1 /* Copyright (C) 2009 Red Hat, Inc. 2 * Copyright (C) 2006 Rusty Russell IBM Corporation 3 * 4 * Author: Michael S. Tsirkin <mst@redhat.com> 5 * 6 * Inspiration, some code, and most witty comments come from 7 * Documentation/virtual/lguest/lguest.c, by Rusty Russell 8 * 9 * This work is licensed under the terms of the GNU GPL, version 2. 10 * 11 * Generic code for virtio server in host kernel. 12 */ 13 14 #include <linux/eventfd.h> 15 #include <linux/vhost.h> 16 #include <linux/uio.h> 17 #include <linux/mm.h> 18 #include <linux/mmu_context.h> 19 #include <linux/miscdevice.h> 20 #include <linux/mutex.h> 21 #include <linux/poll.h> 22 #include <linux/file.h> 23 #include <linux/highmem.h> 24 #include <linux/slab.h> 25 #include <linux/vmalloc.h> 26 #include <linux/kthread.h> 27 #include <linux/cgroup.h> 28 #include <linux/module.h> 29 #include <linux/sort.h> 30 #include <linux/interval_tree_generic.h> 31 32 #include "vhost.h" 33 34 static ushort max_mem_regions = 64; 35 module_param(max_mem_regions, ushort, 0444); 36 MODULE_PARM_DESC(max_mem_regions, 37 "Maximum number of memory regions in memory map. (default: 64)"); 38 static int max_iotlb_entries = 2048; 39 module_param(max_iotlb_entries, int, 0444); 40 MODULE_PARM_DESC(max_iotlb_entries, 41 "Maximum number of iotlb entries. (default: 2048)"); 42 43 enum { 44 VHOST_MEMORY_F_LOG = 0x1, 45 }; 46 47 #define vhost_used_event(vq) ((__virtio16 __user *)&vq->avail->ring[vq->num]) 48 #define vhost_avail_event(vq) ((__virtio16 __user *)&vq->used->ring[vq->num]) 49 50 INTERVAL_TREE_DEFINE(struct vhost_umem_node, 51 rb, __u64, __subtree_last, 52 START, LAST, , vhost_umem_interval_tree); 53 54 #ifdef CONFIG_VHOST_CROSS_ENDIAN_LEGACY 55 static void vhost_disable_cross_endian(struct vhost_virtqueue *vq) 56 { 57 vq->user_be = !virtio_legacy_is_little_endian(); 58 } 59 60 static void vhost_enable_cross_endian_big(struct vhost_virtqueue *vq) 61 { 62 vq->user_be = true; 63 } 64 65 static void vhost_enable_cross_endian_little(struct vhost_virtqueue *vq) 66 { 67 vq->user_be = false; 68 } 69 70 static long vhost_set_vring_endian(struct vhost_virtqueue *vq, int __user *argp) 71 { 72 struct vhost_vring_state s; 73 74 if (vq->private_data) 75 return -EBUSY; 76 77 if (copy_from_user(&s, argp, sizeof(s))) 78 return -EFAULT; 79 80 if (s.num != VHOST_VRING_LITTLE_ENDIAN && 81 s.num != VHOST_VRING_BIG_ENDIAN) 82 return -EINVAL; 83 84 if (s.num == VHOST_VRING_BIG_ENDIAN) 85 vhost_enable_cross_endian_big(vq); 86 else 87 vhost_enable_cross_endian_little(vq); 88 89 return 0; 90 } 91 92 static long vhost_get_vring_endian(struct vhost_virtqueue *vq, u32 idx, 93 int __user *argp) 94 { 95 struct vhost_vring_state s = { 96 .index = idx, 97 .num = vq->user_be 98 }; 99 100 if (copy_to_user(argp, &s, sizeof(s))) 101 return -EFAULT; 102 103 return 0; 104 } 105 106 static void vhost_init_is_le(struct vhost_virtqueue *vq) 107 { 108 /* Note for legacy virtio: user_be is initialized at reset time 109 * according to the host endianness. If userspace does not set an 110 * explicit endianness, the default behavior is native endian, as 111 * expected by legacy virtio. 112 */ 113 vq->is_le = vhost_has_feature(vq, VIRTIO_F_VERSION_1) || !vq->user_be; 114 } 115 #else 116 static void vhost_disable_cross_endian(struct vhost_virtqueue *vq) 117 { 118 } 119 120 static long vhost_set_vring_endian(struct vhost_virtqueue *vq, int __user *argp) 121 { 122 return -ENOIOCTLCMD; 123 } 124 125 static long vhost_get_vring_endian(struct vhost_virtqueue *vq, u32 idx, 126 int __user *argp) 127 { 128 return -ENOIOCTLCMD; 129 } 130 131 static void vhost_init_is_le(struct vhost_virtqueue *vq) 132 { 133 if (vhost_has_feature(vq, VIRTIO_F_VERSION_1)) 134 vq->is_le = true; 135 } 136 #endif /* CONFIG_VHOST_CROSS_ENDIAN_LEGACY */ 137 138 static void vhost_reset_is_le(struct vhost_virtqueue *vq) 139 { 140 vq->is_le = virtio_legacy_is_little_endian(); 141 } 142 143 struct vhost_flush_struct { 144 struct vhost_work work; 145 struct completion wait_event; 146 }; 147 148 static void vhost_flush_work(struct vhost_work *work) 149 { 150 struct vhost_flush_struct *s; 151 152 s = container_of(work, struct vhost_flush_struct, work); 153 complete(&s->wait_event); 154 } 155 156 static void vhost_poll_func(struct file *file, wait_queue_head_t *wqh, 157 poll_table *pt) 158 { 159 struct vhost_poll *poll; 160 161 poll = container_of(pt, struct vhost_poll, table); 162 poll->wqh = wqh; 163 add_wait_queue(wqh, &poll->wait); 164 } 165 166 static int vhost_poll_wakeup(wait_queue_t *wait, unsigned mode, int sync, 167 void *key) 168 { 169 struct vhost_poll *poll = container_of(wait, struct vhost_poll, wait); 170 171 if (!((unsigned long)key & poll->mask)) 172 return 0; 173 174 vhost_poll_queue(poll); 175 return 0; 176 } 177 178 void vhost_work_init(struct vhost_work *work, vhost_work_fn_t fn) 179 { 180 clear_bit(VHOST_WORK_QUEUED, &work->flags); 181 work->fn = fn; 182 init_waitqueue_head(&work->done); 183 } 184 EXPORT_SYMBOL_GPL(vhost_work_init); 185 186 /* Init poll structure */ 187 void vhost_poll_init(struct vhost_poll *poll, vhost_work_fn_t fn, 188 unsigned long mask, struct vhost_dev *dev) 189 { 190 init_waitqueue_func_entry(&poll->wait, vhost_poll_wakeup); 191 init_poll_funcptr(&poll->table, vhost_poll_func); 192 poll->mask = mask; 193 poll->dev = dev; 194 poll->wqh = NULL; 195 196 vhost_work_init(&poll->work, fn); 197 } 198 EXPORT_SYMBOL_GPL(vhost_poll_init); 199 200 /* Start polling a file. We add ourselves to file's wait queue. The caller must 201 * keep a reference to a file until after vhost_poll_stop is called. */ 202 int vhost_poll_start(struct vhost_poll *poll, struct file *file) 203 { 204 unsigned long mask; 205 int ret = 0; 206 207 if (poll->wqh) 208 return 0; 209 210 mask = file->f_op->poll(file, &poll->table); 211 if (mask) 212 vhost_poll_wakeup(&poll->wait, 0, 0, (void *)mask); 213 if (mask & POLLERR) { 214 if (poll->wqh) 215 remove_wait_queue(poll->wqh, &poll->wait); 216 ret = -EINVAL; 217 } 218 219 return ret; 220 } 221 EXPORT_SYMBOL_GPL(vhost_poll_start); 222 223 /* Stop polling a file. After this function returns, it becomes safe to drop the 224 * file reference. You must also flush afterwards. */ 225 void vhost_poll_stop(struct vhost_poll *poll) 226 { 227 if (poll->wqh) { 228 remove_wait_queue(poll->wqh, &poll->wait); 229 poll->wqh = NULL; 230 } 231 } 232 EXPORT_SYMBOL_GPL(vhost_poll_stop); 233 234 void vhost_work_flush(struct vhost_dev *dev, struct vhost_work *work) 235 { 236 struct vhost_flush_struct flush; 237 238 if (dev->worker) { 239 init_completion(&flush.wait_event); 240 vhost_work_init(&flush.work, vhost_flush_work); 241 242 vhost_work_queue(dev, &flush.work); 243 wait_for_completion(&flush.wait_event); 244 } 245 } 246 EXPORT_SYMBOL_GPL(vhost_work_flush); 247 248 /* Flush any work that has been scheduled. When calling this, don't hold any 249 * locks that are also used by the callback. */ 250 void vhost_poll_flush(struct vhost_poll *poll) 251 { 252 vhost_work_flush(poll->dev, &poll->work); 253 } 254 EXPORT_SYMBOL_GPL(vhost_poll_flush); 255 256 void vhost_work_queue(struct vhost_dev *dev, struct vhost_work *work) 257 { 258 if (!dev->worker) 259 return; 260 261 if (!test_and_set_bit(VHOST_WORK_QUEUED, &work->flags)) { 262 /* We can only add the work to the list after we're 263 * sure it was not in the list. 264 */ 265 smp_mb(); 266 llist_add(&work->node, &dev->work_list); 267 wake_up_process(dev->worker); 268 } 269 } 270 EXPORT_SYMBOL_GPL(vhost_work_queue); 271 272 /* A lockless hint for busy polling code to exit the loop */ 273 bool vhost_has_work(struct vhost_dev *dev) 274 { 275 return !llist_empty(&dev->work_list); 276 } 277 EXPORT_SYMBOL_GPL(vhost_has_work); 278 279 void vhost_poll_queue(struct vhost_poll *poll) 280 { 281 vhost_work_queue(poll->dev, &poll->work); 282 } 283 EXPORT_SYMBOL_GPL(vhost_poll_queue); 284 285 static void vhost_vq_reset(struct vhost_dev *dev, 286 struct vhost_virtqueue *vq) 287 { 288 vq->num = 1; 289 vq->desc = NULL; 290 vq->avail = NULL; 291 vq->used = NULL; 292 vq->last_avail_idx = 0; 293 vq->avail_idx = 0; 294 vq->last_used_idx = 0; 295 vq->signalled_used = 0; 296 vq->signalled_used_valid = false; 297 vq->used_flags = 0; 298 vq->log_used = false; 299 vq->log_addr = -1ull; 300 vq->private_data = NULL; 301 vq->acked_features = 0; 302 vq->log_base = NULL; 303 vq->error_ctx = NULL; 304 vq->error = NULL; 305 vq->kick = NULL; 306 vq->call_ctx = NULL; 307 vq->call = NULL; 308 vq->log_ctx = NULL; 309 vhost_reset_is_le(vq); 310 vhost_disable_cross_endian(vq); 311 vq->busyloop_timeout = 0; 312 vq->umem = NULL; 313 vq->iotlb = NULL; 314 } 315 316 static int vhost_worker(void *data) 317 { 318 struct vhost_dev *dev = data; 319 struct vhost_work *work, *work_next; 320 struct llist_node *node; 321 mm_segment_t oldfs = get_fs(); 322 323 set_fs(USER_DS); 324 use_mm(dev->mm); 325 326 for (;;) { 327 /* mb paired w/ kthread_stop */ 328 set_current_state(TASK_INTERRUPTIBLE); 329 330 if (kthread_should_stop()) { 331 __set_current_state(TASK_RUNNING); 332 break; 333 } 334 335 node = llist_del_all(&dev->work_list); 336 if (!node) 337 schedule(); 338 339 node = llist_reverse_order(node); 340 /* make sure flag is seen after deletion */ 341 smp_wmb(); 342 llist_for_each_entry_safe(work, work_next, node, node) { 343 clear_bit(VHOST_WORK_QUEUED, &work->flags); 344 __set_current_state(TASK_RUNNING); 345 work->fn(work); 346 if (need_resched()) 347 schedule(); 348 } 349 } 350 unuse_mm(dev->mm); 351 set_fs(oldfs); 352 return 0; 353 } 354 355 static void vhost_vq_free_iovecs(struct vhost_virtqueue *vq) 356 { 357 kfree(vq->indirect); 358 vq->indirect = NULL; 359 kfree(vq->log); 360 vq->log = NULL; 361 kfree(vq->heads); 362 vq->heads = NULL; 363 } 364 365 /* Helper to allocate iovec buffers for all vqs. */ 366 static long vhost_dev_alloc_iovecs(struct vhost_dev *dev) 367 { 368 struct vhost_virtqueue *vq; 369 int i; 370 371 for (i = 0; i < dev->nvqs; ++i) { 372 vq = dev->vqs[i]; 373 vq->indirect = kmalloc(sizeof *vq->indirect * UIO_MAXIOV, 374 GFP_KERNEL); 375 vq->log = kmalloc(sizeof *vq->log * UIO_MAXIOV, GFP_KERNEL); 376 vq->heads = kmalloc(sizeof *vq->heads * UIO_MAXIOV, GFP_KERNEL); 377 if (!vq->indirect || !vq->log || !vq->heads) 378 goto err_nomem; 379 } 380 return 0; 381 382 err_nomem: 383 for (; i >= 0; --i) 384 vhost_vq_free_iovecs(dev->vqs[i]); 385 return -ENOMEM; 386 } 387 388 static void vhost_dev_free_iovecs(struct vhost_dev *dev) 389 { 390 int i; 391 392 for (i = 0; i < dev->nvqs; ++i) 393 vhost_vq_free_iovecs(dev->vqs[i]); 394 } 395 396 void vhost_dev_init(struct vhost_dev *dev, 397 struct vhost_virtqueue **vqs, int nvqs) 398 { 399 struct vhost_virtqueue *vq; 400 int i; 401 402 dev->vqs = vqs; 403 dev->nvqs = nvqs; 404 mutex_init(&dev->mutex); 405 dev->log_ctx = NULL; 406 dev->log_file = NULL; 407 dev->umem = NULL; 408 dev->iotlb = NULL; 409 dev->mm = NULL; 410 dev->worker = NULL; 411 init_llist_head(&dev->work_list); 412 init_waitqueue_head(&dev->wait); 413 INIT_LIST_HEAD(&dev->read_list); 414 INIT_LIST_HEAD(&dev->pending_list); 415 spin_lock_init(&dev->iotlb_lock); 416 417 418 for (i = 0; i < dev->nvqs; ++i) { 419 vq = dev->vqs[i]; 420 vq->log = NULL; 421 vq->indirect = NULL; 422 vq->heads = NULL; 423 vq->dev = dev; 424 mutex_init(&vq->mutex); 425 vhost_vq_reset(dev, vq); 426 if (vq->handle_kick) 427 vhost_poll_init(&vq->poll, vq->handle_kick, 428 POLLIN, dev); 429 } 430 } 431 EXPORT_SYMBOL_GPL(vhost_dev_init); 432 433 /* Caller should have device mutex */ 434 long vhost_dev_check_owner(struct vhost_dev *dev) 435 { 436 /* Are you the owner? If not, I don't think you mean to do that */ 437 return dev->mm == current->mm ? 0 : -EPERM; 438 } 439 EXPORT_SYMBOL_GPL(vhost_dev_check_owner); 440 441 struct vhost_attach_cgroups_struct { 442 struct vhost_work work; 443 struct task_struct *owner; 444 int ret; 445 }; 446 447 static void vhost_attach_cgroups_work(struct vhost_work *work) 448 { 449 struct vhost_attach_cgroups_struct *s; 450 451 s = container_of(work, struct vhost_attach_cgroups_struct, work); 452 s->ret = cgroup_attach_task_all(s->owner, current); 453 } 454 455 static int vhost_attach_cgroups(struct vhost_dev *dev) 456 { 457 struct vhost_attach_cgroups_struct attach; 458 459 attach.owner = current; 460 vhost_work_init(&attach.work, vhost_attach_cgroups_work); 461 vhost_work_queue(dev, &attach.work); 462 vhost_work_flush(dev, &attach.work); 463 return attach.ret; 464 } 465 466 /* Caller should have device mutex */ 467 bool vhost_dev_has_owner(struct vhost_dev *dev) 468 { 469 return dev->mm; 470 } 471 EXPORT_SYMBOL_GPL(vhost_dev_has_owner); 472 473 /* Caller should have device mutex */ 474 long vhost_dev_set_owner(struct vhost_dev *dev) 475 { 476 struct task_struct *worker; 477 int err; 478 479 /* Is there an owner already? */ 480 if (vhost_dev_has_owner(dev)) { 481 err = -EBUSY; 482 goto err_mm; 483 } 484 485 /* No owner, become one */ 486 dev->mm = get_task_mm(current); 487 worker = kthread_create(vhost_worker, dev, "vhost-%d", current->pid); 488 if (IS_ERR(worker)) { 489 err = PTR_ERR(worker); 490 goto err_worker; 491 } 492 493 dev->worker = worker; 494 wake_up_process(worker); /* avoid contributing to loadavg */ 495 496 err = vhost_attach_cgroups(dev); 497 if (err) 498 goto err_cgroup; 499 500 err = vhost_dev_alloc_iovecs(dev); 501 if (err) 502 goto err_cgroup; 503 504 return 0; 505 err_cgroup: 506 kthread_stop(worker); 507 dev->worker = NULL; 508 err_worker: 509 if (dev->mm) 510 mmput(dev->mm); 511 dev->mm = NULL; 512 err_mm: 513 return err; 514 } 515 EXPORT_SYMBOL_GPL(vhost_dev_set_owner); 516 517 static void *vhost_kvzalloc(unsigned long size) 518 { 519 void *n = kzalloc(size, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT); 520 521 if (!n) 522 n = vzalloc(size); 523 return n; 524 } 525 526 struct vhost_umem *vhost_dev_reset_owner_prepare(void) 527 { 528 return vhost_kvzalloc(sizeof(struct vhost_umem)); 529 } 530 EXPORT_SYMBOL_GPL(vhost_dev_reset_owner_prepare); 531 532 /* Caller should have device mutex */ 533 void vhost_dev_reset_owner(struct vhost_dev *dev, struct vhost_umem *umem) 534 { 535 int i; 536 537 vhost_dev_cleanup(dev, true); 538 539 /* Restore memory to default empty mapping. */ 540 INIT_LIST_HEAD(&umem->umem_list); 541 dev->umem = umem; 542 /* We don't need VQ locks below since vhost_dev_cleanup makes sure 543 * VQs aren't running. 544 */ 545 for (i = 0; i < dev->nvqs; ++i) 546 dev->vqs[i]->umem = umem; 547 } 548 EXPORT_SYMBOL_GPL(vhost_dev_reset_owner); 549 550 void vhost_dev_stop(struct vhost_dev *dev) 551 { 552 int i; 553 554 for (i = 0; i < dev->nvqs; ++i) { 555 if (dev->vqs[i]->kick && dev->vqs[i]->handle_kick) { 556 vhost_poll_stop(&dev->vqs[i]->poll); 557 vhost_poll_flush(&dev->vqs[i]->poll); 558 } 559 } 560 } 561 EXPORT_SYMBOL_GPL(vhost_dev_stop); 562 563 static void vhost_umem_free(struct vhost_umem *umem, 564 struct vhost_umem_node *node) 565 { 566 vhost_umem_interval_tree_remove(node, &umem->umem_tree); 567 list_del(&node->link); 568 kfree(node); 569 umem->numem--; 570 } 571 572 static void vhost_umem_clean(struct vhost_umem *umem) 573 { 574 struct vhost_umem_node *node, *tmp; 575 576 if (!umem) 577 return; 578 579 list_for_each_entry_safe(node, tmp, &umem->umem_list, link) 580 vhost_umem_free(umem, node); 581 582 kvfree(umem); 583 } 584 585 static void vhost_clear_msg(struct vhost_dev *dev) 586 { 587 struct vhost_msg_node *node, *n; 588 589 spin_lock(&dev->iotlb_lock); 590 591 list_for_each_entry_safe(node, n, &dev->read_list, node) { 592 list_del(&node->node); 593 kfree(node); 594 } 595 596 list_for_each_entry_safe(node, n, &dev->pending_list, node) { 597 list_del(&node->node); 598 kfree(node); 599 } 600 601 spin_unlock(&dev->iotlb_lock); 602 } 603 604 /* Caller should have device mutex if and only if locked is set */ 605 void vhost_dev_cleanup(struct vhost_dev *dev, bool locked) 606 { 607 int i; 608 609 for (i = 0; i < dev->nvqs; ++i) { 610 if (dev->vqs[i]->error_ctx) 611 eventfd_ctx_put(dev->vqs[i]->error_ctx); 612 if (dev->vqs[i]->error) 613 fput(dev->vqs[i]->error); 614 if (dev->vqs[i]->kick) 615 fput(dev->vqs[i]->kick); 616 if (dev->vqs[i]->call_ctx) 617 eventfd_ctx_put(dev->vqs[i]->call_ctx); 618 if (dev->vqs[i]->call) 619 fput(dev->vqs[i]->call); 620 vhost_vq_reset(dev, dev->vqs[i]); 621 } 622 vhost_dev_free_iovecs(dev); 623 if (dev->log_ctx) 624 eventfd_ctx_put(dev->log_ctx); 625 dev->log_ctx = NULL; 626 if (dev->log_file) 627 fput(dev->log_file); 628 dev->log_file = NULL; 629 /* No one will access memory at this point */ 630 vhost_umem_clean(dev->umem); 631 dev->umem = NULL; 632 vhost_umem_clean(dev->iotlb); 633 dev->iotlb = NULL; 634 vhost_clear_msg(dev); 635 wake_up_interruptible_poll(&dev->wait, POLLIN | POLLRDNORM); 636 WARN_ON(!llist_empty(&dev->work_list)); 637 if (dev->worker) { 638 kthread_stop(dev->worker); 639 dev->worker = NULL; 640 } 641 if (dev->mm) 642 mmput(dev->mm); 643 dev->mm = NULL; 644 } 645 EXPORT_SYMBOL_GPL(vhost_dev_cleanup); 646 647 static int log_access_ok(void __user *log_base, u64 addr, unsigned long sz) 648 { 649 u64 a = addr / VHOST_PAGE_SIZE / 8; 650 651 /* Make sure 64 bit math will not overflow. */ 652 if (a > ULONG_MAX - (unsigned long)log_base || 653 a + (unsigned long)log_base > ULONG_MAX) 654 return 0; 655 656 return access_ok(VERIFY_WRITE, log_base + a, 657 (sz + VHOST_PAGE_SIZE * 8 - 1) / VHOST_PAGE_SIZE / 8); 658 } 659 660 static bool vhost_overflow(u64 uaddr, u64 size) 661 { 662 /* Make sure 64 bit math will not overflow. */ 663 return uaddr > ULONG_MAX || size > ULONG_MAX || uaddr > ULONG_MAX - size; 664 } 665 666 /* Caller should have vq mutex and device mutex. */ 667 static int vq_memory_access_ok(void __user *log_base, struct vhost_umem *umem, 668 int log_all) 669 { 670 struct vhost_umem_node *node; 671 672 if (!umem) 673 return 0; 674 675 list_for_each_entry(node, &umem->umem_list, link) { 676 unsigned long a = node->userspace_addr; 677 678 if (vhost_overflow(node->userspace_addr, node->size)) 679 return 0; 680 681 682 if (!access_ok(VERIFY_WRITE, (void __user *)a, 683 node->size)) 684 return 0; 685 else if (log_all && !log_access_ok(log_base, 686 node->start, 687 node->size)) 688 return 0; 689 } 690 return 1; 691 } 692 693 /* Can we switch to this memory table? */ 694 /* Caller should have device mutex but not vq mutex */ 695 static int memory_access_ok(struct vhost_dev *d, struct vhost_umem *umem, 696 int log_all) 697 { 698 int i; 699 700 for (i = 0; i < d->nvqs; ++i) { 701 int ok; 702 bool log; 703 704 mutex_lock(&d->vqs[i]->mutex); 705 log = log_all || vhost_has_feature(d->vqs[i], VHOST_F_LOG_ALL); 706 /* If ring is inactive, will check when it's enabled. */ 707 if (d->vqs[i]->private_data) 708 ok = vq_memory_access_ok(d->vqs[i]->log_base, 709 umem, log); 710 else 711 ok = 1; 712 mutex_unlock(&d->vqs[i]->mutex); 713 if (!ok) 714 return 0; 715 } 716 return 1; 717 } 718 719 static int translate_desc(struct vhost_virtqueue *vq, u64 addr, u32 len, 720 struct iovec iov[], int iov_size, int access); 721 722 static int vhost_copy_to_user(struct vhost_virtqueue *vq, void *to, 723 const void *from, unsigned size) 724 { 725 int ret; 726 727 if (!vq->iotlb) 728 return __copy_to_user(to, from, size); 729 else { 730 /* This function should be called after iotlb 731 * prefetch, which means we're sure that all vq 732 * could be access through iotlb. So -EAGAIN should 733 * not happen in this case. 734 */ 735 /* TODO: more fast path */ 736 struct iov_iter t; 737 ret = translate_desc(vq, (u64)(uintptr_t)to, size, vq->iotlb_iov, 738 ARRAY_SIZE(vq->iotlb_iov), 739 VHOST_ACCESS_WO); 740 if (ret < 0) 741 goto out; 742 iov_iter_init(&t, WRITE, vq->iotlb_iov, ret, size); 743 ret = copy_to_iter(from, size, &t); 744 if (ret == size) 745 ret = 0; 746 } 747 out: 748 return ret; 749 } 750 751 static int vhost_copy_from_user(struct vhost_virtqueue *vq, void *to, 752 void *from, unsigned size) 753 { 754 int ret; 755 756 if (!vq->iotlb) 757 return __copy_from_user(to, from, size); 758 else { 759 /* This function should be called after iotlb 760 * prefetch, which means we're sure that vq 761 * could be access through iotlb. So -EAGAIN should 762 * not happen in this case. 763 */ 764 /* TODO: more fast path */ 765 struct iov_iter f; 766 ret = translate_desc(vq, (u64)(uintptr_t)from, size, vq->iotlb_iov, 767 ARRAY_SIZE(vq->iotlb_iov), 768 VHOST_ACCESS_RO); 769 if (ret < 0) { 770 vq_err(vq, "IOTLB translation failure: uaddr " 771 "%p size 0x%llx\n", from, 772 (unsigned long long) size); 773 goto out; 774 } 775 iov_iter_init(&f, READ, vq->iotlb_iov, ret, size); 776 ret = copy_from_iter(to, size, &f); 777 if (ret == size) 778 ret = 0; 779 } 780 781 out: 782 return ret; 783 } 784 785 static void __user *__vhost_get_user(struct vhost_virtqueue *vq, 786 void *addr, unsigned size) 787 { 788 int ret; 789 790 /* This function should be called after iotlb 791 * prefetch, which means we're sure that vq 792 * could be access through iotlb. So -EAGAIN should 793 * not happen in this case. 794 */ 795 /* TODO: more fast path */ 796 ret = translate_desc(vq, (u64)(uintptr_t)addr, size, vq->iotlb_iov, 797 ARRAY_SIZE(vq->iotlb_iov), 798 VHOST_ACCESS_RO); 799 if (ret < 0) { 800 vq_err(vq, "IOTLB translation failure: uaddr " 801 "%p size 0x%llx\n", addr, 802 (unsigned long long) size); 803 return NULL; 804 } 805 806 if (ret != 1 || vq->iotlb_iov[0].iov_len != size) { 807 vq_err(vq, "Non atomic userspace memory access: uaddr " 808 "%p size 0x%llx\n", addr, 809 (unsigned long long) size); 810 return NULL; 811 } 812 813 return vq->iotlb_iov[0].iov_base; 814 } 815 816 #define vhost_put_user(vq, x, ptr) \ 817 ({ \ 818 int ret = -EFAULT; \ 819 if (!vq->iotlb) { \ 820 ret = __put_user(x, ptr); \ 821 } else { \ 822 __typeof__(ptr) to = \ 823 (__typeof__(ptr)) __vhost_get_user(vq, ptr, sizeof(*ptr)); \ 824 if (to != NULL) \ 825 ret = __put_user(x, to); \ 826 else \ 827 ret = -EFAULT; \ 828 } \ 829 ret; \ 830 }) 831 832 #define vhost_get_user(vq, x, ptr) \ 833 ({ \ 834 int ret; \ 835 if (!vq->iotlb) { \ 836 ret = __get_user(x, ptr); \ 837 } else { \ 838 __typeof__(ptr) from = \ 839 (__typeof__(ptr)) __vhost_get_user(vq, ptr, sizeof(*ptr)); \ 840 if (from != NULL) \ 841 ret = __get_user(x, from); \ 842 else \ 843 ret = -EFAULT; \ 844 } \ 845 ret; \ 846 }) 847 848 static void vhost_dev_lock_vqs(struct vhost_dev *d) 849 { 850 int i = 0; 851 for (i = 0; i < d->nvqs; ++i) 852 mutex_lock(&d->vqs[i]->mutex); 853 } 854 855 static void vhost_dev_unlock_vqs(struct vhost_dev *d) 856 { 857 int i = 0; 858 for (i = 0; i < d->nvqs; ++i) 859 mutex_unlock(&d->vqs[i]->mutex); 860 } 861 862 static int vhost_new_umem_range(struct vhost_umem *umem, 863 u64 start, u64 size, u64 end, 864 u64 userspace_addr, int perm) 865 { 866 struct vhost_umem_node *tmp, *node = kmalloc(sizeof(*node), GFP_ATOMIC); 867 868 if (!node) 869 return -ENOMEM; 870 871 if (umem->numem == max_iotlb_entries) { 872 tmp = list_first_entry(&umem->umem_list, typeof(*tmp), link); 873 vhost_umem_free(umem, tmp); 874 } 875 876 node->start = start; 877 node->size = size; 878 node->last = end; 879 node->userspace_addr = userspace_addr; 880 node->perm = perm; 881 INIT_LIST_HEAD(&node->link); 882 list_add_tail(&node->link, &umem->umem_list); 883 vhost_umem_interval_tree_insert(node, &umem->umem_tree); 884 umem->numem++; 885 886 return 0; 887 } 888 889 static void vhost_del_umem_range(struct vhost_umem *umem, 890 u64 start, u64 end) 891 { 892 struct vhost_umem_node *node; 893 894 while ((node = vhost_umem_interval_tree_iter_first(&umem->umem_tree, 895 start, end))) 896 vhost_umem_free(umem, node); 897 } 898 899 static void vhost_iotlb_notify_vq(struct vhost_dev *d, 900 struct vhost_iotlb_msg *msg) 901 { 902 struct vhost_msg_node *node, *n; 903 904 spin_lock(&d->iotlb_lock); 905 906 list_for_each_entry_safe(node, n, &d->pending_list, node) { 907 struct vhost_iotlb_msg *vq_msg = &node->msg.iotlb; 908 if (msg->iova <= vq_msg->iova && 909 msg->iova + msg->size - 1 > vq_msg->iova && 910 vq_msg->type == VHOST_IOTLB_MISS) { 911 vhost_poll_queue(&node->vq->poll); 912 list_del(&node->node); 913 kfree(node); 914 } 915 } 916 917 spin_unlock(&d->iotlb_lock); 918 } 919 920 static int umem_access_ok(u64 uaddr, u64 size, int access) 921 { 922 unsigned long a = uaddr; 923 924 /* Make sure 64 bit math will not overflow. */ 925 if (vhost_overflow(uaddr, size)) 926 return -EFAULT; 927 928 if ((access & VHOST_ACCESS_RO) && 929 !access_ok(VERIFY_READ, (void __user *)a, size)) 930 return -EFAULT; 931 if ((access & VHOST_ACCESS_WO) && 932 !access_ok(VERIFY_WRITE, (void __user *)a, size)) 933 return -EFAULT; 934 return 0; 935 } 936 937 int vhost_process_iotlb_msg(struct vhost_dev *dev, 938 struct vhost_iotlb_msg *msg) 939 { 940 int ret = 0; 941 942 vhost_dev_lock_vqs(dev); 943 switch (msg->type) { 944 case VHOST_IOTLB_UPDATE: 945 if (!dev->iotlb) { 946 ret = -EFAULT; 947 break; 948 } 949 if (umem_access_ok(msg->uaddr, msg->size, msg->perm)) { 950 ret = -EFAULT; 951 break; 952 } 953 if (vhost_new_umem_range(dev->iotlb, msg->iova, msg->size, 954 msg->iova + msg->size - 1, 955 msg->uaddr, msg->perm)) { 956 ret = -ENOMEM; 957 break; 958 } 959 vhost_iotlb_notify_vq(dev, msg); 960 break; 961 case VHOST_IOTLB_INVALIDATE: 962 vhost_del_umem_range(dev->iotlb, msg->iova, 963 msg->iova + msg->size - 1); 964 break; 965 default: 966 ret = -EINVAL; 967 break; 968 } 969 970 vhost_dev_unlock_vqs(dev); 971 return ret; 972 } 973 ssize_t vhost_chr_write_iter(struct vhost_dev *dev, 974 struct iov_iter *from) 975 { 976 struct vhost_msg_node node; 977 unsigned size = sizeof(struct vhost_msg); 978 size_t ret; 979 int err; 980 981 if (iov_iter_count(from) < size) 982 return 0; 983 ret = copy_from_iter(&node.msg, size, from); 984 if (ret != size) 985 goto done; 986 987 switch (node.msg.type) { 988 case VHOST_IOTLB_MSG: 989 err = vhost_process_iotlb_msg(dev, &node.msg.iotlb); 990 if (err) 991 ret = err; 992 break; 993 default: 994 ret = -EINVAL; 995 break; 996 } 997 998 done: 999 return ret; 1000 } 1001 EXPORT_SYMBOL(vhost_chr_write_iter); 1002 1003 unsigned int vhost_chr_poll(struct file *file, struct vhost_dev *dev, 1004 poll_table *wait) 1005 { 1006 unsigned int mask = 0; 1007 1008 poll_wait(file, &dev->wait, wait); 1009 1010 if (!list_empty(&dev->read_list)) 1011 mask |= POLLIN | POLLRDNORM; 1012 1013 return mask; 1014 } 1015 EXPORT_SYMBOL(vhost_chr_poll); 1016 1017 ssize_t vhost_chr_read_iter(struct vhost_dev *dev, struct iov_iter *to, 1018 int noblock) 1019 { 1020 DEFINE_WAIT(wait); 1021 struct vhost_msg_node *node; 1022 ssize_t ret = 0; 1023 unsigned size = sizeof(struct vhost_msg); 1024 1025 if (iov_iter_count(to) < size) 1026 return 0; 1027 1028 while (1) { 1029 if (!noblock) 1030 prepare_to_wait(&dev->wait, &wait, 1031 TASK_INTERRUPTIBLE); 1032 1033 node = vhost_dequeue_msg(dev, &dev->read_list); 1034 if (node) 1035 break; 1036 if (noblock) { 1037 ret = -EAGAIN; 1038 break; 1039 } 1040 if (signal_pending(current)) { 1041 ret = -ERESTARTSYS; 1042 break; 1043 } 1044 if (!dev->iotlb) { 1045 ret = -EBADFD; 1046 break; 1047 } 1048 1049 schedule(); 1050 } 1051 1052 if (!noblock) 1053 finish_wait(&dev->wait, &wait); 1054 1055 if (node) { 1056 ret = copy_to_iter(&node->msg, size, to); 1057 1058 if (ret != size || node->msg.type != VHOST_IOTLB_MISS) { 1059 kfree(node); 1060 return ret; 1061 } 1062 1063 vhost_enqueue_msg(dev, &dev->pending_list, node); 1064 } 1065 1066 return ret; 1067 } 1068 EXPORT_SYMBOL_GPL(vhost_chr_read_iter); 1069 1070 static int vhost_iotlb_miss(struct vhost_virtqueue *vq, u64 iova, int access) 1071 { 1072 struct vhost_dev *dev = vq->dev; 1073 struct vhost_msg_node *node; 1074 struct vhost_iotlb_msg *msg; 1075 1076 node = vhost_new_msg(vq, VHOST_IOTLB_MISS); 1077 if (!node) 1078 return -ENOMEM; 1079 1080 msg = &node->msg.iotlb; 1081 msg->type = VHOST_IOTLB_MISS; 1082 msg->iova = iova; 1083 msg->perm = access; 1084 1085 vhost_enqueue_msg(dev, &dev->read_list, node); 1086 1087 return 0; 1088 } 1089 1090 static int vq_access_ok(struct vhost_virtqueue *vq, unsigned int num, 1091 struct vring_desc __user *desc, 1092 struct vring_avail __user *avail, 1093 struct vring_used __user *used) 1094 1095 { 1096 size_t s = vhost_has_feature(vq, VIRTIO_RING_F_EVENT_IDX) ? 2 : 0; 1097 1098 return access_ok(VERIFY_READ, desc, num * sizeof *desc) && 1099 access_ok(VERIFY_READ, avail, 1100 sizeof *avail + num * sizeof *avail->ring + s) && 1101 access_ok(VERIFY_WRITE, used, 1102 sizeof *used + num * sizeof *used->ring + s); 1103 } 1104 1105 static int iotlb_access_ok(struct vhost_virtqueue *vq, 1106 int access, u64 addr, u64 len) 1107 { 1108 const struct vhost_umem_node *node; 1109 struct vhost_umem *umem = vq->iotlb; 1110 u64 s = 0, size; 1111 1112 while (len > s) { 1113 node = vhost_umem_interval_tree_iter_first(&umem->umem_tree, 1114 addr, 1115 addr + len - 1); 1116 if (node == NULL || node->start > addr) { 1117 vhost_iotlb_miss(vq, addr, access); 1118 return false; 1119 } else if (!(node->perm & access)) { 1120 /* Report the possible access violation by 1121 * request another translation from userspace. 1122 */ 1123 return false; 1124 } 1125 1126 size = node->size - addr + node->start; 1127 s += size; 1128 addr += size; 1129 } 1130 1131 return true; 1132 } 1133 1134 int vq_iotlb_prefetch(struct vhost_virtqueue *vq) 1135 { 1136 size_t s = vhost_has_feature(vq, VIRTIO_RING_F_EVENT_IDX) ? 2 : 0; 1137 unsigned int num = vq->num; 1138 1139 if (!vq->iotlb) 1140 return 1; 1141 1142 return iotlb_access_ok(vq, VHOST_ACCESS_RO, (u64)(uintptr_t)vq->desc, 1143 num * sizeof *vq->desc) && 1144 iotlb_access_ok(vq, VHOST_ACCESS_RO, (u64)(uintptr_t)vq->avail, 1145 sizeof *vq->avail + 1146 num * sizeof *vq->avail->ring + s) && 1147 iotlb_access_ok(vq, VHOST_ACCESS_WO, (u64)(uintptr_t)vq->used, 1148 sizeof *vq->used + 1149 num * sizeof *vq->used->ring + s); 1150 } 1151 EXPORT_SYMBOL_GPL(vq_iotlb_prefetch); 1152 1153 /* Can we log writes? */ 1154 /* Caller should have device mutex but not vq mutex */ 1155 int vhost_log_access_ok(struct vhost_dev *dev) 1156 { 1157 return memory_access_ok(dev, dev->umem, 1); 1158 } 1159 EXPORT_SYMBOL_GPL(vhost_log_access_ok); 1160 1161 /* Verify access for write logging. */ 1162 /* Caller should have vq mutex and device mutex */ 1163 static int vq_log_access_ok(struct vhost_virtqueue *vq, 1164 void __user *log_base) 1165 { 1166 size_t s = vhost_has_feature(vq, VIRTIO_RING_F_EVENT_IDX) ? 2 : 0; 1167 1168 return vq_memory_access_ok(log_base, vq->umem, 1169 vhost_has_feature(vq, VHOST_F_LOG_ALL)) && 1170 (!vq->log_used || log_access_ok(log_base, vq->log_addr, 1171 sizeof *vq->used + 1172 vq->num * sizeof *vq->used->ring + s)); 1173 } 1174 1175 /* Can we start vq? */ 1176 /* Caller should have vq mutex and device mutex */ 1177 int vhost_vq_access_ok(struct vhost_virtqueue *vq) 1178 { 1179 if (vq->iotlb) { 1180 /* When device IOTLB was used, the access validation 1181 * will be validated during prefetching. 1182 */ 1183 return 1; 1184 } 1185 return vq_access_ok(vq, vq->num, vq->desc, vq->avail, vq->used) && 1186 vq_log_access_ok(vq, vq->log_base); 1187 } 1188 EXPORT_SYMBOL_GPL(vhost_vq_access_ok); 1189 1190 static struct vhost_umem *vhost_umem_alloc(void) 1191 { 1192 struct vhost_umem *umem = vhost_kvzalloc(sizeof(*umem)); 1193 1194 if (!umem) 1195 return NULL; 1196 1197 umem->umem_tree = RB_ROOT; 1198 umem->numem = 0; 1199 INIT_LIST_HEAD(&umem->umem_list); 1200 1201 return umem; 1202 } 1203 1204 static long vhost_set_memory(struct vhost_dev *d, struct vhost_memory __user *m) 1205 { 1206 struct vhost_memory mem, *newmem; 1207 struct vhost_memory_region *region; 1208 struct vhost_umem *newumem, *oldumem; 1209 unsigned long size = offsetof(struct vhost_memory, regions); 1210 int i; 1211 1212 if (copy_from_user(&mem, m, size)) 1213 return -EFAULT; 1214 if (mem.padding) 1215 return -EOPNOTSUPP; 1216 if (mem.nregions > max_mem_regions) 1217 return -E2BIG; 1218 newmem = vhost_kvzalloc(size + mem.nregions * sizeof(*m->regions)); 1219 if (!newmem) 1220 return -ENOMEM; 1221 1222 memcpy(newmem, &mem, size); 1223 if (copy_from_user(newmem->regions, m->regions, 1224 mem.nregions * sizeof *m->regions)) { 1225 kvfree(newmem); 1226 return -EFAULT; 1227 } 1228 1229 newumem = vhost_umem_alloc(); 1230 if (!newumem) { 1231 kvfree(newmem); 1232 return -ENOMEM; 1233 } 1234 1235 for (region = newmem->regions; 1236 region < newmem->regions + mem.nregions; 1237 region++) { 1238 if (vhost_new_umem_range(newumem, 1239 region->guest_phys_addr, 1240 region->memory_size, 1241 region->guest_phys_addr + 1242 region->memory_size - 1, 1243 region->userspace_addr, 1244 VHOST_ACCESS_RW)) 1245 goto err; 1246 } 1247 1248 if (!memory_access_ok(d, newumem, 0)) 1249 goto err; 1250 1251 oldumem = d->umem; 1252 d->umem = newumem; 1253 1254 /* All memory accesses are done under some VQ mutex. */ 1255 for (i = 0; i < d->nvqs; ++i) { 1256 mutex_lock(&d->vqs[i]->mutex); 1257 d->vqs[i]->umem = newumem; 1258 mutex_unlock(&d->vqs[i]->mutex); 1259 } 1260 1261 kvfree(newmem); 1262 vhost_umem_clean(oldumem); 1263 return 0; 1264 1265 err: 1266 vhost_umem_clean(newumem); 1267 kvfree(newmem); 1268 return -EFAULT; 1269 } 1270 1271 long vhost_vring_ioctl(struct vhost_dev *d, int ioctl, void __user *argp) 1272 { 1273 struct file *eventfp, *filep = NULL; 1274 bool pollstart = false, pollstop = false; 1275 struct eventfd_ctx *ctx = NULL; 1276 u32 __user *idxp = argp; 1277 struct vhost_virtqueue *vq; 1278 struct vhost_vring_state s; 1279 struct vhost_vring_file f; 1280 struct vhost_vring_addr a; 1281 u32 idx; 1282 long r; 1283 1284 r = get_user(idx, idxp); 1285 if (r < 0) 1286 return r; 1287 if (idx >= d->nvqs) 1288 return -ENOBUFS; 1289 1290 vq = d->vqs[idx]; 1291 1292 mutex_lock(&vq->mutex); 1293 1294 switch (ioctl) { 1295 case VHOST_SET_VRING_NUM: 1296 /* Resizing ring with an active backend? 1297 * You don't want to do that. */ 1298 if (vq->private_data) { 1299 r = -EBUSY; 1300 break; 1301 } 1302 if (copy_from_user(&s, argp, sizeof s)) { 1303 r = -EFAULT; 1304 break; 1305 } 1306 if (!s.num || s.num > 0xffff || (s.num & (s.num - 1))) { 1307 r = -EINVAL; 1308 break; 1309 } 1310 vq->num = s.num; 1311 break; 1312 case VHOST_SET_VRING_BASE: 1313 /* Moving base with an active backend? 1314 * You don't want to do that. */ 1315 if (vq->private_data) { 1316 r = -EBUSY; 1317 break; 1318 } 1319 if (copy_from_user(&s, argp, sizeof s)) { 1320 r = -EFAULT; 1321 break; 1322 } 1323 if (s.num > 0xffff) { 1324 r = -EINVAL; 1325 break; 1326 } 1327 vq->last_avail_idx = s.num; 1328 /* Forget the cached index value. */ 1329 vq->avail_idx = vq->last_avail_idx; 1330 break; 1331 case VHOST_GET_VRING_BASE: 1332 s.index = idx; 1333 s.num = vq->last_avail_idx; 1334 if (copy_to_user(argp, &s, sizeof s)) 1335 r = -EFAULT; 1336 break; 1337 case VHOST_SET_VRING_ADDR: 1338 if (copy_from_user(&a, argp, sizeof a)) { 1339 r = -EFAULT; 1340 break; 1341 } 1342 if (a.flags & ~(0x1 << VHOST_VRING_F_LOG)) { 1343 r = -EOPNOTSUPP; 1344 break; 1345 } 1346 /* For 32bit, verify that the top 32bits of the user 1347 data are set to zero. */ 1348 if ((u64)(unsigned long)a.desc_user_addr != a.desc_user_addr || 1349 (u64)(unsigned long)a.used_user_addr != a.used_user_addr || 1350 (u64)(unsigned long)a.avail_user_addr != a.avail_user_addr) { 1351 r = -EFAULT; 1352 break; 1353 } 1354 1355 /* Make sure it's safe to cast pointers to vring types. */ 1356 BUILD_BUG_ON(__alignof__ *vq->avail > VRING_AVAIL_ALIGN_SIZE); 1357 BUILD_BUG_ON(__alignof__ *vq->used > VRING_USED_ALIGN_SIZE); 1358 if ((a.avail_user_addr & (VRING_AVAIL_ALIGN_SIZE - 1)) || 1359 (a.used_user_addr & (VRING_USED_ALIGN_SIZE - 1)) || 1360 (a.log_guest_addr & (VRING_USED_ALIGN_SIZE - 1))) { 1361 r = -EINVAL; 1362 break; 1363 } 1364 1365 /* We only verify access here if backend is configured. 1366 * If it is not, we don't as size might not have been setup. 1367 * We will verify when backend is configured. */ 1368 if (vq->private_data) { 1369 if (!vq_access_ok(vq, vq->num, 1370 (void __user *)(unsigned long)a.desc_user_addr, 1371 (void __user *)(unsigned long)a.avail_user_addr, 1372 (void __user *)(unsigned long)a.used_user_addr)) { 1373 r = -EINVAL; 1374 break; 1375 } 1376 1377 /* Also validate log access for used ring if enabled. */ 1378 if ((a.flags & (0x1 << VHOST_VRING_F_LOG)) && 1379 !log_access_ok(vq->log_base, a.log_guest_addr, 1380 sizeof *vq->used + 1381 vq->num * sizeof *vq->used->ring)) { 1382 r = -EINVAL; 1383 break; 1384 } 1385 } 1386 1387 vq->log_used = !!(a.flags & (0x1 << VHOST_VRING_F_LOG)); 1388 vq->desc = (void __user *)(unsigned long)a.desc_user_addr; 1389 vq->avail = (void __user *)(unsigned long)a.avail_user_addr; 1390 vq->log_addr = a.log_guest_addr; 1391 vq->used = (void __user *)(unsigned long)a.used_user_addr; 1392 break; 1393 case VHOST_SET_VRING_KICK: 1394 if (copy_from_user(&f, argp, sizeof f)) { 1395 r = -EFAULT; 1396 break; 1397 } 1398 eventfp = f.fd == -1 ? NULL : eventfd_fget(f.fd); 1399 if (IS_ERR(eventfp)) { 1400 r = PTR_ERR(eventfp); 1401 break; 1402 } 1403 if (eventfp != vq->kick) { 1404 pollstop = (filep = vq->kick) != NULL; 1405 pollstart = (vq->kick = eventfp) != NULL; 1406 } else 1407 filep = eventfp; 1408 break; 1409 case VHOST_SET_VRING_CALL: 1410 if (copy_from_user(&f, argp, sizeof f)) { 1411 r = -EFAULT; 1412 break; 1413 } 1414 eventfp = f.fd == -1 ? NULL : eventfd_fget(f.fd); 1415 if (IS_ERR(eventfp)) { 1416 r = PTR_ERR(eventfp); 1417 break; 1418 } 1419 if (eventfp != vq->call) { 1420 filep = vq->call; 1421 ctx = vq->call_ctx; 1422 vq->call = eventfp; 1423 vq->call_ctx = eventfp ? 1424 eventfd_ctx_fileget(eventfp) : NULL; 1425 } else 1426 filep = eventfp; 1427 break; 1428 case VHOST_SET_VRING_ERR: 1429 if (copy_from_user(&f, argp, sizeof f)) { 1430 r = -EFAULT; 1431 break; 1432 } 1433 eventfp = f.fd == -1 ? NULL : eventfd_fget(f.fd); 1434 if (IS_ERR(eventfp)) { 1435 r = PTR_ERR(eventfp); 1436 break; 1437 } 1438 if (eventfp != vq->error) { 1439 filep = vq->error; 1440 vq->error = eventfp; 1441 ctx = vq->error_ctx; 1442 vq->error_ctx = eventfp ? 1443 eventfd_ctx_fileget(eventfp) : NULL; 1444 } else 1445 filep = eventfp; 1446 break; 1447 case VHOST_SET_VRING_ENDIAN: 1448 r = vhost_set_vring_endian(vq, argp); 1449 break; 1450 case VHOST_GET_VRING_ENDIAN: 1451 r = vhost_get_vring_endian(vq, idx, argp); 1452 break; 1453 case VHOST_SET_VRING_BUSYLOOP_TIMEOUT: 1454 if (copy_from_user(&s, argp, sizeof(s))) { 1455 r = -EFAULT; 1456 break; 1457 } 1458 vq->busyloop_timeout = s.num; 1459 break; 1460 case VHOST_GET_VRING_BUSYLOOP_TIMEOUT: 1461 s.index = idx; 1462 s.num = vq->busyloop_timeout; 1463 if (copy_to_user(argp, &s, sizeof(s))) 1464 r = -EFAULT; 1465 break; 1466 default: 1467 r = -ENOIOCTLCMD; 1468 } 1469 1470 if (pollstop && vq->handle_kick) 1471 vhost_poll_stop(&vq->poll); 1472 1473 if (ctx) 1474 eventfd_ctx_put(ctx); 1475 if (filep) 1476 fput(filep); 1477 1478 if (pollstart && vq->handle_kick) 1479 r = vhost_poll_start(&vq->poll, vq->kick); 1480 1481 mutex_unlock(&vq->mutex); 1482 1483 if (pollstop && vq->handle_kick) 1484 vhost_poll_flush(&vq->poll); 1485 return r; 1486 } 1487 EXPORT_SYMBOL_GPL(vhost_vring_ioctl); 1488 1489 int vhost_init_device_iotlb(struct vhost_dev *d, bool enabled) 1490 { 1491 struct vhost_umem *niotlb, *oiotlb; 1492 int i; 1493 1494 niotlb = vhost_umem_alloc(); 1495 if (!niotlb) 1496 return -ENOMEM; 1497 1498 oiotlb = d->iotlb; 1499 d->iotlb = niotlb; 1500 1501 for (i = 0; i < d->nvqs; ++i) { 1502 mutex_lock(&d->vqs[i]->mutex); 1503 d->vqs[i]->iotlb = niotlb; 1504 mutex_unlock(&d->vqs[i]->mutex); 1505 } 1506 1507 vhost_umem_clean(oiotlb); 1508 1509 return 0; 1510 } 1511 EXPORT_SYMBOL_GPL(vhost_init_device_iotlb); 1512 1513 /* Caller must have device mutex */ 1514 long vhost_dev_ioctl(struct vhost_dev *d, unsigned int ioctl, void __user *argp) 1515 { 1516 struct file *eventfp, *filep = NULL; 1517 struct eventfd_ctx *ctx = NULL; 1518 u64 p; 1519 long r; 1520 int i, fd; 1521 1522 /* If you are not the owner, you can become one */ 1523 if (ioctl == VHOST_SET_OWNER) { 1524 r = vhost_dev_set_owner(d); 1525 goto done; 1526 } 1527 1528 /* You must be the owner to do anything else */ 1529 r = vhost_dev_check_owner(d); 1530 if (r) 1531 goto done; 1532 1533 switch (ioctl) { 1534 case VHOST_SET_MEM_TABLE: 1535 r = vhost_set_memory(d, argp); 1536 break; 1537 case VHOST_SET_LOG_BASE: 1538 if (copy_from_user(&p, argp, sizeof p)) { 1539 r = -EFAULT; 1540 break; 1541 } 1542 if ((u64)(unsigned long)p != p) { 1543 r = -EFAULT; 1544 break; 1545 } 1546 for (i = 0; i < d->nvqs; ++i) { 1547 struct vhost_virtqueue *vq; 1548 void __user *base = (void __user *)(unsigned long)p; 1549 vq = d->vqs[i]; 1550 mutex_lock(&vq->mutex); 1551 /* If ring is inactive, will check when it's enabled. */ 1552 if (vq->private_data && !vq_log_access_ok(vq, base)) 1553 r = -EFAULT; 1554 else 1555 vq->log_base = base; 1556 mutex_unlock(&vq->mutex); 1557 } 1558 break; 1559 case VHOST_SET_LOG_FD: 1560 r = get_user(fd, (int __user *)argp); 1561 if (r < 0) 1562 break; 1563 eventfp = fd == -1 ? NULL : eventfd_fget(fd); 1564 if (IS_ERR(eventfp)) { 1565 r = PTR_ERR(eventfp); 1566 break; 1567 } 1568 if (eventfp != d->log_file) { 1569 filep = d->log_file; 1570 d->log_file = eventfp; 1571 ctx = d->log_ctx; 1572 d->log_ctx = eventfp ? 1573 eventfd_ctx_fileget(eventfp) : NULL; 1574 } else 1575 filep = eventfp; 1576 for (i = 0; i < d->nvqs; ++i) { 1577 mutex_lock(&d->vqs[i]->mutex); 1578 d->vqs[i]->log_ctx = d->log_ctx; 1579 mutex_unlock(&d->vqs[i]->mutex); 1580 } 1581 if (ctx) 1582 eventfd_ctx_put(ctx); 1583 if (filep) 1584 fput(filep); 1585 break; 1586 default: 1587 r = -ENOIOCTLCMD; 1588 break; 1589 } 1590 done: 1591 return r; 1592 } 1593 EXPORT_SYMBOL_GPL(vhost_dev_ioctl); 1594 1595 /* TODO: This is really inefficient. We need something like get_user() 1596 * (instruction directly accesses the data, with an exception table entry 1597 * returning -EFAULT). See Documentation/x86/exception-tables.txt. 1598 */ 1599 static int set_bit_to_user(int nr, void __user *addr) 1600 { 1601 unsigned long log = (unsigned long)addr; 1602 struct page *page; 1603 void *base; 1604 int bit = nr + (log % PAGE_SIZE) * 8; 1605 int r; 1606 1607 r = get_user_pages_fast(log, 1, 1, &page); 1608 if (r < 0) 1609 return r; 1610 BUG_ON(r != 1); 1611 base = kmap_atomic(page); 1612 set_bit(bit, base); 1613 kunmap_atomic(base); 1614 set_page_dirty_lock(page); 1615 put_page(page); 1616 return 0; 1617 } 1618 1619 static int log_write(void __user *log_base, 1620 u64 write_address, u64 write_length) 1621 { 1622 u64 write_page = write_address / VHOST_PAGE_SIZE; 1623 int r; 1624 1625 if (!write_length) 1626 return 0; 1627 write_length += write_address % VHOST_PAGE_SIZE; 1628 for (;;) { 1629 u64 base = (u64)(unsigned long)log_base; 1630 u64 log = base + write_page / 8; 1631 int bit = write_page % 8; 1632 if ((u64)(unsigned long)log != log) 1633 return -EFAULT; 1634 r = set_bit_to_user(bit, (void __user *)(unsigned long)log); 1635 if (r < 0) 1636 return r; 1637 if (write_length <= VHOST_PAGE_SIZE) 1638 break; 1639 write_length -= VHOST_PAGE_SIZE; 1640 write_page += 1; 1641 } 1642 return r; 1643 } 1644 1645 int vhost_log_write(struct vhost_virtqueue *vq, struct vhost_log *log, 1646 unsigned int log_num, u64 len) 1647 { 1648 int i, r; 1649 1650 /* Make sure data written is seen before log. */ 1651 smp_wmb(); 1652 for (i = 0; i < log_num; ++i) { 1653 u64 l = min(log[i].len, len); 1654 r = log_write(vq->log_base, log[i].addr, l); 1655 if (r < 0) 1656 return r; 1657 len -= l; 1658 if (!len) { 1659 if (vq->log_ctx) 1660 eventfd_signal(vq->log_ctx, 1); 1661 return 0; 1662 } 1663 } 1664 /* Length written exceeds what we have stored. This is a bug. */ 1665 BUG(); 1666 return 0; 1667 } 1668 EXPORT_SYMBOL_GPL(vhost_log_write); 1669 1670 static int vhost_update_used_flags(struct vhost_virtqueue *vq) 1671 { 1672 void __user *used; 1673 if (vhost_put_user(vq, cpu_to_vhost16(vq, vq->used_flags), 1674 &vq->used->flags) < 0) 1675 return -EFAULT; 1676 if (unlikely(vq->log_used)) { 1677 /* Make sure the flag is seen before log. */ 1678 smp_wmb(); 1679 /* Log used flag write. */ 1680 used = &vq->used->flags; 1681 log_write(vq->log_base, vq->log_addr + 1682 (used - (void __user *)vq->used), 1683 sizeof vq->used->flags); 1684 if (vq->log_ctx) 1685 eventfd_signal(vq->log_ctx, 1); 1686 } 1687 return 0; 1688 } 1689 1690 static int vhost_update_avail_event(struct vhost_virtqueue *vq, u16 avail_event) 1691 { 1692 if (vhost_put_user(vq, cpu_to_vhost16(vq, vq->avail_idx), 1693 vhost_avail_event(vq))) 1694 return -EFAULT; 1695 if (unlikely(vq->log_used)) { 1696 void __user *used; 1697 /* Make sure the event is seen before log. */ 1698 smp_wmb(); 1699 /* Log avail event write */ 1700 used = vhost_avail_event(vq); 1701 log_write(vq->log_base, vq->log_addr + 1702 (used - (void __user *)vq->used), 1703 sizeof *vhost_avail_event(vq)); 1704 if (vq->log_ctx) 1705 eventfd_signal(vq->log_ctx, 1); 1706 } 1707 return 0; 1708 } 1709 1710 int vhost_vq_init_access(struct vhost_virtqueue *vq) 1711 { 1712 __virtio16 last_used_idx; 1713 int r; 1714 bool is_le = vq->is_le; 1715 1716 if (!vq->private_data) { 1717 vhost_reset_is_le(vq); 1718 return 0; 1719 } 1720 1721 vhost_init_is_le(vq); 1722 1723 r = vhost_update_used_flags(vq); 1724 if (r) 1725 goto err; 1726 vq->signalled_used_valid = false; 1727 if (!vq->iotlb && 1728 !access_ok(VERIFY_READ, &vq->used->idx, sizeof vq->used->idx)) { 1729 r = -EFAULT; 1730 goto err; 1731 } 1732 r = vhost_get_user(vq, last_used_idx, &vq->used->idx); 1733 if (r) { 1734 vq_err(vq, "Can't access used idx at %p\n", 1735 &vq->used->idx); 1736 goto err; 1737 } 1738 vq->last_used_idx = vhost16_to_cpu(vq, last_used_idx); 1739 return 0; 1740 1741 err: 1742 vq->is_le = is_le; 1743 return r; 1744 } 1745 EXPORT_SYMBOL_GPL(vhost_vq_init_access); 1746 1747 static int translate_desc(struct vhost_virtqueue *vq, u64 addr, u32 len, 1748 struct iovec iov[], int iov_size, int access) 1749 { 1750 const struct vhost_umem_node *node; 1751 struct vhost_dev *dev = vq->dev; 1752 struct vhost_umem *umem = dev->iotlb ? dev->iotlb : dev->umem; 1753 struct iovec *_iov; 1754 u64 s = 0; 1755 int ret = 0; 1756 1757 while ((u64)len > s) { 1758 u64 size; 1759 if (unlikely(ret >= iov_size)) { 1760 ret = -ENOBUFS; 1761 break; 1762 } 1763 1764 node = vhost_umem_interval_tree_iter_first(&umem->umem_tree, 1765 addr, addr + len - 1); 1766 if (node == NULL || node->start > addr) { 1767 if (umem != dev->iotlb) { 1768 ret = -EFAULT; 1769 break; 1770 } 1771 ret = -EAGAIN; 1772 break; 1773 } else if (!(node->perm & access)) { 1774 ret = -EPERM; 1775 break; 1776 } 1777 1778 _iov = iov + ret; 1779 size = node->size - addr + node->start; 1780 _iov->iov_len = min((u64)len - s, size); 1781 _iov->iov_base = (void __user *)(unsigned long) 1782 (node->userspace_addr + addr - node->start); 1783 s += size; 1784 addr += size; 1785 ++ret; 1786 } 1787 1788 if (ret == -EAGAIN) 1789 vhost_iotlb_miss(vq, addr, access); 1790 return ret; 1791 } 1792 1793 /* Each buffer in the virtqueues is actually a chain of descriptors. This 1794 * function returns the next descriptor in the chain, 1795 * or -1U if we're at the end. */ 1796 static unsigned next_desc(struct vhost_virtqueue *vq, struct vring_desc *desc) 1797 { 1798 unsigned int next; 1799 1800 /* If this descriptor says it doesn't chain, we're done. */ 1801 if (!(desc->flags & cpu_to_vhost16(vq, VRING_DESC_F_NEXT))) 1802 return -1U; 1803 1804 /* Check they're not leading us off end of descriptors. */ 1805 next = vhost16_to_cpu(vq, desc->next); 1806 /* Make sure compiler knows to grab that: we don't want it changing! */ 1807 /* We will use the result as an index in an array, so most 1808 * architectures only need a compiler barrier here. */ 1809 read_barrier_depends(); 1810 1811 return next; 1812 } 1813 1814 static int get_indirect(struct vhost_virtqueue *vq, 1815 struct iovec iov[], unsigned int iov_size, 1816 unsigned int *out_num, unsigned int *in_num, 1817 struct vhost_log *log, unsigned int *log_num, 1818 struct vring_desc *indirect) 1819 { 1820 struct vring_desc desc; 1821 unsigned int i = 0, count, found = 0; 1822 u32 len = vhost32_to_cpu(vq, indirect->len); 1823 struct iov_iter from; 1824 int ret, access; 1825 1826 /* Sanity check */ 1827 if (unlikely(len % sizeof desc)) { 1828 vq_err(vq, "Invalid length in indirect descriptor: " 1829 "len 0x%llx not multiple of 0x%zx\n", 1830 (unsigned long long)len, 1831 sizeof desc); 1832 return -EINVAL; 1833 } 1834 1835 ret = translate_desc(vq, vhost64_to_cpu(vq, indirect->addr), len, vq->indirect, 1836 UIO_MAXIOV, VHOST_ACCESS_RO); 1837 if (unlikely(ret < 0)) { 1838 if (ret != -EAGAIN) 1839 vq_err(vq, "Translation failure %d in indirect.\n", ret); 1840 return ret; 1841 } 1842 iov_iter_init(&from, READ, vq->indirect, ret, len); 1843 1844 /* We will use the result as an address to read from, so most 1845 * architectures only need a compiler barrier here. */ 1846 read_barrier_depends(); 1847 1848 count = len / sizeof desc; 1849 /* Buffers are chained via a 16 bit next field, so 1850 * we can have at most 2^16 of these. */ 1851 if (unlikely(count > USHRT_MAX + 1)) { 1852 vq_err(vq, "Indirect buffer length too big: %d\n", 1853 indirect->len); 1854 return -E2BIG; 1855 } 1856 1857 do { 1858 unsigned iov_count = *in_num + *out_num; 1859 if (unlikely(++found > count)) { 1860 vq_err(vq, "Loop detected: last one at %u " 1861 "indirect size %u\n", 1862 i, count); 1863 return -EINVAL; 1864 } 1865 if (unlikely(copy_from_iter(&desc, sizeof(desc), &from) != 1866 sizeof(desc))) { 1867 vq_err(vq, "Failed indirect descriptor: idx %d, %zx\n", 1868 i, (size_t)vhost64_to_cpu(vq, indirect->addr) + i * sizeof desc); 1869 return -EINVAL; 1870 } 1871 if (unlikely(desc.flags & cpu_to_vhost16(vq, VRING_DESC_F_INDIRECT))) { 1872 vq_err(vq, "Nested indirect descriptor: idx %d, %zx\n", 1873 i, (size_t)vhost64_to_cpu(vq, indirect->addr) + i * sizeof desc); 1874 return -EINVAL; 1875 } 1876 1877 if (desc.flags & cpu_to_vhost16(vq, VRING_DESC_F_WRITE)) 1878 access = VHOST_ACCESS_WO; 1879 else 1880 access = VHOST_ACCESS_RO; 1881 1882 ret = translate_desc(vq, vhost64_to_cpu(vq, desc.addr), 1883 vhost32_to_cpu(vq, desc.len), iov + iov_count, 1884 iov_size - iov_count, access); 1885 if (unlikely(ret < 0)) { 1886 if (ret != -EAGAIN) 1887 vq_err(vq, "Translation failure %d indirect idx %d\n", 1888 ret, i); 1889 return ret; 1890 } 1891 /* If this is an input descriptor, increment that count. */ 1892 if (access == VHOST_ACCESS_WO) { 1893 *in_num += ret; 1894 if (unlikely(log)) { 1895 log[*log_num].addr = vhost64_to_cpu(vq, desc.addr); 1896 log[*log_num].len = vhost32_to_cpu(vq, desc.len); 1897 ++*log_num; 1898 } 1899 } else { 1900 /* If it's an output descriptor, they're all supposed 1901 * to come before any input descriptors. */ 1902 if (unlikely(*in_num)) { 1903 vq_err(vq, "Indirect descriptor " 1904 "has out after in: idx %d\n", i); 1905 return -EINVAL; 1906 } 1907 *out_num += ret; 1908 } 1909 } while ((i = next_desc(vq, &desc)) != -1); 1910 return 0; 1911 } 1912 1913 /* This looks in the virtqueue and for the first available buffer, and converts 1914 * it to an iovec for convenient access. Since descriptors consist of some 1915 * number of output then some number of input descriptors, it's actually two 1916 * iovecs, but we pack them into one and note how many of each there were. 1917 * 1918 * This function returns the descriptor number found, or vq->num (which is 1919 * never a valid descriptor number) if none was found. A negative code is 1920 * returned on error. */ 1921 int vhost_get_vq_desc(struct vhost_virtqueue *vq, 1922 struct iovec iov[], unsigned int iov_size, 1923 unsigned int *out_num, unsigned int *in_num, 1924 struct vhost_log *log, unsigned int *log_num) 1925 { 1926 struct vring_desc desc; 1927 unsigned int i, head, found = 0; 1928 u16 last_avail_idx; 1929 __virtio16 avail_idx; 1930 __virtio16 ring_head; 1931 int ret, access; 1932 1933 /* Check it isn't doing very strange things with descriptor numbers. */ 1934 last_avail_idx = vq->last_avail_idx; 1935 if (unlikely(vhost_get_user(vq, avail_idx, &vq->avail->idx))) { 1936 vq_err(vq, "Failed to access avail idx at %p\n", 1937 &vq->avail->idx); 1938 return -EFAULT; 1939 } 1940 vq->avail_idx = vhost16_to_cpu(vq, avail_idx); 1941 1942 if (unlikely((u16)(vq->avail_idx - last_avail_idx) > vq->num)) { 1943 vq_err(vq, "Guest moved used index from %u to %u", 1944 last_avail_idx, vq->avail_idx); 1945 return -EFAULT; 1946 } 1947 1948 /* If there's nothing new since last we looked, return invalid. */ 1949 if (vq->avail_idx == last_avail_idx) 1950 return vq->num; 1951 1952 /* Only get avail ring entries after they have been exposed by guest. */ 1953 smp_rmb(); 1954 1955 /* Grab the next descriptor number they're advertising, and increment 1956 * the index we've seen. */ 1957 if (unlikely(vhost_get_user(vq, ring_head, 1958 &vq->avail->ring[last_avail_idx & (vq->num - 1)]))) { 1959 vq_err(vq, "Failed to read head: idx %d address %p\n", 1960 last_avail_idx, 1961 &vq->avail->ring[last_avail_idx % vq->num]); 1962 return -EFAULT; 1963 } 1964 1965 head = vhost16_to_cpu(vq, ring_head); 1966 1967 /* If their number is silly, that's an error. */ 1968 if (unlikely(head >= vq->num)) { 1969 vq_err(vq, "Guest says index %u > %u is available", 1970 head, vq->num); 1971 return -EINVAL; 1972 } 1973 1974 /* When we start there are none of either input nor output. */ 1975 *out_num = *in_num = 0; 1976 if (unlikely(log)) 1977 *log_num = 0; 1978 1979 i = head; 1980 do { 1981 unsigned iov_count = *in_num + *out_num; 1982 if (unlikely(i >= vq->num)) { 1983 vq_err(vq, "Desc index is %u > %u, head = %u", 1984 i, vq->num, head); 1985 return -EINVAL; 1986 } 1987 if (unlikely(++found > vq->num)) { 1988 vq_err(vq, "Loop detected: last one at %u " 1989 "vq size %u head %u\n", 1990 i, vq->num, head); 1991 return -EINVAL; 1992 } 1993 ret = vhost_copy_from_user(vq, &desc, vq->desc + i, 1994 sizeof desc); 1995 if (unlikely(ret)) { 1996 vq_err(vq, "Failed to get descriptor: idx %d addr %p\n", 1997 i, vq->desc + i); 1998 return -EFAULT; 1999 } 2000 if (desc.flags & cpu_to_vhost16(vq, VRING_DESC_F_INDIRECT)) { 2001 ret = get_indirect(vq, iov, iov_size, 2002 out_num, in_num, 2003 log, log_num, &desc); 2004 if (unlikely(ret < 0)) { 2005 if (ret != -EAGAIN) 2006 vq_err(vq, "Failure detected " 2007 "in indirect descriptor at idx %d\n", i); 2008 return ret; 2009 } 2010 continue; 2011 } 2012 2013 if (desc.flags & cpu_to_vhost16(vq, VRING_DESC_F_WRITE)) 2014 access = VHOST_ACCESS_WO; 2015 else 2016 access = VHOST_ACCESS_RO; 2017 ret = translate_desc(vq, vhost64_to_cpu(vq, desc.addr), 2018 vhost32_to_cpu(vq, desc.len), iov + iov_count, 2019 iov_size - iov_count, access); 2020 if (unlikely(ret < 0)) { 2021 if (ret != -EAGAIN) 2022 vq_err(vq, "Translation failure %d descriptor idx %d\n", 2023 ret, i); 2024 return ret; 2025 } 2026 if (access == VHOST_ACCESS_WO) { 2027 /* If this is an input descriptor, 2028 * increment that count. */ 2029 *in_num += ret; 2030 if (unlikely(log)) { 2031 log[*log_num].addr = vhost64_to_cpu(vq, desc.addr); 2032 log[*log_num].len = vhost32_to_cpu(vq, desc.len); 2033 ++*log_num; 2034 } 2035 } else { 2036 /* If it's an output descriptor, they're all supposed 2037 * to come before any input descriptors. */ 2038 if (unlikely(*in_num)) { 2039 vq_err(vq, "Descriptor has out after in: " 2040 "idx %d\n", i); 2041 return -EINVAL; 2042 } 2043 *out_num += ret; 2044 } 2045 } while ((i = next_desc(vq, &desc)) != -1); 2046 2047 /* On success, increment avail index. */ 2048 vq->last_avail_idx++; 2049 2050 /* Assume notifications from guest are disabled at this point, 2051 * if they aren't we would need to update avail_event index. */ 2052 BUG_ON(!(vq->used_flags & VRING_USED_F_NO_NOTIFY)); 2053 return head; 2054 } 2055 EXPORT_SYMBOL_GPL(vhost_get_vq_desc); 2056 2057 /* Reverse the effect of vhost_get_vq_desc. Useful for error handling. */ 2058 void vhost_discard_vq_desc(struct vhost_virtqueue *vq, int n) 2059 { 2060 vq->last_avail_idx -= n; 2061 } 2062 EXPORT_SYMBOL_GPL(vhost_discard_vq_desc); 2063 2064 /* After we've used one of their buffers, we tell them about it. We'll then 2065 * want to notify the guest, using eventfd. */ 2066 int vhost_add_used(struct vhost_virtqueue *vq, unsigned int head, int len) 2067 { 2068 struct vring_used_elem heads = { 2069 cpu_to_vhost32(vq, head), 2070 cpu_to_vhost32(vq, len) 2071 }; 2072 2073 return vhost_add_used_n(vq, &heads, 1); 2074 } 2075 EXPORT_SYMBOL_GPL(vhost_add_used); 2076 2077 static int __vhost_add_used_n(struct vhost_virtqueue *vq, 2078 struct vring_used_elem *heads, 2079 unsigned count) 2080 { 2081 struct vring_used_elem __user *used; 2082 u16 old, new; 2083 int start; 2084 2085 start = vq->last_used_idx & (vq->num - 1); 2086 used = vq->used->ring + start; 2087 if (count == 1) { 2088 if (vhost_put_user(vq, heads[0].id, &used->id)) { 2089 vq_err(vq, "Failed to write used id"); 2090 return -EFAULT; 2091 } 2092 if (vhost_put_user(vq, heads[0].len, &used->len)) { 2093 vq_err(vq, "Failed to write used len"); 2094 return -EFAULT; 2095 } 2096 } else if (vhost_copy_to_user(vq, used, heads, count * sizeof *used)) { 2097 vq_err(vq, "Failed to write used"); 2098 return -EFAULT; 2099 } 2100 if (unlikely(vq->log_used)) { 2101 /* Make sure data is seen before log. */ 2102 smp_wmb(); 2103 /* Log used ring entry write. */ 2104 log_write(vq->log_base, 2105 vq->log_addr + 2106 ((void __user *)used - (void __user *)vq->used), 2107 count * sizeof *used); 2108 } 2109 old = vq->last_used_idx; 2110 new = (vq->last_used_idx += count); 2111 /* If the driver never bothers to signal in a very long while, 2112 * used index might wrap around. If that happens, invalidate 2113 * signalled_used index we stored. TODO: make sure driver 2114 * signals at least once in 2^16 and remove this. */ 2115 if (unlikely((u16)(new - vq->signalled_used) < (u16)(new - old))) 2116 vq->signalled_used_valid = false; 2117 return 0; 2118 } 2119 2120 /* After we've used one of their buffers, we tell them about it. We'll then 2121 * want to notify the guest, using eventfd. */ 2122 int vhost_add_used_n(struct vhost_virtqueue *vq, struct vring_used_elem *heads, 2123 unsigned count) 2124 { 2125 int start, n, r; 2126 2127 start = vq->last_used_idx & (vq->num - 1); 2128 n = vq->num - start; 2129 if (n < count) { 2130 r = __vhost_add_used_n(vq, heads, n); 2131 if (r < 0) 2132 return r; 2133 heads += n; 2134 count -= n; 2135 } 2136 r = __vhost_add_used_n(vq, heads, count); 2137 2138 /* Make sure buffer is written before we update index. */ 2139 smp_wmb(); 2140 if (vhost_put_user(vq, cpu_to_vhost16(vq, vq->last_used_idx), 2141 &vq->used->idx)) { 2142 vq_err(vq, "Failed to increment used idx"); 2143 return -EFAULT; 2144 } 2145 if (unlikely(vq->log_used)) { 2146 /* Log used index update. */ 2147 log_write(vq->log_base, 2148 vq->log_addr + offsetof(struct vring_used, idx), 2149 sizeof vq->used->idx); 2150 if (vq->log_ctx) 2151 eventfd_signal(vq->log_ctx, 1); 2152 } 2153 return r; 2154 } 2155 EXPORT_SYMBOL_GPL(vhost_add_used_n); 2156 2157 static bool vhost_notify(struct vhost_dev *dev, struct vhost_virtqueue *vq) 2158 { 2159 __u16 old, new; 2160 __virtio16 event; 2161 bool v; 2162 /* Flush out used index updates. This is paired 2163 * with the barrier that the Guest executes when enabling 2164 * interrupts. */ 2165 smp_mb(); 2166 2167 if (vhost_has_feature(vq, VIRTIO_F_NOTIFY_ON_EMPTY) && 2168 unlikely(vq->avail_idx == vq->last_avail_idx)) 2169 return true; 2170 2171 if (!vhost_has_feature(vq, VIRTIO_RING_F_EVENT_IDX)) { 2172 __virtio16 flags; 2173 if (vhost_get_user(vq, flags, &vq->avail->flags)) { 2174 vq_err(vq, "Failed to get flags"); 2175 return true; 2176 } 2177 return !(flags & cpu_to_vhost16(vq, VRING_AVAIL_F_NO_INTERRUPT)); 2178 } 2179 old = vq->signalled_used; 2180 v = vq->signalled_used_valid; 2181 new = vq->signalled_used = vq->last_used_idx; 2182 vq->signalled_used_valid = true; 2183 2184 if (unlikely(!v)) 2185 return true; 2186 2187 if (vhost_get_user(vq, event, vhost_used_event(vq))) { 2188 vq_err(vq, "Failed to get used event idx"); 2189 return true; 2190 } 2191 return vring_need_event(vhost16_to_cpu(vq, event), new, old); 2192 } 2193 2194 /* This actually signals the guest, using eventfd. */ 2195 void vhost_signal(struct vhost_dev *dev, struct vhost_virtqueue *vq) 2196 { 2197 /* Signal the Guest tell them we used something up. */ 2198 if (vq->call_ctx && vhost_notify(dev, vq)) 2199 eventfd_signal(vq->call_ctx, 1); 2200 } 2201 EXPORT_SYMBOL_GPL(vhost_signal); 2202 2203 /* And here's the combo meal deal. Supersize me! */ 2204 void vhost_add_used_and_signal(struct vhost_dev *dev, 2205 struct vhost_virtqueue *vq, 2206 unsigned int head, int len) 2207 { 2208 vhost_add_used(vq, head, len); 2209 vhost_signal(dev, vq); 2210 } 2211 EXPORT_SYMBOL_GPL(vhost_add_used_and_signal); 2212 2213 /* multi-buffer version of vhost_add_used_and_signal */ 2214 void vhost_add_used_and_signal_n(struct vhost_dev *dev, 2215 struct vhost_virtqueue *vq, 2216 struct vring_used_elem *heads, unsigned count) 2217 { 2218 vhost_add_used_n(vq, heads, count); 2219 vhost_signal(dev, vq); 2220 } 2221 EXPORT_SYMBOL_GPL(vhost_add_used_and_signal_n); 2222 2223 /* return true if we're sure that avaiable ring is empty */ 2224 bool vhost_vq_avail_empty(struct vhost_dev *dev, struct vhost_virtqueue *vq) 2225 { 2226 __virtio16 avail_idx; 2227 int r; 2228 2229 r = vhost_get_user(vq, avail_idx, &vq->avail->idx); 2230 if (r) 2231 return false; 2232 2233 return vhost16_to_cpu(vq, avail_idx) == vq->avail_idx; 2234 } 2235 EXPORT_SYMBOL_GPL(vhost_vq_avail_empty); 2236 2237 /* OK, now we need to know about added descriptors. */ 2238 bool vhost_enable_notify(struct vhost_dev *dev, struct vhost_virtqueue *vq) 2239 { 2240 __virtio16 avail_idx; 2241 int r; 2242 2243 if (!(vq->used_flags & VRING_USED_F_NO_NOTIFY)) 2244 return false; 2245 vq->used_flags &= ~VRING_USED_F_NO_NOTIFY; 2246 if (!vhost_has_feature(vq, VIRTIO_RING_F_EVENT_IDX)) { 2247 r = vhost_update_used_flags(vq); 2248 if (r) { 2249 vq_err(vq, "Failed to enable notification at %p: %d\n", 2250 &vq->used->flags, r); 2251 return false; 2252 } 2253 } else { 2254 r = vhost_update_avail_event(vq, vq->avail_idx); 2255 if (r) { 2256 vq_err(vq, "Failed to update avail event index at %p: %d\n", 2257 vhost_avail_event(vq), r); 2258 return false; 2259 } 2260 } 2261 /* They could have slipped one in as we were doing that: make 2262 * sure it's written, then check again. */ 2263 smp_mb(); 2264 r = vhost_get_user(vq, avail_idx, &vq->avail->idx); 2265 if (r) { 2266 vq_err(vq, "Failed to check avail idx at %p: %d\n", 2267 &vq->avail->idx, r); 2268 return false; 2269 } 2270 2271 return vhost16_to_cpu(vq, avail_idx) != vq->avail_idx; 2272 } 2273 EXPORT_SYMBOL_GPL(vhost_enable_notify); 2274 2275 /* We don't need to be notified again. */ 2276 void vhost_disable_notify(struct vhost_dev *dev, struct vhost_virtqueue *vq) 2277 { 2278 int r; 2279 2280 if (vq->used_flags & VRING_USED_F_NO_NOTIFY) 2281 return; 2282 vq->used_flags |= VRING_USED_F_NO_NOTIFY; 2283 if (!vhost_has_feature(vq, VIRTIO_RING_F_EVENT_IDX)) { 2284 r = vhost_update_used_flags(vq); 2285 if (r) 2286 vq_err(vq, "Failed to enable notification at %p: %d\n", 2287 &vq->used->flags, r); 2288 } 2289 } 2290 EXPORT_SYMBOL_GPL(vhost_disable_notify); 2291 2292 /* Create a new message. */ 2293 struct vhost_msg_node *vhost_new_msg(struct vhost_virtqueue *vq, int type) 2294 { 2295 struct vhost_msg_node *node = kmalloc(sizeof *node, GFP_KERNEL); 2296 if (!node) 2297 return NULL; 2298 node->vq = vq; 2299 node->msg.type = type; 2300 return node; 2301 } 2302 EXPORT_SYMBOL_GPL(vhost_new_msg); 2303 2304 void vhost_enqueue_msg(struct vhost_dev *dev, struct list_head *head, 2305 struct vhost_msg_node *node) 2306 { 2307 spin_lock(&dev->iotlb_lock); 2308 list_add_tail(&node->node, head); 2309 spin_unlock(&dev->iotlb_lock); 2310 2311 wake_up_interruptible_poll(&dev->wait, POLLIN | POLLRDNORM); 2312 } 2313 EXPORT_SYMBOL_GPL(vhost_enqueue_msg); 2314 2315 struct vhost_msg_node *vhost_dequeue_msg(struct vhost_dev *dev, 2316 struct list_head *head) 2317 { 2318 struct vhost_msg_node *node = NULL; 2319 2320 spin_lock(&dev->iotlb_lock); 2321 if (!list_empty(head)) { 2322 node = list_first_entry(head, struct vhost_msg_node, 2323 node); 2324 list_del(&node->node); 2325 } 2326 spin_unlock(&dev->iotlb_lock); 2327 2328 return node; 2329 } 2330 EXPORT_SYMBOL_GPL(vhost_dequeue_msg); 2331 2332 2333 static int __init vhost_init(void) 2334 { 2335 return 0; 2336 } 2337 2338 static void __exit vhost_exit(void) 2339 { 2340 } 2341 2342 module_init(vhost_init); 2343 module_exit(vhost_exit); 2344 2345 MODULE_VERSION("0.0.1"); 2346 MODULE_LICENSE("GPL v2"); 2347 MODULE_AUTHOR("Michael S. Tsirkin"); 2348 MODULE_DESCRIPTION("Host kernel accelerator for virtio"); 2349