event) 1745 { 1746 if (vhost_put_user(vq, cpu_to_vhost16(vq, vq->avail_idx), 1747 vhost_avail_event(vq))) 1748 return -EFAULT; 1749 if (unlikely(vq->log_used)) { 1750 void __user *used; 1751 /* Make sure the event is seen before log. */ 1752 smp_wmb(); 1753 /* Log avail event write */ 1754 used = vhost_avail_event(vq); 1755 log_write(vq->log_base, vq->log_addr + 1756 (used - (void __user *)vq->used), 1757 sizeof *vhost_avail_event(vq)); 1758 if (vq->log_ctx) 1759 eventfd_signal(vq->log_ctx, 1); 1760 } 1761 return 0; 1762 } 1763 1764 int vhost_vq_init_access(struct vhost_virtqueue *vq) 1765 { 1766 __virtio16 last_used_idx; 1767 int r; 1768 bool is_le = vq->is_le; 1769 1770 if (!vq->private_data) 1771 return 0; 1772 1773 vhost_init_is_le(vq); 1774 1775 r = vhost_update_used_flags(vq); 1776 if (r) 1777 goto err; 1778 vq->signalled_used_valid = false; 1779 if (!vq->iotlb && 1780 !access_ok(VERIFY_READ, &vq->used->idx, sizeof vq->used->idx)) { 1781 r = -EFAULT; 1782 goto err; 1783 } 1784 r = vhost_get_used(vq, last_used_idx, &vq->used->idx); 1785 if (r) { 1786 vq_err(vq, "Can't access used idx at %p\n", 1787 &vq->used->idx); 1788 goto err; 1789 } 1790 vq->last_used_idx = vhost16_to_cpu(vq, last_used_idx); 1791 return 0; 1792 1793 err: 1794 vq->is_le = is_le; 1795 return r; 1796 } 1797 EXPORT_SYMBOL_GPL(vhost_vq_init_access); 1798 1799 static int translate_desc(struct vhost_virtqueue *vq, u64 addr, u32 len, 1800 struct iovec iov[], int iov_size, int access) 1801 { 1802 const struct vhost_umem_node *node; 1803 struct vhost_dev *dev = vq->dev; 1804 struct vhost_umem *umem = dev->iotlb ? dev->iotlb : dev->umem; 1805 struct iovec *_iov; 1806 u64 s = 0; 1807 int ret = 0; 1808 1809 while ((u64)len > s) { 1810 u64 size; 1811 if (unlikely(ret >= iov_size)) { 1812 ret = -ENOBUFS; 1813 break; 1814 } 1815 1816 node = vhost_umem_interval_tree_iter_first(&umem->umem_tree, 1817 addr, addr + len - 1); 1818 if (node == NULL || node->start > addr) { 1819 if (umem != dev->iotlb) { 1820 ret = -EFAULT; 1821 break; 1822 } 1823 ret = -EAGAIN; 1824 break; 1825 } else if (!(node->perm & access)) { 1826 ret = -EPERM; 1827 break; 1828 } 1829 1830 _iov = iov + ret; 1831 size = node->size - addr + node->start; 1832 _iov->iov_len = min((u64)len - s, size); 1833 _iov->iov_base = (void __user *)(unsigned long) 1834 (node->userspace_addr + addr - node->start); 1835 s += size; 1836 addr += size; 1837 ++ret; 1838 } 1839 1840 if (ret == -EAGAIN) 1841 vhost_iotlb_miss(vq, addr, access); 1842 return ret; 1843 } 1844 1845 /* Each buffer in the virtqueues is actually a chain of descriptors. This 1846 * function returns the next descriptor in the chain, 1847 * or -1U if we're at the end. */ 1848 static unsigned next_desc(struct vhost_virtqueue *vq, struct vring_desc *desc) 1849 { 1850 unsigned int next; 1851 1852 /* If this descriptor says it doesn't chain, we're done. */ 1853 if (!(desc->flags & cpu_to_vhost16(vq, VRING_DESC_F_NEXT))) 1854 return -1U; 1855 1856 /* Check they're not leading us off end of descriptors. */ 1857 next = vhost16_to_cpu(vq, READ_ONCE(desc->next)); 1858 return next; 1859 } 1860 1861 static int get_indirect(struct vhost_virtqueue *vq, 1862 struct iovec iov[], unsigned int iov_size, 1863 unsigned int *out_num, unsigned int *in_num, 1864 struct vhost_log *log, unsigned int *log_num, 1865 struct vring_desc *indirect) 1866 { 1867 struct vring_desc desc; 1868 unsigned int i = 0, count, found = 0; 1869 u32 len = vhost32_to_cpu(vq, indirect->len); 1870 struct iov_iter from; 1871 int ret, access; 1872 1873 /* Sanity check */ 1874 if (unlikely(len % sizeof desc)) { 1875 vq_err(vq, "Invalid length in indirect descriptor: " 1876 "len 0x%llx not multiple of 0x%zx\n", 1877 (unsigned long long)len, 1878 sizeof desc); 1879 return -EINVAL; 1880 } 1881 1882 ret = translate_desc(vq, vhost64_to_cpu(vq, indirect->addr), len, vq->indirect, 1883 UIO_MAXIOV, VHOST_ACCESS_RO); 1884 if (unlikely(ret < 0)) { 1885 if (ret != -EAGAIN) 1886 vq_err(vq, "Translation failure %d in indirect.\n", ret); 1887 return ret; 1888 } 1889 iov_iter_init(&from, READ, vq->indirect, ret, len); 1890 1891 /* We will use the result as an address to read from, so most 1892 * architectures only need a compiler barrier here. */ 1893 read_barrier_depends(); 1894 1895 count = len / sizeof desc; 1896 /* Buffers are chained via a 16 bit next field, so 1897 * we can have at most 2^16 of these. */ 1898 if (unlikely(count > USHRT_MAX + 1)) { 1899 vq_err(vq, "Indirect buffer length too big: %d\n", 1900 indirect->len); 1901 return -E2BIG; 1902 } 1903 1904 do { 1905 unsigned iov_count = *in_num + *out_num; 1906 if (unlikely(++found > count)) { 1907 vq_err(vq, "Loop detected: last one at %u " 1908 "indirect size %u\n", 1909 i, count); 1910 return -EINVAL; 1911 } 1912 if (unlikely(!copy_from_iter_full(&desc, sizeof(desc), &from))) { 1913 vq_err(vq, "Failed indirect descriptor: idx %d, %zx\n", 1914 i, (size_t)vhost64_to_cpu(vq, indirect->addr) + i * sizeof desc); 1915 return -EINVAL; 1916 } 1917 if (unlikely(desc.flags & cpu_to_vhost16(vq, VRING_DESC_F_INDIRECT))) { 1918 vq_err(vq, "Nested indirect descriptor: idx %d, %zx\n", 1919 i, (size_t)vhost64_to_cpu(vq, indirect->addr) + i * sizeof desc); 1920 return -EINVAL; 1921 } 1922 1923 if (desc.flags & cpu_to_vhost16(vq, VRING_DESC_F_WRITE)) 1924 access = VHOST_ACCESS_WO; 1925 else 1926 access = VHOST_ACCESS_RO; 1927 1928 ret = translate_desc(vq, vhost64_to_cpu(vq, desc.addr), 1929 vhost32_to_cpu(vq, desc.len), iov + iov_count, 1930 iov_size - iov_count, access); 1931 if (unlikely(ret < 0)) { 1932 if (ret != -EAGAIN) 1933 vq_err(vq, "Translation failure %d indirect idx %d\n", 1934 ret, i); 1935 return ret; 1936 } 1937 /* If this is an input descriptor, increment that count. */ 1938 if (access == VHOST_ACCESS_WO) { 1939 *in_num += ret; 1940 if (unlikely(log)) { 1941 log[*log_num].addr = vhost64_to_cpu(vq, desc.addr); 1942 log[*log_num].len = vhost32_to_cpu(vq, desc.len); 1943 ++*log_num; 1944 } 1945 } else { 1946 /* If it's an output descriptor, they're all supposed 1947 * to come before any input descriptors. */ 1948 if (unlikely(*in_num)) { 1949 vq_err(vq, "Indirect descriptor " 1950 "has out after in: idx %d\n", i); 1951 return -EINVAL; 1952 } 1953 *out_num += ret; 1954 } 1955 } while ((i = next_desc(vq, &desc)) != -1); 1956 return 0; 1957 } 1958 1959 /* This looks in the virtqueue and for the first available buffer, and converts 1960 * it to an iovec for convenient access. Since descriptors consist of some 1961 * number of output then some number of input descriptors, it's actually two 1962 * iovecs, but we pack them into one and note how many of each there were. 1963 * 1964 * This function returns the descriptor number found, or vq->num (which is 1965 * never a valid descriptor number) if none was found. A negative code is 1966 * returned on error. */ 1967 int vhost_get_vq_desc(struct vhost_virtqueue *vq, 1968 struct iovec iov[], unsigned int iov_size, 1969 unsigned int *out_num, unsigned int *in_num, 1970 struct vhost_log *log, unsigned int *log_num) 1971 { 1972 struct vring_desc desc; 1973 unsigned int i, head, found = 0; 1974 u16 last_avail_idx; 1975 __virtio16 avail_idx; 1976 __virtio16 ring_head; 1977 int ret, access; 1978 1979 /* Check it isn't doing very strange things with descriptor numbers. */ 1980 last_avail_idx = vq->last_avail_idx; 1981 1982 if (vq->avail_idx == vq->last_avail_idx) { 1983 if (unlikely(vhost_get_avail(vq, avail_idx, &vq->avail->idx))) { 1984 vq_err(vq, "Failed to access avail idx at %p\n", 1985 &vq->avail->idx); 1986 return -EFAULT; 1987 } 1988 vq->avail_idx = vhost16_to_cpu(vq, avail_idx); 1989 1990 if (unlikely((u16)(vq->avail_idx - last_avail_idx) > vq->num)) { 1991 vq_err(vq, "Guest moved used index from %u to %u", 1992 last_avail_idx, vq->avail_idx); 1993 return -EFAULT; 1994 } 1995 1996 /* If there's nothing new since last we looked, return 1997 * invalid. 1998 */ 1999 if (vq->avail_idx == last_avail_idx) 2000 return vq->num; 2001 2002 /* Only get avail ring entries after they have been 2003 * exposed by guest. 2004 */ 2005 smp_rmb(); 2006 } 2007 2008 /* Grab the next descriptor number they're advertising, and increment 2009 * the index we've seen. */ 2010 if (unlikely(vhost_get_avail(vq, ring_head, 2011 &vq->avail->ring[last_avail_idx & (vq->num - 1)]))) { 2012 vq_err(vq, "Failed to read head: idx %d address %p\n", 2013 last_avail_idx, 2014 &vq->avail->ring[last_avail_idx % vq->num]); 2015 return -EFAULT; 2016 } 2017 2018 head = vhost16_to_cpu(vq, ring_head); 2019 2020 /* If their number is silly, that's an error. */ 2021 if (unlikely(head >= vq->num)) { 2022 vq_err(vq, "Guest says index %u > %u is available", 2023 head, vq->num); 2024 return -EINVAL; 2025 } 2026 2027 /* When we start there are none of either input nor output. */ 2028 *out_num = *in_num = 0; 2029 if (unlikely(log)) 2030 *log_num = 0; 2031 2032 i = head; 2033 do { 2034 unsigned iov_count = *in_num + *out_num; 2035 if (unlikely(i >= vq->num)) { 2036 vq_err(vq, "Desc index is %u > %u, head = %u", 2037 i, vq->num, head); 2038 return -EINVAL; 2039 } 2040 if (unlikely(++found > vq->num)) { 2041 vq_err(vq, "Loop detected: last one at %u " 2042 "vq size %u head %u\n", 2043 i, vq->num, head); 2044 return -EINVAL; 2045 } 2046 ret = vhost_copy_from_user(vq, &desc, vq->desc + i, 2047 sizeof desc); 2048 if (unlikely(ret)) { 2049 vq_err(vq, "Failed to get descriptor: idx %d addr %p\n", 2050 i, vq->desc + i); 2051 return -EFAULT; 2052 } 2053 if (desc.flags & cpu_to_vhost16(vq, VRING_DESC_F_INDIRECT)) { 2054 ret = get_indirect(vq, iov, iov_size, 2055 out_num, in_num, 2056 log, log_num, &desc); 2057 if (unlikely(ret < 0)) { 2058 if (ret != -EAGAIN) 2059 vq_err(vq, "Failure detected " 2060 "in indirect descriptor at idx %d\n", i); 2061 return ret; 2062 } 2063 continue; 2064 } 2065 2066 if (desc.flags & cpu_to_vhost16(vq, VRING_DESC_F_WRITE)) 2067 access = VHOST_ACCESS_WO; 2068 else 2069 access = VHOST_ACCESS_RO; 2070 ret = translate_desc(vq, vhost64_to_cpu(vq, desc.addr), 2071 vhost32_to_cpu(vq, desc.len), iov + iov_count, 2072 iov_size - iov_count, access); 2073 if (unlikely(ret < 0)) { 2074 if (ret != -EAGAIN) 2075 vq_err(vq, "Translation failure %d descriptor idx %d\n", 2076 ret, i); 2077 return ret; 2078 } 2079 if (access == VHOST_ACCESS_WO) { 2080 /* If this is an input descriptor, 2081 * increment that count. */ 2082 *in_num += ret; 2083 if (unlikely(log)) { 2084 log[*log_num].addr = vhost64_to_cpu(vq, desc.addr); 2085 log[*log_num].len = vhost32_to_cpu(vq, desc.len); 2086 ++*log_num; 2087 } 2088 } else { 2089 /* If it's an output descriptor, they're all supposed 2090 * to come before any input descriptors. */ 2091 if (unlikely(*in_num)) { 2092 vq_err(vq, "Descriptor has out after in: " 2093 "idx %d\n", i); 2094 return -EINVAL; 2095 } 2096 *out_num += ret; 2097 } 2098 } while ((i = next_desc(vq, &desc)) != -1); 2099 2100 /* On success, increment avail index. */ 2101 vq->last_avail_idx++; 2102 2103 /* Assume notifications from guest are disabled at this point, 2104 * if they aren't we would need to update avail_event index. */ 2105 BUG_ON(!(vq->used_flags & VRING_USED_F_NO_NOTIFY)); 2106 return head; 2107 } 2108 EXPORT_SYMBOL_GPL(vhost_get_vq_desc); 2109 2110 /* Reverse the effect of vhost_get_vq_desc. Useful for error handling. */ 2111 void vhost_discard_vq_desc(struct vhost_virtqueue *vq, int n) 2112 { 2113 vq->last_avail_idx -= n; 2114 } 2115 EXPORT_SYMBOL_GPL(vhost_discard_vq_desc); 2116 2117 /* After we've used one of their buffers, we tell them about it. We'll then 2118 * want to notify the guest, using eventfd. */ 2119 int vhost_add_used(struct vhost_virtqueue *vq, unsigned int head, int len) 2120 { 2121 struct vring_used_elem heads = { 2122 cpu_to_vhost32(vq, head), 2123 cpu_to_vhost32(vq, len) 2124 }; 2125 2126 return vhost_add_used_n(vq, &heads, 1); 2127 } 2128 EXPORT_SYMBOL_GPL(vhost_add_used); 2129 2130 static int __vhost_add_used_n(struct vhost_virtqueue *vq, 2131 struct vring_used_elem *heads, 2132 unsigned count) 2133 { 2134 struct vring_used_elem __user *used; 2135 u16 old, new; 2136 int start; 2137 2138 start = vq->last_used_idx & (vq->num - 1); 2139 used = vq->used->ring + start; 2140 if (count == 1) { 2141 if (vhost_put_user(vq, heads[0].id, &used->id)) { 2142 vq_err(vq, "Failed to write used id"); 2143 return -EFAULT; 2144 } 2145 if (vhost_put_user(vq, heads[0].len, &used->len)) { 2146 vq_err(vq, "Failed to write used len"); 2147 return -EFAULT; 2148 } 2149 } else if (vhost_copy_to_user(vq, used, heads, count * sizeof *used)) { 2150 vq_err(vq, "Failed to write used"); 2151 return -EFAULT; 2152 } 2153 if (unlikely(vq->log_used)) { 2154 /* Make sure data is seen before log. */ 2155 smp_wmb(); 2156 /* Log used ring entry write. */ 2157 log_write(vq->log_base, 2158 vq->log_addr + 2159 ((void __user *)used - (void __user *)vq->used), 2160 count * sizeof *used); 2161 } 2162 old = vq->last_used_idx; 2163 new = (vq->last_used_idx += count); 2164 /* If the driver never bothers to signal in a very long while, 2165 * used index might wrap around. If that happens, invalidate 2166 * signalled_used index we stored. TODO: make sure driver 2167 * signals at least once in 2^16 and remove this. */ 2168 if (unlikely((u16)(new - vq->signalled_used) < (u16)(new - old))) 2169 vq->signalled_used_valid = false; 2170 return 0; 2171 } 2172 2173 /* After we've used one of their buffers, we tell them about it. We'll then 2174 * want to notify the guest, using eventfd. */ 2175 int vhost_add_used_n(struct vhost_virtqueue *vq, struct vring_used_elem *heads, 2176 unsigned count) 2177 { 2178 int start, n, r; 2179 2180 start = vq->last_used_idx & (vq->num - 1); 2181 n = vq->num - start; 2182 if (n < count) { 2183 r = __vhost_add_used_n(vq, heads, n); 2184 if (r < 0) 2185 return r; 2186 heads += n; 2187 count -= n; 2188 } 2189 r = __vhost_add_used_n(vq, heads, count); 2190 2191 /* Make sure buffer is written before we update index. */ 2192 smp_wmb(); 2193 if (vhost_put_user(vq, cpu_to_vhost16(vq, vq->last_used_idx), 2194 &vq->used->idx)) { 2195 vq_err(vq, "Failed to increment used idx"); 2196 return -EFAULT; 2197 } 2198 if (unlikely(vq->log_used)) { 2199 /* Log used index update. */ 2200 log_write(vq->log_base, 2201 vq->log_addr + offsetof(struct vring_used, idx), 2202 sizeof vq->used->idx); 2203 if (vq->log_ctx) 2204 eventfd_signal(vq->log_ctx, 1); 2205 } 2206 return r; 2207 } 2208 EXPORT_SYMBOL_GPL(vhost_add_used_n); 2209 2210 static bool vhost_notify(struct vhost_dev *dev, struct vhost_virtqueue *vq) 2211 { 2212 __u16 old, new; 2213 __virtio16 event; 2214 bool v; 2215 /* Flush out used index updates. This is paired 2216 * with the barrier that the Guest executes when enabling 2217 * interrupts. */ 2218 smp_mb(); 2219 2220 if (vhost_has_feature(vq, VIRTIO_F_NOTIFY_ON_EMPTY) && 2221 unlikely(vq->avail_idx == vq->last_avail_idx)) 2222 return true; 2223 2224 if (!vhost_has_feature(vq, VIRTIO_RING_F_EVENT_IDX)) { 2225 __virtio16 flags; 2226 if (vhost_get_avail(vq, flags, &vq->avail->flags)) { 2227 vq_err(vq, "Failed to get flags"); 2228 return true; 2229 } 2230 return !(flags & cpu_to_vhost16(vq, VRING_AVAIL_F_NO_INTERRUPT)); 2231 } 2232 old = vq->signalled_used; 2233 v = vq->signalled_used_valid; 2234 new = vq->signalled_used = vq->last_used_idx; 2235 vq->signalled_used_valid = true; 2236 2237 if (unlikely(!v)) 2238 return true; 2239 2240 if (vhost_get_avail(vq, event, vhost_used_event(vq))) { 2241 vq_err(vq, "Failed to get used event idx"); 2242 return true; 2243 } 2244 return vring_need_event(vhost16_to_cpu(vq, event), new, old); 2245 } 2246 2247 /* This actually signals the guest, using eventfd. */ 2248 void vhost_signal(struct vhost_dev *dev, struct vhost_virtqueue *vq) 2249 { 2250 /* Signal the Guest tell them we used something up. */ 2251 if (vq->call_ctx && vhost_notify(dev, vq)) 2252 eventfd_signal(vq->call_ctx, 1); 2253 } 2254 EXPORT_SYMBOL_GPL(vhost_signal); 2255 2256 /* And here's the combo meal deal. Supersize me! */ 2257 void vhost_add_used_and_signal(struct vhost_dev *dev, 2258 struct vhost_virtqueue *vq, 2259 unsigned int head, int len) 2260 { 2261 vhost_add_used(vq, head, len); 2262 vhost_signal(dev, vq); 2263 } 2264 EXPORT_SYMBOL_GPL(vhost_add_used_and_signal); 2265 2266 /* multi-buffer version of vhost_add_used_and_signal */ 2267 void vhost_add_used_and_signal_n(struct vhost_dev *dev, 2268 struct vhost_virtqueue *vq, 2269 struct vring_used_elem *heads, unsigned count) 2270 { 2271 vhost_add_used_n(vq, heads, count); 2272 vhost_signal(dev, vq); 2273 } 2274 EXPORT_SYMBOL_GPL(vhost_add_used_and_signal_n); 2275 2276 /* return true if we're sure that avaiable ring is empty */ 2277 bool vhost_vq_avail_empty(struct vhost_dev *dev, struct vhost_virtqueue *vq) 2278 { 2279 __virtio16 avail_idx; 2280 int r; 2281 2282 if (vq->avail_idx != vq->last_avail_idx) 2283 return false; 2284 2285 r = vhost_get_avail(vq, avail_idx, &vq->avail->idx); 2286 if (unlikely(r)) 2287 return false; 2288 vq->avail_idx = vhost16_to_cpu(vq, avail_idx); 2289 2290 return vq->avail_idx == vq->last_avail_idx; 2291 } 2292 EXPORT_SYMBOL_GPL(vhost_vq_avail_empty); 2293 2294 /* OK, now we need to know about added descriptors. */ 2295 bool vhost_enable_notify(struct vhost_dev *dev, struct vhost_virtqueue *vq) 2296 { 2297 __virtio16 avail_idx; 2298 int r; 2299 2300 if (!(vq->used_flags & VRING_USED_F_NO_NOTIFY)) 2301 return false; 2302 vq->used_flags &= ~VRING_USED_F_NO_NOTIFY; 2303 if (!vhost_has_feature(vq, VIRTIO_RING_F_EVENT_IDX)) { 2304 r = vhost_update_used_flags(vq); 2305 if (r) { 2306 vq_err(vq, "Failed to enable notification at %p: %d\n", 2307 &vq->used->flags, r); 2308 return false; 2309 } 2310 } else { 2311 r = vhost_update_avail_event(vq, vq->avail_idx); 2312 if (r) { 2313 vq_err(vq, "Failed to update avail event index at %p: %d\n", 2314 vhost_avail_event(vq), r); 2315 return false; 2316 } 2317 } 2318 /* They could have slipped one in as we were doing that: make 2319 * sure it's written, then check again. */ 2320 smp_mb(); 2321 r = vhost_get_avail(vq, avail_idx, &vq->avail->idx); 2322 if (r) { 2323 vq_err(vq, "Failed to check avail idx at %p: %d\n", 2324 &vq->avail->idx, r); 2325 return false; 2326 } 2327 2328 return vhost16_to_cpu(vq, avail_idx) != vq->avail_idx; 2329 } 2330 EXPORT_SYMBOL_GPL(vhost_enable_notify); 2331 2332 /* We don't need to be notified again. */ 2333 void vhost_disable_notify(struct vhost_dev *dev, struct vhost_virtqueue *vq) 2334 { 2335 int r; 2336 2337 if (vq->used_flags & VRING_USED_F_NO_NOTIFY) 2338 return; 2339 vq->used_flags |= VRING_USED_F_NO_NOTIFY; 2340 if (!vhost_has_feature(vq, VIRTIO_RING_F_EVENT_IDX)) { 2341 r = vhost_update_used_flags(vq); 2342 if (r) 2343 vq_err(vq, "Failed to enable notification at %p: %d\n", 2344 &vq->used->flags, r); 2345 } 2346 } 2347 EXPORT_SYMBOL_GPL(vhost_disable_notify); 2348 2349 /* Create a new message. */ 2350 struct vhost_msg_node *vhost_new_msg(struct vhost_virtqueue *vq, int type) 2351 { 2352 struct vhost_msg_node *node = kmalloc(sizeof *node, GFP_KERNEL); 2353 if (!node) 2354 return NULL; 2355 2356 /* Make sure all padding within the structure is initialized. */ 2357 memset(&node->msg, 0, sizeof node->msg); 2358 node->vq = vq; 2359 node->msg.type = type; 2360 return node; 2361 } 2362 EXPORT_SYMBOL_GPL(vhost_new_msg); 2363 2364 void vhost_enqueue_msg(struct vhost_dev *dev, struct list_head *head, 2365 struct vhost_msg_node *node) 2366 { 2367 spin_lock(&dev->iotlb_lock); 2368 list_add_tail(&node->node, head); 2369 spin_unlock(&dev->iotlb_lock); 2370 2371 wake_up_interruptible_poll(&dev->wait, EPOLLIN | EPOLLRDNORM); 2372 } 2373 EXPORT_SYMBOL_GPL(vhost_enqueue_msg); 2374 2375 struct vhost_msg_node *vhost_dequeue_msg(struct vhost_dev *dev, 2376 struct list_head *head) 2377 { 2378 struct vhost_msg_node *node = NULL; 2379 2380 spin_lock(&dev->iotlb_lock); 2381 if (!list_empty(head)) { 2382 node = list_first_entry(head, struct vhost_msg_node, 2383 node); 2384 list_del(&node->node); 2385 } 2386 spin_unlock(&dev->iotlb_lock); 2387 2388 return node; 2389 } 2390 EXPORT_SYMBOL_GPL(vhost_dequeue_msg); 2391 2392 2393 static int __init vhost_init(void) 2394 { 2395 return 0; 2396 } 2397 2398 static void __exit vhost_exit(void) 2399 { 2400 } 2401 2402 module_init(vhost_init); 2403 module_exit(vhost_exit); 2404 2405 MODULE_VERSION("0.0.1"); 2406 MODULE_LICENSE("GPL v2"); 2407 MODULE_AUTHOR("Michael S. Tsirkin"); 2408 MODULE_DESCRIPTION("Host kernel accelerator for virtio"); 2409